基于电子操动的快速直流断路器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,直流电力系统在世界各国得到了普遍发展,尤其在城市轻轨、地铁以及船舶等处应用更多。传统的高压直流输电工程都是二终端的传输方式,系统一般通过换流器或逆变器的控制便可消除故障电流,或者在交流侧分断故障电流。为了增加直流输电的灵活性,人们希望采用多终端的直流输电系统,直流断路器成为直流电力系统的“瓶颈”问题。
     为了实现直流的短路开断,本文采用电流转移原理,提出了断路器的新型结构,即应用一个机构同步操作连在一个杠杆上的两个真空灭弧室,实现了主电路分闸与转移电流投入的同步操作,不但动作迅速、工作可靠,同时满足了在要求的开距下投入转移电流,投入时间精确。为直流电力系统的进一步发展提供了一个新的解决方案。
     本研究的电流转移是在主、次两个灭弧室中完成的。在主灭弧室上并联一个由预充电的电容器和电感组成的电流转移回路,当线路中发生故障时,主灭弧室分断,同时,次灭弧室关合,使转移回路接入系统中,在电容器、电感与主灭弧室电弧间形成振荡电流。此电流叠加到故障电流上,强迫其过零,从而为主灭弧室提供良好的开断机会。本文把电流转移过程分为三个阶段:1.短路故障发生,主灭弧室分闸;2.次灭弧室关合,转移电流投入,并强迫故障电流过零;3.过零后,主灭弧室中电弧熄灭,系统对转移电容充电。给出了每个阶段的数学表达式,分别对它们进行了电路仿真,并对仿真结果进行了分析。对线路电感对电容残压值的影响进行了分析,并提出了快速开断剩余电流的方法。
     在直流真空断路器系统设计中,本文首先提出了电子操动的概念,并以永磁操动机构为例分析了电子操动的精度和可靠度。直流真空断路器的控制和故障数据的采集、判断是由单片机智能测控系统来完成的,采用电流瞬时值(△I)和电流变化率(di/dt)相结合进行比较的办法,判断出故障的发生,并输出指令对断路器进行精确地控制。
     针对直流断路器的特殊需求,本文对两种快速操动机构进行了磁场分析和设计。对永磁机构的工作过程进行了动态分析并对其进行了数学建模,给出了状态微分方程组的求解,应用四阶龙格库塔法进行了仿真计算,并与实验结果进行了对比,表明仿真计算是可信的,可以指导永磁机构的设计。同时,应用电弧模型进行了转移过程中的最佳开距分析和触头最低初分速度设计。
     最后,本研究利用LC振荡回路模拟直流短路故障,对新型直流断路器样机进行了开断实验,最大实验电流达到20kA。从实验结果可以看出,应用电流转移原理的直流断路器,首先要保证分断时间与投入反电流的时间配合精确;其次,要保
    
    大连理工大学博士学位论文
    基于电子操动的快速直流断路器的研究
    证在分断时,转移电流足够大,使得电弧电流充分过零,可增加转移回路电容器
    的充电电压值或增加电容量,以保证一定的冗余系数(K习.5)。
    关键词:直流输电新型直流断路器电流转移原理最佳开距电子操动
     永磁机构涡流斥力机构智能测控系统
DC power systems are developed in many countries of the world, which are applied widely in trolleybuses、 ships and subways, etc.. Traditional DC transmission system works always by one terminal to the other, and the protection of short faults is depended on controlling converters and inverters or opening system by AC circuit breakers(CB) in AC side. For the sake of improving the flexibility of DC transmission systems, multi-terminal systems are expected to be adopted, and DC-CB becomes a "bottle-neck" in power system.In order to break short faults, the commutation principle is used and a novel structure DC-CB with permanent magnetic actuator (PMA) is introduced, which puts two vacuum interrupters on each end of a rod with a fixed-point in the middle of it. In this way, we can realize the CB's opening and the current's transferring synthetically, make sure the moving electrode has reached safe distance to withstand the recovery voltage. It presents a new scheme for the further development of DC power system.The commutation principle's realizing is finished by two vacuum interrupters. A transfer loop is paralleled to main interrupter, which consists of a pre-energizing capacitance and an inductance. When the fault appears, the main interrupter (in main line) opens and the sub-interrupter closes at the same time. So the oscillatory current is brought in the capacitance, inductance and arc of main interrupter. The oscillatory current is added to the short current, which forces the current in main interrupter to zero, so the opportunity of extinguishing arc appears. Current commutation can be divided into three stages: 1.short fault happens, and main interrupter opens; 2.sub-interrupter closes, and transfer current is devoted, which forces current to zero; 3.after zero, the arc in main interrupter is extinguished, and the capacitance is energized by system. Mathematics expressions of the three stages above are given and simulated. The influence of system inductance to capacitance voltage is analyzed, and the method of fast opening odd current is given in the paper.Electronic-driven system is put forward firstly in design of DC-CB, and the PMA is used to analyze the precision and reliability of electronic-driven. Single-chip micro-computer is used to perform sampling, judging, and △I and di/dt are used to estimate whether fault has happened, then the electronic-driven system will output orders to control CB based on estimation result.Two kinds of fast actuators are analyzed in their magnetic fields. Dynamic analysis and design is done based on the mathematic modules set in the paper. The state equation group is solutioned by means of Runge-kutta method. Compared with the experiment, the simulation result is credible, and it can guide the design of PMA. At the same time, the optimal electrode distance and the lowest prime move-velocity of contact are analyzed in the paper.Finally, breaking experiments of the sample DC-CB' are done on LC oscillatory circuit in our lab, and the largest test current reaches 20 kA. From the experiment results we know that, for the sake of
    
    using DC-CB with commutation principle, the main interrupter's opening and transfer current's devoting must be cooperated precisely; At the same time, the transfer current must be big enough to force fault current to zero for DC-CB's reliable work (redundancy rate K>1.5). To satisfy it, the measures of enhancing capacitance energizing voltage level or enlarge actual capacitance should be done in the scheme.
引文
[1]李建基,高压电器,第1版,北京:机械工业出版社,1995:223-224
    [2]李兴源,高压直流输电系统的运行和控制。北京:科学出版社,1998:1-2
    [3]HP Lips. Technology Trends for HVDC Thyristor Valves[J]. Power System Technology, 1998(1):451-455
    [4]赵中原,方志,邱毓昌等,高压直流换流站技术现状与发展[J].中国电力,2002,35(3):48-51.
    [5]Steffen Bemet. Recent Development of High Power Converters for Industry and Traction Applications[J]. IEEE Trans.on Power Lectronics,2000,15(6):1102-1117.
    [6]HP Lips. Water Cooling of HVDC Thyristor Valves[J]. IEEE Trans. on Power Delivery, 1994, 9(4): 1830-1837.
    [7]M.P.Hausler, H. Kolsch, M. Pauli. Application and Switching Duties of High Speed Switches in the DC Switchyard of HVDC Station[C]. CIGRE 1985, 14, 02
    [8]尚金城,张万荣.嵊泗直流输电工程系统研究报告之一:稳态参数计算及单线图设计[R].西安高压电器研究所,1996,12.
    [9]阿津莱加(新西兰),高压直流输电,重庆:重庆大学出版社,1987。
    [10]刘国云.葛洲坝换流站直流断路器的原理及改进。中国电力,1995.04:18-64.
    [11]Uhlmann E et al.HVDC insulation coordination part 1 Generation of overvoltages. Direct current, 1971, 2(1):8-14.
    [12]Uhlmann E et al.HVDC insulation coordination part 2 Generation of overvoltages. Direct current, 1971, 2(3):86-91.
    [13]电力科学研究院.葛洲坝至上海高压架空直流输电线路内部过电压研究.电力科学研究院研究报告,1984.
    [14]蔡彬,轨道交通的直流供电系统。电工技术杂志,2001.2:10-13.
    [15]刘景,城市快速轨道交通市场综述。上海电器技术,1999.4
    [16]杨立新,地铁供电系统的设备国产化分析.地下铁道文集,1999.12.
    [17]陈锡贤,深圳地铁一期工程机电设备国产化.地下铁道文集,1999.12.
    [18]潘平生,配电电器用触头型无弧断路器的开发技术,低压电器,1995.4:19-23.
    [19]陈德桂,应用PTC限流元件的低压断路器,低压电器,2001.3:3-6.
    [20]钱杞,张培铭。低压直流断路器的限流技术,电气开关,2000.1:14-17.
    [21]B.Bachmanm等,500kV高压直流空气断路器。IEEE PAS-104,No.9:2453-2459.
    [22]李兴源,高压直流输电系统的运行和控制.北京:科学出版社,1998:235
    [23]陈荣,三峡平波电抗器设计介绍.高压电器,2002.8,Vol38,No.4:10-18。
    [24]Nishikawa H,Sukchara M et al. Thyristor valve gapless arrester element lifetime performance and thermal stability. IEEE trans on power apparatus and systems, 1985,104(7):1883-1888.
    [2
    
    [25]Krause Ch et al. Testing ofmo-surge arresters for application in HVDC-systems. 6th ISH New Orleans LA USA Aug.26, 1989.5.
    [26]马萍,新型氧化锌电阻的开发,机械工业基本情况—高压绝缘子和避雷器,1994.4.
    [27]杜海清,高能低压氧化锌压敏陶瓷材料机理的研究,电瓷避雷器,1991.4.
    [28]Melvold D J. DC arrester test philosophies on recent HVDC projects as used by various suppliers. IEEE trans on power delivery, 1991, 6(2):672-679.
    [29]Schneider, H. N., Contact structure for an electric circuit interrupter, U. S. Patent 2, 949, 520, August 1960.
    [30]Reece,M. P.,A review of the development of the vacuum interrupter. Phil. Trans. R. Sco. Lond, A, 275, pp. 121129, 1973.
    [31]Yanabu, S., Kaneko, E., Okumura, H., A iyosh i, T., IEEE Trans. Pow. App. Syst., PA S2100, No. 4, pp. 196621974, 1981.
    [32]Paul, B., Renz, R., Europaeische Patentsch rift 0 155 376, US Patent 4 620 074 (1987).
    [33]Fink, H., Renz, R., Saeman, D., C IRED Conf. Liege, Belgium,Vol. 1, 1.2.1., 1991.
    [34]夏天伟,丁明道。电器学.机械工业出版社,1999,第一版。
    [35]罗斌,直流快速断路器灭弧系统的分析,低压电器,1994,4:17-21.
    [36]杨钦慧等译,无电弧直流高速开断真空断路器,华通技术,2001.2:38-44.
    [37]黄友朋等译,电气铁道变电所用直流高速真空断路器,船电技术,2001.3:40-44.
    [38]Teijiro Mori, Yuuichi Wada. An Advanced Interruption Method for Low-Voltage Medium Capactiy Air Break Contactors. IEEE Tran on Industry Applications, 1990,26(5).
    [39]Charles W Brice ,Roger A Dougal ,Jerry L. Hudgins Review of Technologies for Current Limiting Low-VoltageCircuit Break. IEEE Trans on Industry Application, 1996,32 (5).
    [40]清华大学高压教研组,高压断路器,电力工业出版社,1987,7:168.
    [41]Portela, C. M., et al., IEEE Transaction on Power Delivery, Vol.3, July, 1988, pp. 1009-1021.
    [42]Lee, A., "Arc-circuit Instablity: A HVDC Circuit Breaker Concept Based on SF6 Puffer Technology".
    [43]Niske, W., et al., Proc.5 Intern. Conf. On Gas Discharges. 1978:13-16.
    [44]A.L. Courts, et al., A new DC breker used as metallic return transfer breaker, IEEE Trans. PAS, vol. 101 ,No. 10,1982:4112-4121.
    [45]A.Ekstrom, et al., Design and testing of an HVDC circuit breaker, in CIGRE, 1976,13:6
    [46]B.Bachmann, et al., Development of a 500kV airblast HVDC circuit breaker with fast fault clearing capability, in IEEE PES Summer Meeting,1987,87SM568-9.
    [47]A.Lee,et al., The development of a HVDC SF6 breaker, IEEE Trans. PAS, vol. PAS-104, 1985:2721-2729.
    
    [48]H.Ito, et al., Instability of DC Arc in SF6 circuit breaker, IEEE Trans. Power Delivery, vol. 12,No.4 1997
    [49]A.Lee, et al., Arc-circuit instability:A HVDC circuit breaker concept based on SF6 puffer technology, in International Conference on Gas Discharge and their Applications, 1982.
    [50]D.C. Current Interruption in HVDC SF6 Gas MRTB by Means of Self-Excited Oscillation Superimposition, IEEE Trans. on power delivery, Vol. 16,No.4. October 2001:687-693.
    [51]E.Zaima, et al., Application of dynamic arc equations to high-frequency arc extinctions in SF6 gas circuit breakers, IEEE 92SM575-1PWRD.
    [52]梁建行,易先举,邹来勇.发电机磁场断路器分断能力的选择.水电自动化与大坝监测,2002(4):19-22
    [53]梁建行,用做磁场断路器的开关参数及试验方法探讨,水电自动化与大坝监测,2003.6:39-48
    [54]许成金,大功率电子型直流磁场断路器,电气开关,2001.1:1-3.
    [55]徐国政等,固态断路器的应用和发展,高压电器,1998,5:43-47.
    [56]B.D.Bedford and R.G.Hoft, Principles of Inverter Circuits, John Wiley Publications, New York, 1964.
    [57]A.B.Reimers, et al., Commutation of Inductive Circuits with a Vacuum Switch, Electrichestvo, No.4, 1970:84.
    [58]陈振生.智能化高压电器,电气开关,1998.5:1-7.
    [59]王章启,李喜桂。关于开关电器的智能化,高压电器,1999,35(3):46-48.
    [60]邹积岩,王瑛,董恩源。电子操动的概念与实践.高压电器,2000.5:29-41.
    [61]Zou Ji-yan, Duan Xiong-ying, Dong En-yuan. Permanent magnet actuator and electronic drive for vacuum switches, Electrical Machines and Systems, 2001. ICEMS 2001. Proceedings of the Fifth International Conference on, Volume: 2,18-20 Aug. 2001 Pages: 1323-1326 vol.2
    [62]邹积岩,王毅.开关智能化的概念与相关的理论问题,高压电器,2000,6:14-16.
    [63]付万安.宋宝韫。高压断路器永磁操动机构的研究,中国电机工程学报,2000.8:52-55.
    [64]付万安等,永磁操动机构的动态分析。大连铁道学院学报,1999.9:31-37.
    [65]张维明,关于永磁机构真空断路器的特点及应用.农村电气化,2002.4:33.
    [66]唐任远等。现代永磁电机。机械工业出版社。1997.
    [67]费鸿俊,张冠生.电磁机构动态分析与计算,机械工业出版社。1993.
    [68]陈峻峰,永磁电机。北京:机械工业出版社.1982.
    [69]Takamu Genji etc., 400V class high-speed current limiting circuit breaker for electric power system, IEEE Trans., on Power Delivery, Vol.9, No.3, July 1994.
    [70]李琳,崔翔等。电力变压器三维漏磁场及铁心拉板涡流损耗计算.中国电机工程学报,1996.6
    [71]陈金祥,董恩源,邹积岩.固态故障电流限制器(FCL)的应用与发展.继电器,2000.12.
    
    [72]陈金祥.董恩源,邹积岩。具有串联补偿作用的新型故障限流器(FCL)的研究,高压电器,2001.1。
    [73]董斌.地铁直流牵引供电系统中的di/dt和ΔI保护.机车电传动,2003,3:38-40
    [74]李秀卿,崔实.电站直流系统接地故障监测与诊断.电测与仪表,1999.9:23-26.
    [75]徐丙垠等,电力系统直流接地点的控测新技术.中国电力,1993.7
    [76]淡淑恒,王季梅,闫静,李宏群.采用电流变化率判断短路电流的新型限流熔断器,低压电器,1998.2:10-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700