G蛋白耦联受体激动剂调节细胞膜PIP_2代谢及生理学意义的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷脂酰肌醇-4,5-二磷酸(Phosphatidylinositol-4,5-bisphosphate,PIP2)是分布在细胞膜内侧面的一种微量磷脂,其含量约占细胞膜磷脂总量的1%。虽然含量很低,但PIP2在细胞信号转导、锚定骨架蛋白以及激活或稳定膜蛋白等方面却起着举足轻重的作用。因此在不同的组织器官中PIP2代谢水平的改变可能与疾病的发生有关。
     PIP2是磷脂酰肌醇(PI)在肌醇环4位和5位磷酸化的产物。一方面,在细胞信号转导中它可以被激活的磷脂酶C(PLC)水解生成二脂酰甘油(DAG)和肌醇1,4,5-三磷酸(IP3);也可以被磷脂酰肌醇-3-激酶(PI3K)磷酸化成为磷脂酰肌醇-3,4,5-三磷酸(PIP3),后者是激活PI3K/Akt细胞生存通路的关键信号分子。另一方面,磷脂酰肌醇-4-激酶(PI4K)可以将细胞中的PI磷酸化成为磷脂酰肌醇-4-磷酸(PI4P),后者则会被细胞膜上的磷脂酰肌醇-4-磷酸-5-激酶(PIP5K)磷酸化从而完成PIP2的合成。
     除酪氨酸激酶通路外,PLC的激活一般是通过Gq蛋白耦联受体(GqPCR)介导的。儿茶酚胺类化合物、血管紧张素II等激素能够激活细胞膜上的GqPCR。激活的Gq蛋白的α亚基与βγ亚基分离,GTP水解释放的能量将PLC激活,后者完成PIP2的水解。在较短时间内PIP2通过水解局部的再合成机制来维持自身含量水平的稳定,在加大刺激强度并延长刺激时间的情况下细胞中PIP2的水平则可能发生改变。与短时刺激造成的局部影响不同,在增大作用浓度或延长刺激时间的情况下,G蛋白耦联受体激动剂能够增加成年大鼠心肌细胞或脑组织中PIP2的含量。许多重要的体内活性物质都是G蛋白耦联受体激动剂,这些活性物质往往在疾病状态下发生改变,因此在疾病的发生过程中相应细胞中PIP2的代谢状态也可能发生改变。所以,研究在这些情况下PIP2的代谢特征对于探究疾病的发生机制以及寻找可能的治疗方法十分有意义。本研究首先针对去甲肾上腺素和血管紧张素II对心肌PIP2代谢的影响及机制,以及这些作用与心肌肥厚、心脏功能之间的关系进行了研究;此外还研究了去甲肾上腺素和5-羟色胺对脑PIP2相关代谢机制的影响及其与抑郁症的相关性。研究结果表明,在激动剂刺激的过程中PIP2合成酶PI4K与PIP5K的活性发生变化是PIP2含量改变的原因;而且,这种PIP2含量的改变可能是细胞在激动剂刺激下为维持自身功能正常而做出的一种适应性改变。具体的研究内容如下:
     第一部分去甲肾上腺素和血管紧张素II对大鼠心肌细胞膜PIP2以及心肌功能的调节
     目的:早在上个世纪研究者们就发现了Gq蛋白耦联受体激动剂对细胞膜磷脂酰肌醇代谢的调节作用,然而对其中具体的调节机制和生理意义却仍不清楚。本部分实验对Gq蛋白耦联受体激动剂去甲肾上腺素(NE)、血管紧张素II(Ang II)调节大鼠心肌细胞膜PIP2代谢的分子机制进行深入研究,并初步探讨了PIP2代谢改变对心肌细胞功能的影响及其与心肌肥厚发展不同阶段的相关性。
     方法:分离大鼠心室肌细胞,使用薄层色谱(TLC)和脂-蛋白交叠分析(Lipid-protein overlay assay, LPOA)的方法来分析NE、Ang II对心肌细胞PIP2含量的影响;以Gq/PLC通路相关信号分子特异性抑制剂—U73122(抑制PLC活性)和bisindolylmaleimide-1(Bis-1)(抑制PKC活性)预处理细胞,以PIP2合成酶抑制剂wortmannin、PIK93以及腺苷(adenosine)预处理细胞,再按照前面所述的方法分析NE、Ang II刺激后心肌细胞中PIP2的含量变化;利用免疫共沉淀的方法检测激动剂刺激后PIP2合成酶PI4K与蛋白激酶C(PKC)之间的相互作用;使用TLC的实验方法测定NE、Ang II刺激后心肌细胞PIP2水平变化的时程曲线,20分钟到72小时之间取4-5个时间点进行研究;按照PIP2变化时程曲线的时间点,使用细胞动缘探测系统检测NE、Ang II刺激后心肌细胞收缩功能的变化;建立大鼠游泳致心肌肥厚以及异丙肾上腺素(isoprenaline)注射致心肌肥厚的实验模型,使用LPOA的实验方法测定在生理性心肌肥厚以及病理性心肌肥厚的不同条件下大鼠心室肌中PIP2总含量。
     结果:(1)原代心肌细胞培养24小时后,再以NE(5μM)刺激2小时,或以Ang II(3μM)刺激24小时,经测定发现刺激后心肌细胞中PIP2的含量明显增加,使用α受体抑制剂—prazosin(3μM)或AT1受体抑制剂—losartan(3μM)处理细胞能够拮抗NE或Ang II对PIP2含量的增加作用;(2)以U73122(0.8μM)、U73343(U73122的同形无效物)、Bis-1(2μM)以及wortmannin(10μM)预处理细胞20-30分钟,再以NE(5μM,2h)、Ang II(3μM,24h)刺激细胞,经测定发现U73122、Bis-1和wortmannin均能够抑制NE或Ang II对心肌细胞PIP2以及PIP含量的增加作用;(3)以III型PI4K的抑制剂—PIK93(250nM)或II型PI4K的抑制剂—adenosine(2μM)提前30分钟处理细胞,再给予NE(5μM,2h)、Ang II(3μM,24h)孵育,经测定发现只有PIK93对NE或Ang II引起的PIP2含量增加具有明显的抑制作用并且显著降低了细胞中PIP的水平。单独给予细胞PIK93或adenosine,PIK93对心肌细胞中PIP2以及PIP的含量均无明显影响,但adenosine则显著下调了细胞中PIP2以及PIP的含量水平;(4)NE(5μM)、Ang I(I3μM)以及PKC激动剂佛波酯(PMA,0.5μM)均能够增加PI4KIIIβ与PKCα之间、PI4KIIIβ与PKCβ之间的相互作用,而在心肌细胞中PI4KIIIα与PKCs之间并无明显的相互作用;(5)当刺激心肌细胞24小时以后,NE或Ang II对PIP2含量的增加作用随刺激时间的延长而逐渐降低,甚至可能逆转为降低作用。与此同时,对应时间点上心肌细胞的收缩功能也出现与PIP2含量类似的变化;(6)使用LPOA的方法测定两种心肌肥厚动物模型心脏中PIP2的含量,相比正常动物,游泳致心肌肥厚大鼠心脏中PIP2的含量水平并无较大改变,而Iso注射组大鼠心脏中PIP2的含量却显著减少。
     结论:NE和Ang II激动Gq蛋白耦联受体,并通过受体激动后的下游信号通路水解PIP2,同时激活PIP2的再合成。PKC与PI4KIIIβ之间的相互作用是连接PIP2水解与再合成通路的分子基础。通过对心肌细胞收缩功能以及两种不同心肌肥厚模型的研究我们发现,在应激刺激下PIP2含量的增加可能与心肌肥厚初期心脏的代偿功能有关。
     第二部分PIP5Kγ在G蛋白耦联受体调节大鼠心肌细胞膜PIP2中的作用
     目的:了解磷脂酰肌醇-4-磷酸-5-激酶(PIP5K)在去甲肾上腺素(NE)、血管紧张素II(Ang II)及异丙肾上腺素(Iso)等G蛋白耦联受体激动剂在调节心肌细胞PIP2代谢中的作用及细胞信号机制。
     方法:利用western blot的方法检测PIP5Kγ的表达水平;使用TLC的实验方法测定心肌细胞中PIP2的含量水平,观察NE、Ang II及Iso对心肌细胞PIP2含量的影响;使用药理学手段了解上述激动剂影响心肌细胞中PIP5Kγ的表达以及PIP2的含量的信号机制;使用蛋白合成酶抑制剂放线菌酮(cycloheximide)处理细胞,通过测定激动剂刺激后心肌细胞PIP2含量的改变,并以此来分析激酶表达与PIP2合成之间的联系;利用免疫共沉淀的方法检测激动剂刺激后PIP2合成酶PIP5Kγ与其水解酶PLC之间的相互作用。
     结果:(1)NE(5μM)、Ang II(3μM)、PMA(0.5μM)以及β受体激动剂isoprenaline(0.5μM)均能够增加心肌细胞中PIP5Kγ的表达量,但NE与Iso的增加作用要显著大于Ang II与PMA的作用;(2)使用propranolol(3μM)抑制β受体或使用H89(30μM)抑制Gs蛋白耦联受体信号通路下游效应分子PKA,均能够抑制激动剂对PIP5Kγ表达水平的上调作用,但prazosin和Bis-1却对此无效;(3)β受体拮抗剂propranolol预处理细胞30分钟能够抑制NE对PIP2的增加作用。与NE类似,Iso也能够增加心肌细胞中PIP2的含量,但对PIP的含量却无明显影响;(4)Cycloheximide不仅能够抑制NE引起的PIP5Kγ表达量的增加,也能够显著降低心肌细胞中PIP2的含量并抑制NE的作用;(5)NE(5μM)、Ang II(3μM),以及Iso(0.5μM)均能够增强PIP2合成酶PIP5Kγ与水解酶PLCγ之间的相互作用。
     结论:NE、Iso激动Gs蛋白耦联受体,并通过提高PIP5Kγ的表达水平来增加细胞中PIP2的再合成。由于能够同时激活Gq/PLC/PKC与Gs/cAMP/PKA两条通路,NE引起的PIP2含量增加要明显快于Ang II的作用。
     第三部分去甲肾上腺素和5-羟色胺对鼠脑PIP2代谢的调节以及与抑郁症的关系
     目的:PIP2是突触囊泡释放以及回收过程中不可缺少的关键物质,它与突触可塑性之间存在关系,同时也可能影响突触间递质的释放。因此研究脑磷脂酰肌醇特别是PIP2的代谢对于了解疾病状态下如抑郁症的发病机制以及寻找新的治疗手段具有重要意义。去甲肾上腺素(NE)及5-羟色胺(5-HT)是重要的与抑郁症相关的单胺类神经递质。在本研究中我们将研究NE和5-HT对大鼠和小鼠脑PIP2代谢的影响,通过测定给药后PIP2合成酶PI4K表达水平以及突触中PIP2含量的变化,初步探究中脑PIP2代谢改变与抑郁症之间的联系。
     方法:利用western blot的方法检测NE、5-HT孵育后鼠脑内PIP2合成酶—PI4K的表达水平;提取膜蛋白,观察NE、5-HT孵育后PKC在细胞膜中的表达情况;利用免疫共沉淀的方法检测NE、5-HT孵育后PI4K与PKC之间的相互作用是否发生变化;分离突触小体,利用LPOA的方法(ELISA试剂盒)测定其中PIP2的含量,并观察NE、5-HT孵育后PIP2水平是否发生改变;建立小鼠的慢性社交失败抑郁症模型,初步研究模拟精神疾病状态下鼠脑内PI4K的表达状况。
     结果:(1)给予NE(10μM)、5-HT(30μM)17分钟后,大鼠中脑切片中总PI4KIIIβ以及膜PI4KIIIβ的表达水平均出现明显增高;(2)通过使用PKC阻断剂Bis-1(1.5μM)预处理中脑切片我们发现,NE、5-HT对PI4KIIIβ表达量的增加作用依赖于PKC的激活;(3)NE、5-HT能够增强大鼠中脑切片中PI4KIIIβ与PKCα以及PI4KIIIβ与PKCβ之间的相互作用并增加其中脑突触小体中PIP2的含量;(4)虽然对小鼠中脑区域PI4K和PKC在的相互作用并无明显影响,但NE、5-HT能够显著降低PI4K和PKC在小鼠前额叶皮层中的相互作用以及该区域突触小体中PIP2的水平;(5)社交失败模型小鼠脑内的PI4KIIIβ表达水平下调。
     结论:NE和5-HT能够促进大鼠中脑PI4K、PIP5K的表达,增强大鼠中脑和前额皮层PI4K与PKC间的相互作用,升高大鼠中脑PIP2水平。相对于大鼠,NE和5-HT对小鼠有不同的作用:只降低前额皮层PI4K与PKC间的相互作用和PIP2水平,而没有其他上述对大鼠的作用。在小鼠社交失败抑郁模型中,小鼠中脑和前额皮层中PI4K的表达相对于对照小鼠均有降低。这些初步结果表明,与抑郁症相关的中枢单胺类神经递质可以影响以PIP2为代表的磷脂酰肌醇代谢通路,并可能以此影响抑郁症的发生。
Phosphatidylinositol-4,5-bisphosphate (PIP2), which is a majorphosphoinositide of the plasma membrane, comprises about1%of plasmamembrane phospholipids. PIP2is enriched in the inner leaflet of the plasmamembrane, where it serves as a precursor of the second messengers, a ‘lipidanchor’ that attaches the cytoskeleton to the plasma membrane, and stabilizesor activates many membrane proteins, such as ion channels and transporters.Thus, changes of membrane PIP2metabolism may have roles in pathologicalconditions.
     One of the well established cellular events involved in PIP2dynamics ismediated by the activation of the Gqprotein-coupled receptor (GqPCR): thestimulation of GqPCR activates phospholipase C (PLC), which in turn,hydrolyzes PIP2into inositol1,4,5-trisphosphate and diacylglycerol.Meanwhile, both PI(4,5)P2generation by phosphatidylinositol4-phosphate5-kinases (PIP5K) and the subsequent generation of PI(3,4,5)P3by thephosphoinositide3-kinases are dependent on an initial phosphorylation ofphosphatidylinositol (PI) on the D4position by one of the four mammalian PI4-kinase enzymes synthesising phosphatidylinositol4-phosphate (PI4P). AndPIP3is also an important signaling molecule that can stimulate theAkt-mediated cellular survival pathways.
     Catecholamines and angiotensin II are well established GqPCR agonists.After ligand binding, a conformational shift in the G protein complex occursresulting in activation of a number of effectors such as PLC, which hydrolyzesmembrane PIP2. Generally, depletion of local PIP2is followed by thephosphoinositide reproduction. The recruitment of PIP2induced by GqPCRactivation is essential for the maintaince of local ‘PIP2pool’ and stabilization of global PIP2. However, prolonged stimulation, such as treatment withGqPCR agonists, may change the total phosphoinositides level incardiomyocytes or brain. It is well established that many GqPCR agonists areinvolved in the pathophysiological processes of diseases and as such theseagonists-mediated modulation of membrane PIP2metabolism may well beinvolved in these dieases. In this study, we studied the modulation andmechanism of phosphoinositides turnover of cardiac mocytes understimulation of norepinephrine (NE) and angiotensin II (Ang II) at both thecellular and whole animal levels, and related the changes of membrane PIP2with the development of cardiac hypertrophy and cardiac function. Also westudied the modulation of brain membrane PIP2by NE and5-HT and relatedthese modulations with the development of major depressive disorder (MDD).We described an increase of PIP2levels in cardiomyocytes and cerebral slicesunder stimulation of NE, Ang II and5-HT. We also present a novelmechanism for these increases to be the result of the enhanced activity ofPI4KIIIβ, mediated by an up-regulated interaction between PI4KIIIβ and PKC;furthermore, an increased activity of phosphatidylinositol4-phosphate5-kinase γ was involved in NE-induced increase of cardiac PIP2. These GPCRagonists mediated modulation of phosphoinositides turnover was related to thecardiac hypertrophy and major depression.
     Part1Molecular mechanisms for norepinephrine and angiotensinII-induced increase in PIP2and modulation of cardiac function
     Objective: The seemly paradoxical GqPCR agonist-stimulatedphosphoinositide production has long been known, but the underlyingmechanism and its physiological significance are not known. In this study, westudied cardiac phosphoinositide levels in both cells and whole animals underthe stimulation of norepinephrine (NE), angiotensin II (Ang II), and otherphysiologically relevant interventions.
     Methods:(1) The thin layer chromatography (TLC) and lipid-proteinoverlay assay (LPOA) were used to measure the change of PIP2in the primarycultured cardiomyocytes after treated with NE and Ang II.(2) The effects of NE and Ang II on PIP2of cardiomyocytes were studied in the presence ofPLC inhibitors (U73122), PKC inhibitors (Bis-1), or three kinds of PI4Kinhibitors (wortmannin, PIK93, and adenosine).(3) Immunoprecipitation wasused to detect the interaction between PI4K and PKC.(4) PIP2level incardiomyocytes was measured after treated with NE for the time of20min,1h,2h,24h and48h, and with Ang II for the time of2h,24h,48h and72h.(5) The systolic function of the cultured cardiomyocytes was assessed bymeasuring sarcomere shortening induced by an electrical stimulation, whichrepresents the amplitude of cardiomyocyte contraction.(6) Lipid-proteinoverlay assay was used to measure the changes of total PIP2from rat heartswith hypertrophy induced either with isopreternol or with swimming excise.
     Results:(1) After incubation with NE (5μM,2h) or Ang II (3μM,24h),the total abundance of PIP2in cardiomyocytes, measured using TLC, wasfound to be significantly increased. We also used a lipid-protein overlay assay,which confirmed the TLC results. Specific antagonists of the α-adrenergicreceptor prazosin, or Ang II receptor losartan (3μM) abolished the effects ofNE and Ang II, respectively.(2) The PLC inhibitor U73122(0.8μM; inactiveanalog U73343,0.8μM, was used as a control), the PKC inhibitor Bis-1(2μM), and the PI4K inhibitor wortmannin (10μM) were used to assess the rolesof these molecules. Pretreatment of cardiomyocytes with U73122, Bis-1, andwortmannin prevented the NE-or Ang II-induced increase in PIP and PIP2.(3)Pretreatment of cardiomyocytes with PIK93(250nM) prevented the NE-orAng II-induced increase in PIP and PIP2. Adenosine (2μM,2h), but notPIK93(250nM,2h), reduced basal PIP2levels in primary culturedcardiomyocytes.(4) Co-immunoprecipitation results showed that both PKCisoforms of α and βII were able to interact with PI4KIIIβ, but not withPI4KIIIα.(5) When cardiomyocytes were incubated with NE (5μM) or Ang II(3μM) for up to72h, both NE and Ang II induced a gradual increase in PIP2levels within the first24h, but afterward, the effects of NE and Ang II beganto recede, and PIP2levels fell back to control or even lower levels. Furtherly,the agonists affected the contraction of cardiomyocytes with a pattern and time course similar to their effect on PIP2levels.(6) The PIP2levels in the rathearts of Iso-induced hypertrophy were significantly reduced compared withthe time matched controls; PIP2levels in the rat hearts of swimming-inducedhypertrophy were increased compared with control hearts, although theincrease did not reach statistical significance.
     Conclusion: Stimulation of rat cardiomyocytes with NE and Ang IIincreased both cellular PIP and PIP2levels. The increased PIP and PIP2induced by NE and Ang II was the result of an enhanced activity of PI4KIIIβ,mediated by an up-regulated interaction between PI4KIIIβ and PKC. Thisenhanced PIP2turnover is correlated with maintained cardiac systolic functionin compensative cardiac hypertrophy.
     Part2The role of PIP5Kγ plays in GPCR agonists-mediated regulation ofmembrane PIP2in rat cardiomyocytes
     Objective: To investigate the role of PIP5Kγ plays in NE-, Ang II-andisoprenaline (Iso)-induced regulation of PIP2turnover in rat cardiac myocytesand the related signaling mechanism.
     Methods:(1) Western blot was used to detect the expression of PIP5Kγ,a key enzyme of PIP2production, in the cardiomyocytes.(2) Pharmacologicaltools were used to dissect the signaling mechanism for receptoragonists-induced modulation of PIP5Kγ expression and PIP2level.(3)Cycloheximide (CHX), a protein synthesis inhibitor, was used to relate theturnover of PIP5Kγ expression with the increased PIP2level.(4)Immunoprecipitation method was used to detect the interaction betweenPIP5Kγ and PLC.
     Results:(1) In rat cardiomyocytes, PIP5Kγ was found to be up-regulatedafter stimulation with NE (5μM,2h), Iso (0.5μM,2h), Ang II (3μM,2h),and PMA (0.5μM,20min). However, the effect of NE and Iso on PIP5Kγwas significantly greater than that of Ang II or PMA.(2) The enhancedexpression of PIP5Kγ by NE was abolished by propranolol (a β receptorblocker) and H89(a PKA blocker), but not by prazosin and Bis-1.(3)Propranolol abolished the NE-induced increase in PIP2, and Iso induced an increase in PIP2levels.(4) In the presence of CHX, the NE-induced increasein total PIP2and PIP5Kγ expression in cardiomyocytes was inhibited.(5) Theinteraction between PIP5Kγ and PLCγ was increased by NE (5μM), Ang II (3μM) and Iso (0.5μM).
     Conclusion: NE and Iso, through activation of GsPCR and PKA pathwayincreased the expression and activity of PIP5Kγ which enhanced synthesis ofPIP2. This effect of NE, combined with its effect of enhanced activity of PI4Kdescribed in the first part may explain a faster and stronger modulation ofcellular PIP2by NE than Ang II.
     Part3The modulation of cerebral PIP2turnover by norepinephrine and5-hydroxytryptamine and its possible role in major depressivedisorder
     Objective: Phosphoinositide lipids regulate key cellular functionsincluding endocytosis, signaling and secretion. In neuronal systems,well-studied areas include the roles of PIP2in synaptic vesicle recycling.Recent evidence suggests that PI4K and PIP2have important neuronalfunctions and that dysfunction of PI4K may have neuropathologicalconsequences. NE and5-HT are important monoamines involved in thedevelopment of major depressive disorder (MDD). In this study, we studiedthe effects and the mechanism of NE and5-hydroxytryptamine (5-HT) oncerebral PIP2turnover, and investigated consequence of these effects on thedevelopment of major depressive disorder.
     Methods:(1) Western blot was used to measure total PI4KIIIβ in rat andmice brain slices after incubation with NE or5-HT.(2) Ultracentrifugationwas performed to extract membrane protein.(3) Immunoprecipitation wasused to detect the interaction between PI4K and PKC.(4) The component ofsynaptosome was extracted, and the synaptosomal PIP2was measured byLPOA (ELISA) method.(5) Major depression model of mice social defeatstress was established.
     Results:(1) Incubation with NE (10μM) or5-HT (30μM) for17minincreased expression of both the total and the membrane PI4KIIIβ in the midbrain slices of rat but not in mice.(2) Incubation with NE increasedexpression of membrane PKC and blockage of PKC by Bis-1inhibited the NEand5-HT induced-increase of PI4KIIIβ expression.(3) PI4KIIIβ interactedwith PKCs in rat midbrain, which was enhanced by NE or5-HT. On the otherhand, the interaction between PI4K and PKC was down-regulated in theprefrontal cortex of mice.(4) Incubation with5-HT increased synaptosomalPIP2in the midbrain of rats, but decreased synaptosomal PIP2in the prefrontalcortex of mice.(5) Expression of PI4KIIIβ was down-regulated in themidbrain and prefrontal cortex of the model MDD mice.
     Conclusion: NE and5-HT increased the expression of PI4K and PIP5Kin the midbrain of rats, increased the interaction of PI4K and PKC in both themidbrain and the prefrontal cortex of rats, and increased the PIP2level in themidbrain of rats. On the other hand, none of the above effects of NE and5-HTdescribed on rats were found in C57mice, but reduced the interaction betweenPI4K and PKC and the PIP2level in the prefrontal cortex of the mice. In socialdefeat depression model of mice, the expression of PI4K in both the midbrainand the prefrontal cortex were reduced compared with the control mice. Theseresults indicate the monoamine transmitters such as NE and5-HT are able tomodulate the metabolism of PIP2and such modulation may be related with thedevelopment of major depressive disorder.
引文
1Gamper N, Shapiro MS Target-specific pip(2) signalling: How might itwork? J Physiol,2007,582:967-975
    2Rajala RV, Anderson RE Focus on molecules:Phosphatidylinositol-4,5-bisphosphate (pip2). Exp Eye Res,2010,91:324-325
    3Suh BC, Hille B Pip2is a necessary cofactor for ion channel function:How and why? Annu Rev Biophys,2008,37:175-195
    4Jalili T, Takeishi Y, Walsh RA Signal transduction during cardiachypertrophy: The role of g alpha q, plc beta i, and pkc. Cardiovasc Res,1999,44:5-9
    5Howes AL, Arthur JF, Zhang T, et al Akt-mediated cardiomyocytesurvival pathways are compromised by g alpha q-inducedphosphoinositide4,5-bisphosphate depletion. J Biol Chem,2003,278:40343-40351
    6Nasuhoglu C, Feng S, Mao Y, et al Modulation of cardiac pip2bycardioactive hormones and other physiologically relevant interventions.Am J Physiol Cell Physiol,2002,283:C223-234
    7Chen X, Zhang X, Jia C, et al Membrane depolarization increasesmembrane ptdins(4,5)p2levels through mechanisms involving pkc betaiiand pi4kinase. J Biol Chem,2011,286:39760-39767
    8Winks JS, Hughes S, Filippov AK, et al Relationship between membranephosphatidylinositol-4,5-bisphosphate and receptor-mediated inhibitionof native neuronal m channels. J Neurosci,2005,25:3400-3413
    9Anderson RA, Boronenkov IV, Doughman SD, et al Phosphatidylinositolphosphate kinases, a multifaceted family of signaling enzymes. J BiolChem,1999,274:9907-9910
    10Furuta Y, Uehara T, Nomura Y Correlation between delayed neuronal celldeath and selective decrease in phosphatidylinositol4-kinase expressionin the ca1subfield of the hippocampus after transient forebrain ischemia.J Cereb Blood Flow Metab,2003,23:962-971
    11DeWald DB, Torabinejad J, Samant RS, et al Metastasis suppression bybreast cancer metastasis suppressor1involves reduction ofphosphoinositide signaling in mda-mb-435breast carcinoma cells.Cancer Res,2005,65:713-717
    12Zaika O, Lara LS, Gamper N, et al Angiotensin ii regulates neuronalexcitability via phosphatidylinositol4,5-bisphosphate-dependentmodulation of kv7(m-type) k+channels. J Physiol,2006,575:49-67
    13Nakanishi S, Catt KJ, Balla T A wortmannin-sensitivephosphatidylinositol4-kinase that regulates hormone-sensitive pools ofinositolphospholipids. Proc Natl Acad Sci U S A,1995,92:5317-5321
    14Hokin LE, Hokin MR Effects of acetylcholine on the turnover ofphosphoryl units in individual phospholipids of pancreas slices and braincortex slices. Biochim Biophys Acta,1955,18:102-110
    15Hokin LE, Hokin MR Metabolism of phospholipids in vitro. Can JBiochem Physiol,1956,34:349-360
    16Hokin LE, Huebner D Radioautographic localization of the increasedsynthesis of phosphatidylinositol in response to pancreozymin oracetylcholine in guinea pig pancreas slices. J Cell Biol,1967,33:521-530
    17Hefti MA, Harder BA, Eppenberger HM, et al Signaling pathways incardiac myocyte hypertrophy. J Mol Cell Cardiol,1997,29:2873-2892
    18Clerk A, Sugden PH Activation of protein kinase cascades in the heart byhypertrophic g protein-coupled receptor agonists. Am J Cardiol,1999,83:64H-69H
    19Sabri A, Steinberg SF Protein kinase c isoform-selective signals that leadto cardiac hypertrophy and the progression of heart failure. Mol CellBiochem,2003,251:97-101
    20Nakayama H, Bodi I, Maillet M, et al The ip3receptor regulates cardiachypertrophy in response to select stimuli. Circ Res,2010,107:659-666
    21Gamper N, Rohacs T Phosphoinositide sensitivity of ion channels, afunctional perspective. Subcell Biochem,2012,59:289-333
    22Singal T, Dhalla NS, Tappia PS Norepinephrine-induced changes in geneexpression of phospholipase c in cardiomyocytes. J Mol Cell Cardiol,2006,41:126-137
    23Schafer M, Ponicke K, Heinroth-Hoffmann I, et al Beta-adrenoceptorstimulation attenuates the hypertrophic effect of alpha-adrenoceptorstimulation in adult rat ventricular cardiomyocytes. J Am Coll Cardiol,2001,37:300-307
    24Blero D, Payrastre B, Schurmans S, et al Phosphoinositide phosphatasesin a network of signalling reactions. Pflugers Arch,2007,455:31-44
    25Xu C, Watras J, Loew LM Kinetic analysis of receptor-activatedphosphoinositide turnover. J Cell Biol,2003,161:779-791
    26Zhang X, Chen X, Jia C, et al Depolarization increasesphosphatidylinositol (pi)4,5-bisphosphate level and kcnq currentsthrough pi4-kinase mechanisms. J Biol Chem,2010,285:9402-9409
    27Furutani M, Tsujita K, Itoh T, et al Application ofphosphoinositide-binding domains for the detection and quantification ofspecific phosphoinositides. Anal Biochem,2006,355:8-18
    28Watt SA, Kular G, Fleming IN, et al Subcellular localization ofphosphatidylinositol4,5-bisphosphate using the pleckstrin homologydomain of phospholipase c delta1. Biochem J,2002,363:657-666
    29Banyasz T, Lozinskiy I, Payne CE, et al Transformation of adult ratcardiac myocytes in primary culture. Exp Physiol,2008,93:370-382
    30Wilkins BJ, Dai YS, Bueno OF, et al Calcineurin/nfat couplingparticipates in pathological, but not physiological, cardiac hypertrophy.Circ Res,2004,94:110-118
    31Liu Q, Wilkins BJ, Lee YJ, et al Direct interaction and reciprocalregulation between ask1and calcineurin-nfat control cardiomyocytedeath and growth. Mol Cell Biol,2006,26:3785-3797
    32Min L, Sim MK, Xu XG Effects of des-aspartate-angiotensin i onangiotensin ii-induced incorporation of phenylalanine and thymidine incultured rat cardiomyocytes and aortic smooth muscle cells. Regul Pept,2000,95:93-97
    33Vanamala SK, Gopinath S, Gondi CS, et al Effect of human umbilicalcord blood cells on ang-ii-induced hypertrophy in mice. BiochemBiophys Res Commun,2009,386:386-391
    34Yue J, Liu J, Shen X Inhibition of phosphatidylinositol4-kinase results ina significant reduced respiratory burst informyl-methionyl-leucyl-phenylalanine-stimulated human neutrophils. JBiol Chem,2001,276:49093-49099
    35Minogue S, Waugh MG The phosphatidylinositol4-kinases: Don't call ita comeback. Subcell Biochem,2012,58:1-24
    36Clayton EL, Minogue S, Waugh MG Phosphatidylinositol4-kinases andpi4p metabolism in the nervous system: Roles in psychiatric andneurological diseases. Mol Neurobiol,2013,47:361-372
    37Toth B, Balla A, Ma H, et al Phosphatidylinositol4-kinase iiibetaregulates the transport of ceramide between the endoplasmic reticulumand golgi. J Biol Chem,2006,281:36369-36377
    38Wang Y Signal transduction in cardiac hypertrophy--dissectingcompensatory versus pathological pathways utilizing a transgenicapproach. Curr Opin Pharmacol,2001,1:134-140
    39Yaradanakul A, Feng S, Shen C, et al Dual control of cardiac na+ca2+exchange by pip(2): Electrophysiological analysis of direct and indirectmechanisms. J Physiol,2007,582:991-1010
    40Hilgemann DW, Ball R Regulation of cardiac na+,ca2+exchange andkatp potassium channels by pip2. Science,1996,273:956-959
    41朱大年生理学,2008
    42Fujio Y, Nguyen T, Wencker D, et al Akt promotes survival ofcardiomyocytes in vitro and protects against ischemia-reperfusion injuryin mouse heart. Circulation,2000,101:660-667
    43Naga Prasad SV, Perrino C, Rockman HA Role of phosphoinositide3-kinase in cardiac function and heart failure. Trends Cardiovasc Med,2003,13:206-212
    44Nienaber JJ, Tachibana H, Naga Prasad SV, et al Inhibition ofreceptor-localized pi3k preserves cardiac beta-adrenergic receptorfunction and ameliorates pressure overload heart failure. J Clin Invest,2003,112:1067-1079
    1van den Bout I, Divecha N Pip5k-driven ptdins(4,5)p2synthesis:Regulation and cellular functions. J Cell Sci,2009,122:3837-3850
    2Volpicelli-Daley LA, Lucast L, Gong LW, et alPhosphatidylinositol-4-phosphate5-kinases and phosphatidylinositol4,5-bisphosphate synthesis in the brain. J Biol Chem,2010,285:28708-28714
    3Foord SM, Bonner TI, Neubig RR, et al International union ofpharmacology. Xlvi. G protein-coupled receptor list. Pharmacol Rev,2005,57:279-288
    4Singh K, Xiao L, Remondino A, et al Adrenergic regulation of cardiacmyocyte apoptosis. J Cell Physiol,2001,189:257-265
    5Nicolas CS, Park KH, El Harchi A, et al Iks response to protein kinasea-dependent kcnq1phosphorylation requires direct interaction withmicrotubules. Cardiovasc Res,2008,79:427-435
    6Nasuhoglu C, Feng S, Mao Y, et al Modulation of cardiac pip2bycardioactive hormones and other physiologically relevant interventions.Am J Physiol Cell Physiol,2002,283:C223-234
    7Divecha N Lipid kinases: Charging ptdins(4,5)p2synthesis. Curr Biol,2010,20:R154-157
    8Kato H, Uno I, Ishikawa T, et al Activation of phosphatidylinositol kinaseand phosphatidylinositol-4-phosphate kinase by camp in saccharomycescerevisiae. J Biol Chem,1989,264:3116-3121
    9Boronenkov IV, Anderson RA The sequence ofphosphatidylinositol-4-phosphate5-kinase defines a novel family of lipidkinases. J Biol Chem,1995,270:2881-2884
    10Singhal RL, Prajda N, Yeh YA, et al1-phosphatidylinositol4-phosphate5-kinase (ec2.7.1.68): A proliferation-and malignancy-linked signaltransduction enzyme. Cancer Res,1994,54:5574-5578
    11Chen X, Zhang X, Jia C, et al Membrane depolarization increasesmembrane ptdins(4,5)p2levels through mechanisms involving pkc betaiiand pi4kinase. J Biol Chem,2011,286:39760-39767
    12Kim UH, Kim JW, Rhee SG Phosphorylation of phospholipase c-gammaby camp-dependent protein kinase. J Biol Chem,1989,264:20167-20170
    13Jones GA, Carpenter G The regulation of phospholipase c-gamma1byphosphatidic acid. Assessment of kinetic parameters. J Biol Chem,1993,268:20845-20850
    14Sekiya F, Bae YS, Jhon DY, et al Ahnak, a protein that binds and activatesphospholipase c-gamma1in the presence of arachidonic acid. J BiolChem,1999,274:13900-13907
    15Bae YS, Cantley LG, Chen CS, et al Activation of phospholipasec-gamma by phosphatidylinositol3,4,5-trisphosphate. J Biol Chem,1998,273:4465-4469
    16Rameh LE, Rhee SG, Spokes K, et al Phosphoinositide3-kinase regulatesphospholipase cgamma-mediated calcium signaling. J Biol Chem,1998,273:23750-23757
    17Hilgemann DW Local pip(2) signals: When, where, and how? PflugersArch,2007,455:55-67
    18Ferro A Beta-adrenoceptors and potassium channels. NaunynSchmiedebergs Arch Pharmacol,2006,373:183-185
    19Li Y, Zaydman MA, Wu D, et al Kcne1enhances phosphatidylinositol4,5-bisphosphate (pip2) sensitivity of iks to modulate channel activity.Proc Natl Acad Sci U S A,2011,108:9095-9100
    20Jakab G, Rapundalo ST, Solaro RJ, et al Phosphorylation ofphospholipids in isolated guinea pig hearts stimulated with isoprenaline.Biochem J,1988,251:189-194
    21Edes I, Solaro RJ, Kranias EG Changes in phosphoinositide turnover inisolated guinea pig hearts stimulated with isoproterenol. Circ Res,1989,65:989-996
    22Park SJ, Itoh T, Takenawa T Phosphatidylinositol4-phosphate5-kinasetype i is regulated through phosphorylation response by extracellularstimuli. J Biol Chem,2001,276:4781-4787
    23Halenda SP, Feinstein MB Phorbol myristate acetate stimulates formationof phosphatidyl inositol4-phosphate and phosphatidyl inositol4,5-bisphosphate in human platelets. Biochem Biophys Res Commun,1984,124:507-513
    24Anderson RA, Boronenkov IV, Doughman SD, et al Phosphatidylinositolphosphate kinases, a multifaceted family of signaling enzymes. J BiolChem,1999,274:9907-9910
    25Touyz RM, Schiffrin EL Ang ii-stimulated superoxide production ismediated via phospholipase d in human vascular smooth muscle cells.Hypertension,1999,34:976-982
    26Lassegue B, Alexander RW, Clark M, et al Phosphatidylcholine is a majorsource of phosphatidic acid and diacylglycerol in angiotensinii-stimulated vascular smooth-muscle cells. Biochem J,1993,292(Pt2):509-517
    1Krishnan V, Han MH, Graham DL, et al Molecular adaptationsunderlying susceptibility and resistance to social defeat in brain rewardregions. Cell,2007,131:391-404
    2Golden SA, Covington HE,3rd, Berton O, et al A standardized protocolfor repeated social defeat stress in mice. Nat Protoc,2011,6:1183-1191
    3Marsh GG, Markham CH Does levodopa alter depression andpsychopathology in parkinsonism patients? J Neurol NeurosurgPsychiatry,1973,36:925-935
    4Whitlock FA, Evans LE Drugs and depression. Drugs,1978,15:53-71
    5刘国卿药理学,中国医药科技出版社,2006,152-159
    6Rogan MT, Staubli UV, LeDoux JE Fear conditioning induces associativelong-term potentiation in the amygdala. Nature,1997,390:604-607
    7Tsvetkov E, Carlezon WA, Benes FM, et al Fear conditioning occludesltp-induced presynaptic enhancement of synaptic transmission in thecortical pathway to the lateral amygdala. Neuron,2002,34:289-300
    8Deemyad T, Maler L, Chacron MJ Inhibition of sk and mchannel-mediated currents by5-ht enables parallel processing by burstsand isolated spikes. J Neurophysiol,2011,105:1276-1294
    9朱大年生理学,人民卫生出版社,2008,4-9
    10Cao JL, Covington HE,3rd, Friedman AK, et al Mesolimbic dopamineneurons in the brain reward circuit mediate susceptibility to social defeatand antidepressant action. J Neurosci,2010,30:16453-16458
    11Chaudhury D, Walsh JJ, Friedman AK, et al Rapid regulation ofdepression-related behaviours by control of midbrain dopamine neurons.Nature,2013,493:532-536
    12Unoki T, Matsuda S, Kakegawa W, et al Nmda receptor-mediated pip5kactivation to produce pi(4,5)p(2) is essential for ampa receptorendocytosis during ltd. Neuron,2012,73:135-148
    13Trovo L, Ahmed T, Callaerts-Vegh Z, et al Low hippocampal pi(4,5)p(2)contributes to reduced cognition in old mice as a result of loss of marcks.Nat Neurosci,2013,16:449-455
    14Zubenko GS, Stiffler JS, Hughes HB, et al Reductions in brainphosphatidylinositol kinase activities in alzheimer's disease. BiolPsychiatry,1999,45:731-736
    15Halstead JR, Jalink K, Divecha N An emerging role forptdins(4,5)p2-mediated signalling in human disease. Trends PharmacolSci,2005,26:654-660
    16Magistretti PJ, Schorderet M Norepinephrine and histamine potentiate theincreases in cyclic adenosine3':5'-monophosphate elicited by vasoactiveintestinal polypeptide in mouse cerebral cortical slices: Mediation byalpha1-adrenergic and h1-histaminergic receptors. J Neurosci,1985,5:362-368
    17Johnson RD, Minneman KP Characterization of alpha1-adrenoceptorswhich increase cyclic amp accumulation in rat cerebral cortex. Eur JPharmacol,1986,129:293-305
    18Kandel ER The molecular biology of memory storage: A dialoguebetween genes and synapses. Science,2001,294:1030-1038
    19Schafe GE, LeDoux JE Memory consolidation of auditory pavlovian fearconditioning requires protein synthesis and protein kinase a in theamygdala. J Neurosci,2000,20:RC96
    20Datiche F, Luppi PH, Cattarelli M Serotonergic and non-serotonergicprojections from the raphe nuclei to the piriform cortex in the rat: Acholera toxin b subunit (ctb) and5-ht immunohistochemical study. BrainRes,1995,671:27-37
    21Mochizuki S, Watanabe T, Miyake A, et al Cloning, expression, andcharacterization of ferret5-ht(3) receptor subunit. Eur J Pharmacol,2000,399:97-106
    22Welsby PJ, Carr IC, Wilkinson G, et al Regulation of the avidity ofternary complexes containing the human5-ht(1a) receptor by mutation ofa receptor contact site on the interacting g protein alpha subunit. Br JPharmacol,2002,137:345-352
    23Chen X, Zhang X, Jia C, et al Membrane depolarization increasesmembrane ptdins(4,5)p2levels through mechanisms involving pkc betaiiand pi4kinase. J Biol Chem,2011,286:39760-39767
    24van den Bout I, Divecha N Pip5k-driven ptdins(4,5)p2synthesis:Regulation and cellular functions. J Cell Sci,2009,122:3837-3850
    25Clayton EL, Minogue S, Waugh MG Phosphatidylinositol4-kinases andpi4p metabolism in the nervous system: Roles in psychiatric andneurological diseases. Mol Neurobiol,2013,47:361-372
    26Gamper N, Rohacs T Phosphoinositide sensitivity of ion channels, afunctional perspective. Subcell Biochem,2012,59:289-333
    27Doughman RL, Firestone AJ, Wojtasiak ML, et al Membrane rufflingrequires coordination between type ialpha phosphatidylinositol phosphatekinase and rac signaling. J Biol Chem,2003,278:23036-23045
    28Firulli BA, Howard MJ, McDaid JR, et al Pka, pkc, and the proteinphosphatase2a influence hand factor function: A mechanism fortissue-specific transcriptional regulation. Mol Cell,2003,12:1225-1237
    29Obeid LM, Okazaki T, Karolak LA, et al Transcriptional regulation ofprotein kinase c by1,25-dihydroxyvitamin d3in hl-60cells. J Biol Chem,1990,265:2370-2374
    30Tully K, Bolshakov VY Emotional enhancement of memory: Hownorepinephrine enables synaptic plasticity. Mol Brain,2010,3:15
    31Anna Kloda, Martinac B “Smart fats”, healthy brain and function oflipid-sensing nmda receptors. Advances in Biological Chemistry,2012,2:106-114
    32Tyeryar KR, Vongtau HO, Undieh AS Diverse antidepressants increasecdp-diacylglycerol production and phosphatidylinositide resynthesis indepression-relevant regions of the rat brain. BMC Neurosci,2008,9:12-30
    33Aboukhatwa MA, Undieh AS Antidepressant stimulation ofcdp-diacylglycerol synthesis does not require monoamine reuptakeinhibition. BMC Neurosci,2010,11:10-27
    34Berman DE, Dall'Armi C, Voronov SV, et al Oligomeric amyloid-betapeptide disrupts phosphatidylinositol-4,5-bisphosphate metabolism. NatNeurosci,2008,11:547-554
    35Vorstman JA, Chow EW, Ophoff RA, et al Association of the pik4caschizophrenia-susceptibility gene in adults with the22q11.2deletionsyndrome. Am J Med Genet B Neuropsychiatr Genet,2009,150B:430-433
    1Hefti MA, Harder BA, Eppenberger HM, et al Signaling pathways incardiac myocyte hypertrophy. J Mol Cell Cardiol,1997,29:2873-2892
    2Nasuhoglu C, Feng S, Mao Y, et al Modulation of cardiac pip2bycardioactive hormones and other physiologically relevant interventions.Am J Physiol Cell Physiol,2002,283:C223-234
    3Hilgemann DW Local pip(2) signals: When, where, and how? PflugersArch,2007,455:55-67
    4Hilgemann DW, Ball R Regulation of cardiac na+,ca2+exchange andkatp potassium channels by pip2. Science,1996,273:956-959
    5Miki H, Miura K, Takenawa T N-wasp, a novel actin-depolymerizingprotein, regulates the cortical cytoskeletal rearrangement in apip2-dependent manner downstream of tyrosine kinases. EMBO J,1996,15:5326-5335
    6Logan MR, Mandato CA Regulation of the actin cytoskeleton by pip2incytokinesis. Biol Cell,2006,98:377-388
    7Suh BC, Hille B Pip2is a necessary cofactor for ion channel function:How and why? Annu Rev Biophys,2008,37:175-195
    8Hansen SB, Tao X, MacKinnon R Structural basis of pip2activation ofthe classical inward rectifier k+channel kir2.2. Nature,2011,477:495-498
    9Zhang H, Craciun LC, Mirshahi T, et al Pip(2) activates kcnq channels,and its hydrolysis underlies receptor-mediated inhibition of m currents.Neuron,2003,37:963-975
    10Wu L, Bauer CS, Zhen XG, et al Dual regulation of voltage-gated calciumchannels by ptdins(4,5)p2. Nature,2002,419:947-952
    11Gamper N, Reznikov V, Yamada Y, et al Phosphatidylinositol [correction]4,5-bisphosphate signals underlie receptor-specific gq/11-mediatedmodulation of n-type ca2+channels. J Neurosci,2004,24:10980-10992
    12Nilius B, Mahieu F, Karashima Y, et al Regulation of trp channels: Avoltage-lipid connection. Biochem Soc Trans,2007,35:105-108
    13Rohacs T Regulation of trp channels by pip(2). Pflugers Arch,2007,453:753-762
    14Gamper N, Shapiro MS Regulation of ion transport proteins bymembrane phosphoinositides. Nat Rev Neurosci,2007,8:921-934
    15Tucker SJ, Baukrowitz T How highly charged anionic lipids bind andregulate ion channels. J Gen Physiol,2008,131:431-438
    16Bian J, Cui J, McDonald TV Herg k(+) channel activity is regulated bychanges in phosphatidyl inositol4,5-bisphosphate. Circ Res,2001,89:1168-1176
    17Wang YJ, Li WH, Wang J, et al Critical role of pip5ki{gamma}87ininsp3-mediated ca(2+) signaling. J Cell Biol,2004,167:1005-1010
    18van Rheenen J, Achame EM, Janssen H, et al Pip2signaling in lipiddomains: A critical re-evaluation. EMBO J,2005,24:1664-1673
    19Gamper N, Shapiro MS Target-specific pip(2) signalling: How might itwork? J Physiol,2007,582:967-975
    20Cho H, Kim YA, Yoon JY, et al Low mobility of phosphatidylinositol4,5-bisphosphate underlies receptor specificity of gq-mediated ionchannel regulation in atrial myocytes. Proc Natl Acad Sci U S A,2005,102:15241-15246
    21Wang J, Gambhir A, Hangyas-Mihalyne G, et al Lateral sequestration ofphosphatidylinositol4,5-bisphosphate by the basic effector domain ofmyristoylated alanine-rich c kinase substrate is due to nonspecificelectrostatic interactions. J Biol Chem,2002,277:34401-34412
    22Zheng JM, Chin WC, Khijniak E, et al Surfaces and interfacial water:Evidence that hydrophilic surfaces have long-range impact. Adv ColloidInterface Sci,2006,127:19-27
    23Zaika O, Lara LS, Gamper N, et al Angiotensin ii regulates neuronalexcitability via phosphatidylinositol4,5-bisphosphate-dependentmodulation of kv7(m-type) k+channels. J Physiol,2006,575:49-67
    24Cho H, Lee D, Lee SH, et al Receptor-induced depletion ofphosphatidylinositol4,5-bisphosphate inhibits inwardly rectifying k+channels in a receptor-specific manner. Proc Natl Acad Sci U S A,2005,102:4643-4648
    25Yaradanakul A, Feng S, Shen C, et al Dual control of cardiac na+ca2+exchange by pip(2): Electrophysiological analysis of direct and indirectmechanisms. J Physiol,2007,582:991-1010
    26Vazquez-Prado J, Casas-Gonzalez P, Garcia-Sainz JA G protein-coupledreceptor cross-talk: Pivotal roles of protein phosphorylation andprotein-protein interactions. Cell Signal,2003,15:549-557
    27Ferguson SS, Zhang J, Barak LS, et al Molecular mechanisms of gprotein-coupled receptor desensitization and resensitization. Life Sci,1998,62:1561-1565
    28Clayton EL, Minogue S, Waugh MG Phosphatidylinositol4-kinases andpi4p metabolism in the nervous system: Roles in psychiatric andneurological diseases. Mol Neurobiol,2013,47:361-372
    29Kobrinsky E, Mirshahi T, Zhang H, et al Receptor-mediated hydrolysis ofplasma membrane messenger pip2leads to k+-current desensitization.Nat Cell Biol,2000,2:507-514
    30Pitcher JA, Fredericks ZL, Stone WC, et al Phosphatidylinositol4,5-bisphosphate (pip2)-enhanced g protein-coupled receptor kinase (grk)activity. Location, structure, and regulation of the pip2binding sitedistinguishes the grk subfamilies. J Biol Chem,1996,271:24907-24913
    31Nasuhoglu C, Feng S, Mao J, et al Nonradioactive analysis ofphosphatidylinositides and other anionic phospholipids byanion-exchange high-performance liquid chromatography withsuppressed conductivity detection. Anal Biochem,2002,301:243-254
    32Li Y, Gamper N, Hilgemann DW, et al Regulation of kv7(kcnq) k+channel open probability by phosphatidylinositol4,5-bisphosphate. JNeurosci,2005,25:9825-9835
    33Nakanishi S, Catt KJ, Balla T A wortmannin-sensitivephosphatidylinositol4-kinase that regulates hormone-sensitive pools ofinositolphospholipids. Proc Natl Acad Sci U S A,1995,92:5317-5321
    34Minogue S, Waugh MG The phosphatidylinositol4-kinases: Don't call ita comeback. Subcell Biochem,2012,58:1-24
    35Trovo L, Ahmed T, Callaerts-Vegh Z, et al Low hippocampal pi(4,5)p(2)contributes to reduced cognition in old mice as a result of loss of marcks.Nat Neurosci,2013,16:449-455
    36Hokin LE, Hokin MR Effects of acetylcholine on the turnover ofphosphoryl units in individual phospholipids of pancreas slices and braincortex slices. Biochim Biophys Acta,1955,18:102-110
    37Xu JX, Si M, Zhang HR, et al Phosphoinositide kinases play key roles innorepinephrine-and angiotensin ii-induced increase inphosphatidylinositol-4,5-bisphosphate and modulation of cardiac function.J Biol Chem,2014,
    38Zhang X, Chen X, Jia C, et al Depolarization increasesphosphatidylinositol (pi)4,5-bisphosphate level and kcnq currentsthrough pi4-kinase mechanisms. J Biol Chem,2010,285:9402-9409
    39Gamper N, Li Y, Shapiro MS Structural requirements for differentialsensitivity of kcnq k+channels to modulation by ca2+/calmodulin. MolBiol Cell,2005,16:3538-3551
    40Zaika O, Tolstykh GP, Jaffe DB, et al Inositol triphosphate-mediated ca2+signals direct purinergic p2y receptor regulation of neuronal ion channels.J Neurosci,2007,27:8914-8926
    41Winks JS, Hughes S, Filippov AK, et al Relationship between membranephosphatidylinositol-4,5-bisphosphate and receptor-mediated inhibitionof native neuronal m channels. J Neurosci,2005,25:3400-3413
    42Gierke P, Zhao C, Brackmann M, et al Expression analysis of members ofthe neuronal calcium sensor protein family: Combining bioinformaticsand western blot analysis. Biochem Biophys Res Commun,2004,323:38-43
    43Delmas P, Coste B, Gamper N, et al Phosphoinositide lipid secondmessengers: New paradigms for calcium channel modulation. Neuron,2005,47:179-182
    44Disterhoft JF, Oh MM Alterations in intrinsic neuronal excitability duringnormal aging. Aging Cell,2007,6:327-336
    45Palaniyandi SS, Sun L, Ferreira JC, et al Protein kinase c in heart failure:A therapeutic target? Cardiovasc Res,2009,82:229-239
    46Chauhan VP, Brockerhoff H Phosphatidylinositol-4,5-bisphosphate mayantecede diacylglycerol as activator of protein kinase c. Biochem BiophysRes Commun,1988,155:18-23
    47Ling K, Bairstow SF, Carbonara C, et al Type i gammaphosphatidylinositol phosphate kinase modulates adherens junction ande-cadherin trafficking via a direct interaction with mu1b adaptin. J CellBiol,2007,176:343-353
    48Chen X, Zhang X, Jia C, et al Membrane depolarization increasesmembrane ptdins(4,5)p2levels through mechanisms involving pkc betaiiand pi4kinase. J Biol Chem,2011,286:39760-39767
    49Balla A, Tuymetova G, Tsiomenko A, et al A plasma membrane pool ofphosphatidylinositol4-phosphate is generated by phosphatidylinositol4-kinase type-iii alpha: Studies with the ph domains of the oxysterolbinding protein and fapp1. Mol Biol Cell,2005,16:1282-1295
    50van den Bout I, Divecha N Pip5k-driven ptdins(4,5)p2synthesis:Regulation and cellular functions. J Cell Sci,2009,122:3837-3850
    51Gamper N, Rohacs T Phosphoinositide sensitivity of ion channels, afunctional perspective. Subcell Biochem,2012,59:289-333
    52Wickenden AD, Roeloffs R, McNaughton-Smith G, et al Kcnq potassiumchannels: Drug targets for the treatment of epilepsy and pain. ExpertOpinion on Therapeutic Patents,2004,14:457-469
    53Neusch C, Weishaupt JH, Bahr M Kir channels in the cns: Emerging newroles and implications for neurological diseases. Cell Tissue Res,2003,311:131-138
    54Bodhinathan K, Slesinger PA Alcohol modulation of g-protein-gatedinwardly rectifying potassium channels: From binding to therapeutics.Membrane Physiology and Membrane Biophysics,2014,5:1234-1255
    55Howes AL, Arthur JF, Zhang T, et al Akt-mediated cardiomyocytesurvival pathways are compromised by g alpha q-inducedphosphoinositide4,5-bisphosphate depletion. J Biol Chem,2003,278:40343-40351
    56Furuta Y, Uehara T, Nomura Y Correlation between delayed neuronal celldeath and selective decrease in phosphatidylinositol4-kinase expressionin the ca1subfield of the hippocampus after transient forebrain ischemia.J Cereb Blood Flow Metab,2003,23:962-971
    57Unoki T, Matsuda S, Kakegawa W, et al Nmda receptor-mediated pip5kactivation to produce pi(4,5)p(2) is essential for ampa receptorendocytosis during ltd. Neuron,2012,73:135-148
    58Nakano-Kobayashi A, Yamazaki M, Unoki T, et al Role of activation ofpip5kgamma661by ap-2complex in synaptic vesicle endocytosis.EMBO J,2007,26:1105-1116
    59Zubenko GS, Stiffler JS, Hughes HB, et al Reductions in brainphosphatidylinositol kinase activities in alzheimer's disease. BiolPsychiatry,1999,45:731-736
    60Treusch S, Hamamichi S, Goodman JL, et al Functional links betweenabeta toxicity, endocytic trafficking, and alzheimer's disease risk factorsin yeast. Science,2011,334:1241-1245
    61Xiao Q, Gil SC, Yan P, et al Role of phosphatidylinositol clathrinassembly lymphoid-myeloid leukemia (picalm) in intracellular amyloidprecursor protein (app) processing and amyloid plaque pathogenesis. JBiol Chem,2012,287:21279-21289
    62Berman DE, Dall'Armi C, Voronov SV, et al Oligomeric amyloid-betapeptide disrupts phosphatidylinositol-4,5-bisphosphate metabolism. NatNeurosci,2008,11:547-554
    63DeWald DB, Torabinejad J, Samant RS, et al Metastasis suppression bybreast cancer metastasis suppressor1involves reduction ofphosphoinositide signaling in mda-mb-435breast carcinoma cells.Cancer Res,2005,65:713-717
    64Halstead JR, van Rheenen J, Snel MH, et al A role for ptdins(4,5)p2andpip5kalpha in regulating stress-induced apoptosis. Curr Biol,2006,16:1850-1856
    65Kisseleva M, Feng Y, Ward M, et al The lim protein ajuba regulatesphosphatidylinositol4,5-bisphosphate levels in migrating cells through aninteraction with and activation of pipki alpha. Mol Cell Biol,2005,25:3956-3966
    66Emoto K, Inadome H, Kanaho Y, et al Local change in phospholipidcomposition at the cleavage furrow is essential for completion ofcytokinesis. J Biol Chem,2005,280:37901-37907
    1朱大年生理学,人民卫生出版社,2008,4-9
    2Cell membrane. Wikipedia,2014
    3van den Bout I, Divecha N Pip5k-driven ptdins(4,5)p2synthesis:Regulation and cellular functions. J Cell Sci,2009,122:3837-3850
    4Gamper N, Shapiro MS Target-specific pip(2) signalling: How might itwork? J Physiol,2007,582:967-975
    5Zhang X, Loijens JC, Boronenkov IV, et alPhosphatidylinositol-4-phosphate5-kinase isozymes catalyze thesynthesis of3-phosphate-containing phosphatidylinositol signalingmolecules. J Biol Chem,1997,272:17756-17761
    6Divecha N Lipid kinases: Charging ptdins(4,5)p2synthesis. Curr Biol,2010,20:R154-157
    7Oude Weernink PA, Schmidt M, Jakobs KH Regulation and cellular rolesof phosphoinositide5-kinases. Eur J Pharmacol,2004,500:87-99
    8Hoffmann R, Valencia A A gene network for navigating the literature. NatGenet,2004,36:664
    9Kunz J, Wilson MP, Kisseleva M, et al The activation loop ofphosphatidylinositol phosphate kinases determines signaling specificity.Mol Cell,2000,5:1-11
    10Kunz J, Fuelling A, Kolbe L, et al Stereo-specific substrate recognition byphosphatidylinositol phosphate kinases is swapped by changing a singleamino acid residue. J Biol Chem,2002,277:5611-5619
    11Mellman DL, Gonzales ML, Song C, et al A ptdins4,5p2-regulatednuclear poly(a) polymerase controls expression of select mrnas. Nature,2008,451:1013-1017
    12Doughman RL, Firestone AJ, Wojtasiak ML, et al Membrane rufflingrequires coordination between type ialpha phosphatidylinositol phosphatekinase and rac signaling. J Biol Chem,2003,278:23036-23045
    13Di Paolo G, Pellegrini L, Letinic K, et al Recruitment and regulation ofphosphatidylinositol phosphate kinase type1gamma by the ferm domainof talin. Nature,2002,420:85-89
    14Ling K, Bairstow SF, Carbonara C, et al Type i gammaphosphatidylinositol phosphate kinase modulates adherens junction ande-cadherin trafficking via a direct interaction with mu1b adaptin. J CellBiol,2007,176:343-353
    15Giudici ML, Lee K, Lim R, et al The intracellular localisation andmobility of type igamma phosphatidylinositol4p5-kinase splice variants.FEBS Lett,2006,580:6933-6937
    16Etienne-Manneville S, Hall A Rho gtpases in cell biology. Nature,2002,420:629-635
    17Desrivieres S, Cooke FT, Parker PJ, et al Mss4, aphosphatidylinositol-4-phosphate5-kinase required for organization ofthe actin cytoskeleton in saccharomyces cerevisiae. J Biol Chem,1998,273:15787-15793
    18Ren XD, Schwartz MA Regulation of inositol lipid kinases by rho and rac.Curr Opin Genet Dev,1998,8:63-67
    19Weernink PA, Meletiadis K, Hommeltenberg S, et al Activation of type iphosphatidylinositol4-phosphate5-kinase isoforms by the rho gtpases,rhoa, rac1, and cdc42. J Biol Chem,2004,279:7840-7849
    20Oude Weernink PA, Schulte P, Guo Y, et al Stimulation ofphosphatidylinositol-4-phosphate5-kinase by rho-kinase. J Biol Chem,2000,275:10168-10174
    21Chatah NE, Abrams CS G-protein-coupled receptor activation induces themembrane translocation and activation ofphosphatidylinositol-4-phosphate5-kinase i alpha by a rac-andrho-dependent pathway. J Biol Chem,2001,276:34059-34065
    22Yang SA, Carpenter CL, Abrams CS Rho and rho-kinase mediatethrombin-induced phosphatidylinositol4-phosphate5-kinase traffickingin platelets. J Biol Chem,2004,279:42331-42336
    23van Horck FP, Lavazais E, Eickholt BJ, et al Essential role of type i(alpha)phosphatidylinositol4-phosphate5-kinase in neurite remodeling. CurrBiol,2002,12:241-245
    24Tolias KF, Hartwig JH, Ishihara H, et al Type ialphaphosphatidylinositol-4-phosphate5-kinase mediates rac-dependent actinassembly. Curr Biol,2000,10:153-156
    25Kisseleva M, Feng Y, Ward M, et al The lim protein ajuba regulatesphosphatidylinositol4,5-bisphosphate levels in migrating cells through aninteraction with and activation of pipki alpha. Mol Cell Biol,2005,25:3956-3966
    26Honda A, Nogami M, Yokozeki T, et al Phosphatidylinositol4-phosphate5-kinase alpha is a downstream effector of the small g protein arf6inmembrane ruffle formation. Cell,1999,99:521-532
    27Aikawa Y, Martin TF Adp-ribosylation factor6regulation ofphosphatidylinositol-4,5-bisphosphate synthesis, endocytosis, andexocytosis. Methods Enzymol,2005,404:422-431
    28Brown FD, Rozelle AL, Yin HL, et al Phosphatidylinositol4,5-bisphosphate and arf6-regulated membrane traffic. J Cell Biol,2001,154:1007-1017
    29Aikawa Y, Martin TF Arf6regulates a plasma membrane pool ofphosphatidylinositol(4,5)bisphosphate required for regulated exocytosis. JCell Biol,2003,162:647-659
    30Jarquin-Pardo M, Fitzpatrick A, Galiano FJ, et al Phosphatidic acidregulates the affinity of the murine phosphatidylinositol4-phosphate5-kinase-ibeta for phosphatidylinositol-4-phosphate. J Cell Biochem,2007,100:112-128
    31Kanaho Y, Kobayashi-Nakano A, Yokozeki T The phosphoinositidekinase pip5k that produces the versatile signaling phospholipid pi4,5p(2).Biol Pharm Bull,2007,30:1605-1609
    32Powner DJ, Payne RM, Pettitt TR, et al Phospholipase d2stimulatesintegrin-mediated adhesion via phosphatidylinositol4-phosphate5-kinaseigamma b. J Cell Sci,2005,118:2975-2986
    33Ling K, Doughman RL, Firestone AJ, et al Type i gammaphosphatidylinositol phosphate kinase targets and regulates focaladhesions. Nature,2002,420:89-93
    34Ling K, Doughman RL, Iyer VV, et al Tyrosine phosphorylation of typeigamma phosphatidylinositol phosphate kinase by src regulates anintegrin-talin switch. J Cell Biol,2003,163:1339-1349
    35Lee SY, Voronov S, Letinic K, et al Regulation of the interaction betweenpipki gamma and talin by proline-directed protein kinases. J Cell Biol,2005,168:789-799
    36Carpenter CL Btk-dependent regulation of phosphoinositide synthesis.Biochem Soc Trans,2004,32:326-329
    37Pan W, Choi SC, Wang H, et al Wnt3a-mediated formation ofphosphatidylinositol4,5-bisphosphate regulates lrp6phosphorylation.Science,2008,321:1350-1353
    38Clarke JH, Letcher AJ, D'Santos C S, et al Inositol lipids are regulatedduring cell cycle progression in the nuclei of murine erythroleukaemiacells. Biochem J,2001,357:905-910
    39Divecha N, Roefs M, Los A, et al Type i pipkinases interact with and areregulated by the retinoblastoma susceptibility gene product-prb. Curr Biol,2002,12:582-587
    40Park SJ, Itoh T, Takenawa T Phosphatidylinositol4-phosphate5-kinasetype i is regulated through phosphorylation response by extracellularstimuli. J Biol Chem,2001,276:4781-4787
    41Itoh T, Ishihara H, Shibasaki Y, et al Autophosphorylation of type iphosphatidylinositol phosphate kinase regulates its lipid kinase activity. JBiol Chem,2000,275:19389-19394
    42Narkis G, Ofir R, Landau D, et al Lethal contractural syndrome type3(lccs3) is caused by a mutation in pip5k1c, which encodes pipki gammaof the phophatidylinsitol pathway. Am J Hum Genet,2007,81:530-539
    43Singhal RL, Prajda N, Yeh YA, et al1-phosphatidylinositol4-phosphate5-kinase (ec2.7.1.68): A proliferation-and malignancy-linked signaltransduction enzyme. Cancer Res,1994,54:5574-5578
    44Wang Y, Litvinov RI, Chen X, et al Loss of pip5kigamma, unlike otherpip5ki isoforms, impairs the integrity of the membrane cytoskeleton inmurine megakaryocytes. J Clin Invest,2008,
    45Sasaki J, Sasaki T, Yamazaki M, et al Regulation of anaphylacticresponses by phosphatidylinositol phosphate kinase type i {alpha}. J ExpMed,2005,201:859-870
    46Volpicelli-Daley LA, Lucast L, Gong LW, et alPhosphatidylinositol-4-phosphate5-kinases and phosphatidylinositol4,5-bisphosphate synthesis in the brain. J Biol Chem,2010,285:28708-28714
    47Wang Y, Lian L, Golden JA, et al Pip5ki gamma is required forcardiovascular and neuronal development. Proc Natl Acad Sci U S A,2007,104:11748-11753
    48Wang YJ, Li WH, Wang J, et al Critical role of pip5ki{gamma}87ininsp3-mediated ca(2+) signaling. J Cell Biol,2004,167:1005-1010
    49Lassing I, Lindberg U Specific interaction between phosphatidylinositol4,5-bisphosphate and profilactin. Nature,1985,314:472-474
    50Shibasaki Y, Ishihara H, Kizuki N, et al Massive actin polymerizationinduced by phosphatidylinositol-4-phosphate5-kinase in vivo. J BiolChem,1997,272:7578-7581
    51Rozelle AL, Machesky LM, Yamamoto M, et al Phosphatidylinositol4,5-bisphosphate induces actin-based movement of raft-enriched vesiclesthrough wasp-arp2/3. Curr Biol,2000,10:311-320
    52Yin HL, Janmey PA Phosphoinositide regulation of the actin cytoskeleton.Annu Rev Physiol,2003,65:761-789
    53Auvinen E, Kivi N, Vaheri A Regulation of ezrin localization by rac1andpipk in human epithelial cells. Exp Cell Res,2007,313:824-833
    54van Rheenen J, Song X, van Roosmalen W, et al Egf-induced pip2hydrolysis releases and activates cofilin locally in carcinoma cells. J CellBiol,2007,179:1247-1259
    55Wang Y, Chen X, Lian L, et al Loss of pip5kibeta demonstrates thatpip5ki isoform-specific pip2synthesis is required for ip3formation. ProcNatl Acad Sci U S A,2008,105:14064-14069
    56Lacalle RA, Peregil RM, Albar JP, et al Type i phosphatidylinositol4-phosphate5-kinase controls neutrophil polarity and directionalmovement. J Cell Biol,2007,179:1539-1553
    57Lokuta MA, Senetar MA, Bennin DA, et al Type igamma pip kinase is anovel uropod component that regulates rear retraction during neutrophilchemotaxis. Mol Biol Cell,2007,18:5069-5080
    58El Sayegh TY, Arora PD, Ling K, et al Phosphatidylinositol-4,5bisphosphate produced by pip5kigamma regulates gelsolin, actinassembly, and adhesion strength of n-cadherin junctions. Mol Biol Cell,2007,18:3026-3038
    59Xie Z, Chang SM, Pennypacker SD, et alPhosphatidylinositol-4-phosphate5-kinase1alpha mediates extracellularcalcium-induced keratinocyte differentiation. Mol Biol Cell,2009,20:1695-1704
    60Robinson LJ, Martin TF Docking and fusion in neurosecretion. Curr OpinCell Biol,1998,10:483-492
    61Hay JC, Fisette PL, Jenkins GH, et al Atp-dependent inositidephosphorylation required for ca(2+)-activated secretion. Nature,1995,374:173-177
    62Takenawa T, Itoh T Phosphoinositides, key molecules for regulation ofactin cytoskeletal organization and membrane traffic from the plasmamembrane. Biochim Biophys Acta,2001,1533:190-206
    63Di Paolo G, Moskowitz HS, Gipson K, et al Impaired ptdins(4,5)p2synthesis in nerve terminals produces defects in synaptic vesicletrafficking. Nature,2004,431:415-422
    64Nakano-Kobayashi A, Yamazaki M, Unoki T, et al Role of activation ofpip5kgamma661by ap-2complex in synaptic vesicle endocytosis.EMBO J,2007,26:1105-1116
    65Ohno H Physiological roles of clathrin adaptor ap complexes: Lessonsfrom mutant animals. J Biochem,2006,139:943-948
    66Padron D, Wang YJ, Yamamoto M, et al Phosphatidylinositol phosphate5-kinase ibeta recruits ap-2to the plasma membrane and regulates ratesof constitutive endocytosis. J Cell Biol,2003,162:693-701
    67Szymanska E, Korzeniowski M, Raynal P, et al Contribution of pip-5kinase ialpha to raft-based fcgammariia signaling. Exp Cell Res,2009,315:981-995
    68Mao YS, Yamaga M, Zhu X, et al Essential and unique roles ofpip5k-gamma and-alpha in fcgamma receptor-mediated phagocytosis. JCell Biol,2009,184:281-296
    69Azuma T, Koths K, Flanagan L, et al Gelsolin in complex withphosphatidylinositol4,5-bisphosphate inhibits caspase-3and-9to retardapoptotic progression. J Biol Chem,2000,275:3761-3766
    70Halstead JR, van Rheenen J, Snel MH, et al A role for ptdins(4,5)p2andpip5kalpha in regulating stress-induced apoptosis. Curr Biol,2006,16:1850-1856
    71Mejillano M, Yamamoto M, Rozelle AL, et al Regulation of apoptosis byphosphatidylinositol4,5-bisphosphate inhibition of caspases, and caspaseinactivation of phosphatidylinositol phosphate5-kinases. J Biol Chem,2001,276:1865-1872
    72Halstead JR, Roefs M, Ellson CD, et al A novel pathway of cellularphosphatidylinositol(3,4,5)-trisphosphate synthesis is regulated byoxidative stress. Curr Biol,2001,11:386-395
    73Emoto K, Inadome H, Kanaho Y, et al Local change in phospholipidcomposition at the cleavage furrow is essential for completion ofcytokinesis. J Biol Chem,2005,280:37901-37907
    74Cheng MK, Shearn A The direct interaction between ash2, a drosophilatrithorax group protein, and sktl, a nuclear phosphatidylinositol4-phosphate5-kinase, implies a role for phosphatidylinositol4,5-bisphosphate in maintaining transcriptionally active chromatin.Genetics,2004,167:1213-1223
    75Divecha N, Banfic H, Irvine RF The polyphosphoinositide cycle exists inthe nuclei of swiss3t3cells under the control of a receptor (for igf-i) inthe plasma membrane, and stimulation of the cycle increases nucleardiacylglycerol and apparently induces translocation of protein kinase c tothe nucleus. EMBO J,1991,10:3207-3214
    76Xu A, Suh PG, Marmy-Conus N, et al Phosphorylation of nuclearphospholipase c beta1by extracellular signal-regulated kinase mediatesthe mitogenic action of insulin-like growth factor i. Mol Cell Biol,2001,21:2981-2990
    77Maraldi NM, Marmiroli S, Cocco L, et al Nuclear lipid-dependent signaltransduction in human osteosarcoma cells. Adv Enzyme Regul,1997,37:351-375
    78Matteucci A, Faenza I, Gilmour RS, et al Nuclear but not cytoplasmicphospholipase c beta1inhibits differentiation of erythroleukemia cells.Cancer Res,1998,58:5057-5060
    79Faenza I, Bavelloni A, Fiume R, et al Up-regulation of nuclear plcbeta1in myogenic differentiation. J Cell Physiol,2003,195:446-452
    80Bading H Transcription-dependent neuronal plasticity the nuclear calciumhypothesis. Eur J Biochem,2000,267:5280-5283

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700