基于有限元法的风力发电机齿轮传动系统动态特性研究及优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
增速传动齿轮箱是风力发电机中最重要的组成部件之一,其工作性能对整个系统有着至关重要的影响。随着风力发电机单机功率的不断提高,以及齿轮箱所处的高空支架和变载荷工况等恶劣的运行环境,对齿轮传动系统的设计、制造、安装等提出了特殊要求,其动力学行为的研究已经成为国内外关注的热点课题。由于我国国产风力发电机齿轮箱的振动噪声普遍比国外产品严重,因此齿轮传动的振动和噪声研究便成为风力发电设备国产化中亟待解决的重要课题之一。
     论文课题受国家自然科学基金项目和国家支撑计划项目资助,以1.5MW风力发电机齿轮传动系统为研究对象,在全面考虑风力发电机齿轮箱系统在运行过程中的内部激励和由风速变化引起的外部激励的情况下,通过有限元方法对风力发电机增速箱系统进行了动态特性研究,对风力发电机增速箱的设计和振动噪声的控制具有重要的理论价值和指导意义。
     具体的研究工作如下:
     ①用有限元法建立了包含齿轮副、传动轴和箱体的齿轮系统完整的动力学模型,该模型较好地反映了齿轮传动系统各部分的动态耦合效应。
     ②全面研究了齿轮系统振动和噪声的产生机理,用有限元分析方法和误差近似等效方法模拟了齿轮啮合时的内部激励,并给出了由风速变化引起的外部激励,为齿轮系统振动响应分析作好了准备。
     ③用I-DEAS软件对风力发电机齿轮箱系统进行了有限元模态分析,得到了系统的前10阶固有特性。分析结果表明在使用过程中不会发生共振现象。
     ④全面考虑风力发电机齿轮传动系统的内部激励和外部激励,利用振型叠加法对齿轮箱系统进行了振动响应有限元数值模拟,得出在动态激励下齿轮箱的振动时域响应,结果具有良好规律性,增速箱的振动烈度为0.6026,表明齿轮箱振动情况良好,符合风力发电机的使用要求。
     ⑤在求得系统振动响应的基础上,应用结构噪声分析方法,预估系统在计算点的结构噪声。计算结果证明,结构噪声的峰值发生在齿轮传动系统的啮合频率的倍频处。
     ⑥以振动加速度最小为目标,以动应力和位移为约束条件对齿轮传动系统进行了动力响应优化设计,分析了齿轮传动系统动力响应优化设计结果,降低了齿轮传动系统的振动幅值和动态变形。
Increasing speed gear-box is one of the most important components of wind-turbine, its performance has a crucial impact on the whole system. Because of its special environment for varying load condition, high operating conditions(with the continuously improve of the power of single wind-turbine ,the operating environment is higher and higher) and other adverse factors, it made special demands for the design, manufacture, installation of the gear transmission system, and the research of its dynamic characters is now a hot topic around the world. However, the vibration and noise of the wind-turbine that design and manufacture in domestic is more serious than the products abroad. Therefore, the research on the vibration and noise of gear transmission is one of the most urgent issues to be resolved
     The thesis subject is supported by National Natural Science Foundation and National Supporting Plan Project. Regarding gear transmission system of wind-driven generator 1.5MW as object, and considering the internal excitation and the external excitation due to wind speed change on Wind farm, the dynamic characteristics of the gear-box system are completely investigated by finite element method. The analytical results will provide a theory basis for optimizing the dynamic performances or decreasing the vibration and noise of the transmission system of wind-turbine.
     Concrete research work is as follows:
     ①Large-scale integrated FEM dynamic model of gear system including gears, shafts and gearbox is established. The dynamic coupled characteristics of gearbox are perfectly described by the model.
     ②The vibration and noise of gear system are investigated perfectly. The internal excitations of gearing are simulated by finite element method and error-equivalent method. The external excitation that caused by wind speed changes are also investigated. It is the bases of the vibration response calculation of gearbox.
     ③FEM modal analysis of the system is completed by I-DEAS software. The first 10 band of natural characteristics of the gear system are calculated. The results show that there will be no resonance during operating.
     ④Fully consider the internal excitation and the external excitation. The vibration responses of gearbox are calculated by Vibration mode superposition. The vibration response results in time domain are regular, and the Vibration intensity of the gear-box is 0.6026, the system is in good condition when operating. Meet the requirements of the use of wind-turbine.
     ⑤The structure noise of the system is calculated according to the vibration acceleration in time domain by Fourier-transform. The results show that the peak of structure noise is in the mesh frequency multiplier.
     ⑥The dynamical optimization of gear transmission system is presented to minimize the value of vibration acceleration under the constraints of dynamical stress and displacement. The level of vibration and displacement of the gear transmission system is reduced after optimization, and the results of the optimum design of the gear transmission system are analyzed at last.
引文
[1]包耳.风力发电技术发展现状[J].可再生能源杂志.2004,(2):12-15.
    [2]洪再芳.风力发电机组齿轮箱设计和制造经验浅谈[J].风力发电.2001.
    [3] American Wind Energy Association[V].Global Wind Energy Market Report.2004.
    [4] James.Wind turbine technology trends Review 2003[N].Renewable Energy World 6-8 2003.
    [5]王承煦,张源.风力发电[M].北京:中国电力出版社,2005.
    [6]张希良.风能开发利用[M].北京:化学工业出版社.2005.1.
    [7]龙泽强.风力发电研究和开发现状与展望[J].世界科技研究与发展杂志.2003(4):1-3.
    [8]易跃春.风力发电现状、发展前景及市场分析[J].国际电力.2004,8(5):18-22.
    [9]何祚庥,王亦楠.风力发电我国能源和电力可持续发展战略的最现实选择[V].2005科学发展报告.科学出版社.2005.3.
    [10]张剑,刘瑞卿.浅述风力发电机的齿轮箱[J].风力发电.2004(1).
    [11]唐新安,谢志明等.风力机齿轮箱故障诊断[J].噪声与振动控制.2007(2).1
    [12]唐定国,陈立民.齿轮传动技术的现状和展望[J].机械工程学报.1993,20(3):35-41.
    [13] KAHRAMAN A,SINGH R.Interactions between time-varying meshing stiffness and clearance non-linear ties in a geared system[J].Journal of Sound and Vibration,1991,146.
    [14] IWATUSBO N.Coupled lateral torsional vibration of rotor system trained by gears(Part I Analysis by transfer matrix method)[J].Bulletin of JSME,1994,27:271-277.
    [15] VELEX P,MAATAR M.A mathematical model for analyzing the influence of shape deviations and mounting errors on gear dy2namic behavior[J].Journal of Sound and Vibration,1996,191:629-660.
    [16] NERIYA S V.On the dynamic response of a helical geared system subjected to a static transmission error in the form of deterministic and filtered white noise inputs[J].Journal of Vibration,Acoustic,Stress and Reliability in Design,1996,110:501-506.
    [17] NERIYA V,BHAT R B,SANKER T S.Coupled tensional flexural vibration of a geared shaft system using finite element analysis[J].The Shock and Vibration Bulletin,1998 55:25 58.
    [18] TORDIONG.V,GOUVIN R.Dynamic stability of a two-stage gear train under the influence of variable meshing stiffness[J].ASME Journal of Engineering forIndustry,1997,785-791.
    [19] KUBO A,SINGH R.Error associated with reduced order linear models of a spur gear pair[J].Journal of Sound and Vibration,1991,149:495-498
    [20] UMEZAWA.SUZUKI T,HOUJOH H.Estimation of vibration of power transmission helical gears by means of performance diagrams on vibration [J].JSME International Journal, 1988,31:598-605.
    [21] NONAKA T,KUBO A,KATO S.Design of silent gears considering the scattering in tooth form accuracy of mass production gears[J].Transactions of JSME,1991,C57:3969-3974.
    [22]唐增宝,钟毅芳.多级齿轮传动系统的动态仿真[J].机械传动,1993,17(l):37-41.
    [23]秦大同,朱才朝,李润方.内齿行星传动参数动态优化[J].重庆大学学报,1997(2):89-94.
    [24]沈允文,孙涛.行星齿轮传动非线性动力学模型与方程[J].机械工程学报,2000, 38(3):610 107.
    [25]李润方,林腾蛟.齿轮啮合内部动态激励数值根据[J].机械传动.2001,25(2):1~3.
    [26]李润方,王立华等.高速重载齿轮的有限元分析[J].中国机械工程,2003,20:1773-1777.
    [27]林腾蛟,李润方等.齿轮箱内部动态激励及系统振动响应数值仿真[J].农业机械报.2002,33(6):20~22.
    [28]杨为,韩国胜.微车变速器的轴承-齿轮轴系非线性三维接触动态特性研究[J].振动与冲击.2007(11).
    [29] J.H.Cassis&L.A.Schimit Jr.Optimal structural designs with dynamic constraints[J].ASCE,J.Struct.Div.1976,102:2053-2071.
    [30] M.P.Kapoor.Optimum configuration of transmission towers in dynamic response regine[J].Proceedings International Symposium on Optimum Structural Design,1981,1.
    [31] J.H.Lin.Structural optimization on generically configuration and element sizing with static and dynamically constraints[J].Computers & Structures,1982,15(5):507-526.
    [32] S.Rao.Optimization of airplane wing structures under taxiing loads[J].Computers& Structures,1987,26(3):467-479.
    [33] G.Cheng,Z.Kang&G.Wang.Dynamic optimization of a turbine foundation[J].Structural Optimization.1997,13:244-249.
    [34]孙焕纯,石连栓,柴山.考虑动应力、动位移约束的离散变量结构优化设计[J].计算力学学报,1997,14:723-726.
    [35]童卫华,姜节胜,顾松年.一种以均方响应作为约束的动力学设计方法[J].应用力学学报,1996,13(3):94-98.
    [36]大久保信行,尹传家译[M].机械模态分析,上海:上海交通大学出版社,1985,27-29.
    [37]李润方,王建军.齿轮系统动力学[M].北京:科学出版社,1997.
    [38]杨成云,林腾蛟,李润方等齿轮箱系统固有特性和响应分析[J].中国机械工程,2003
    [39]杨建新,魏海燕.I-DEAS入门与提高[M].北京:清华大学出版社,2002.
    [40]傅志方.机械模态分析与参数识别[M].北京:机械工业出版社,1990,48-54.
    [41]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [42]陆萍,黄珊秋,张俊等.风力机筒形塔架结构静动态特性的有限元分析.太阳能学报[J].1997,18(4):359-363.
    [43] Nobuo Takatsu et.Analysis and Experiment on the Vibration Transmission in a Single Stage Gearbox[C].JSME International Conference on Motion and Power transmissions,1991.10:104-109.
    [44] Caughey T.K.Classical normal modes in damped linear dynamic systems[J].Appl Mech, 1960,(27):269-271.
    [45]魏任之,曾鸣.齿轮传动装置动态设计方法研究[J].机械科学与技术,1994,(10):1-4.
    [46]李惠彬,应怀樵,郑兆昌.减速机箱体动态激励力的试验研究[J].力学与实践,1999,21(1):44-46.
    [47]李润方,陶泽光.齿轮啮合内部动态激励数值根据[J].机械传动,2001,25(2):1-3.
    [48]林腾蛟,李润方,杨成云等.增速箱内部动态激励及系统振动响应数值仿真[J].农业机械学报,2002,33(6):20-22.
    [49]黄霞.高速重载齿轮传动动载系数分析[D].重庆大学硕士论文,2005.
    [50]风电场工程技术手册[M].北京:机械工业出版社,2003.
    [51]户川华人著,殷学龙译[M].振动分析的有限元法,地震出版社,1985.
    [52]李润方,林腾蛟,陶泽光.齿轮系统耦合振动响应的预估[J].机械设计与研究,2003,19(2):27-29.
    [53]廖日升.I-DEAS实例教程[M].北京:北京理工大学出版社,2003.
    [54]《现代机械传动手册》(第二版)[M].北京:机械工业出版社,1999.
    [55]杨玉致.机械噪声控制技术[M].北京:中国农业机械出版社,1983.
    [56]葛藤,宫镇,王仲章.齿轮及齿轮箱噪声、振动的研究[J].噪声与振动控制,1989,(1):26-30.
    [57]周济,徐俊.优化方法程序库OPB-1原理及使用说明[M].北京:机械工业出版社,1989.
    [58]席少霖,赵风治.最优化计算方法[M].上海:上海科学技术出版社,1983.
    [59]陈宝林.最优化理论与算法北京[M]:清华大学出版社,1989.
    [60]刘扬,程耿东.关于结构模糊优化设计若干问题的讨论[J].计算结构力学及其应用,1989.
    [61]廖日升,彭细荣等.I-DEAS有限元动力分析与优化设计实用教程[M],北京:科学出版社.2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700