航空概念设计的多准则评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程设计活动大致可以分为两个主要阶段:概念设计和详细设计。本文重点关注空间运载火箭的设计概念和多准则评价。运载火箭的概念设计阶段的目标是构思系统的主要特性,并提出候选概念设计方案。在进行概念设计时,如果只着眼于现代空间运载火箭的某些特点,而不从其建设的整个生命周期进行分析,是难以将其建成的。因此,工程师在设计这些新概念时不仅需要考虑空间运载火箭所需的技术性能,也需要考虑成本,可制造性,可靠性,环保和最终产品的质量。这些问题大多产生于概念设计阶段。空间运载火箭设计的一个主要特点就是其技术和方案的属性之间存在着强耦合关系。成功的设计理念,需要平衡所有冲突和非冲突的属性。本文提出了一种带有兼容性自检功能概念设计评估方法用于方案选择。通过模拟应用验证了其在工程系统前期设计和决策方面的有效性。方法的提出基于多种定性和定量方法,如空间矩阵法,特定定义域建模方法和基于模糊集理论的多属性决策方法。构建和使用这些改进方法的主要目的是在一开始就选择最合理可行的概念结构。根据空间运载火箭概念设计方案选择这一背景,本文将这些方法融合到一个分析框架之内,实现了决策的系统性,精确性和简便性。
     概念的选择是实施系统工程过程中的重要环节。我们采用了几个概念选择方法进行系统设计。这些方法包括决策矩阵为基础的方法如普格评价矩阵和加权属性矩阵。此外,还有基于最优化的方法,如帕累托前沿,组合优化,遗传算法,拓扑优化和知识为基础的方法。然而,只以决策矩阵为基础的方法是无法进行设计空间的定量研究,因此对于概念的选择来说是无效的。另一方面,基于最优化的方法可以有效的求解连续设计空间的问题,但是难以解决空间离散的问题。同样的,离散优化算法,如遗传算法(GA)在解决大数量不相容概念时缺乏效率。鉴于此,本文拟通过对不同评价技术的改进和综合应用进一步加强运载火箭的概念设计。研究主要从以下几个方面展开:
     首先,在概念设计阶段,决策者应该建立空间运载火箭的设计概念的绩效评价空间,因此,机械的技术性能,需要使用可以精确表示其物理性能的参数作为介质来描述。本文提出了理想速度-齐奥尔科夫斯基火箭方程来确定空间运载火箭所需要的节数,避免了采用6自由度弹道仿真方法,进而提高了概念设计这一过程的效率。外部干扰造成的速度损失,如空气阻力,重力,转向等,可以进行合理估计,这将增加所需的速度增量,使得计算更加接近真实情况。
     第二,在概念设计阶段,许多标准(性能和成本)需要同时考虑,包括他们中具有冲突的一些性质。考虑到概念选择阶段的这些特点,可以用多准则决策分析(MCDA)方法对其建模。MCDA方法可以独立考量每个单一的标准,因此它比传统的整体评价标准(OEC)更加优越。
     第三,我们认为SLV的概念设计阶段的特点是数据不足或精度低,因此采用方法进行评价时必须进行敏感性分析,以检验结果在数据可能的变动范围内的鲁棒性。类似于现实中精确数据不可得时的评估和评价问题。因此,要求评价方法不仅能够处理数量量不确定性问题,还可以处理具有模糊性的和主观性的人为判断的问题。鉴于此,我们引入模糊MCDA方法对空间运载火箭概念设计方案进行选择,并改进了空间运载火箭系统的概念选择的过程。
     在进行多属性决策时,评价指标往往与多个属性相关联。如果将多个准则转换成单一的准则可能会遗漏重要信息,如导致设置虚拟等价,使评价倾向于以某一个特定的价值体系。鉴于此,本文采用多准则决策方法,综合考虑各方面影响因素,构建了空间运载火箭概念设计选择的评价指标体系。在进行评价时尽可能保留评价指标原有的含义,以便便在决策过程中可以对每个单独指标进行讨论,如权重,否决权,期望水平,拒绝水平等。
     在应用MCDA方法时最重要的考虑是在诸多MCDA方法中选择最适宜所研究问题的方法。在决策者选择方法之前,首先必须理解不同方法的特点。通过对不同多准则决策方法进行对比分析就可以发现他们之间的差异。这些差异存在于不同MCDA方法的计算过程中,标准权重的确定过程,层级关系种类,判别的一致性,问题结果以及最终结论。不同的方法可以用于帮助选择最适宜的决策制定方法。应用最有效的方式选择适宜所研究问题的MCDA方法。
     工程设计决策问题的特点之一是平衡众多相互冲突的决策标准,并从可行方案中做出最终选择。基于这些特性,可以很自然的将工程设计问题看作多准则决策分析问题。本文在文献中提到了多种MCDA方法。这些方法的提出不仅仅是由于不同多属性决策问题的需要,而且也源于设计者将数学优化和计算机技术的最新成果应用与决策技术的偏好。本文回顾了将MCDA方法应用于工程设计方面的最新文献。从文献中可以看出,MCDA方法可以作为对直觉的补充,验证思路,并支持其发展成为创新。这也是多种MCDA方法应用于工程设计问题并诉之于文献的原因。值得注意的是,由于工程设计问题的多样化,MCDA方法的选择是基于问题的性质,没有可以通用的MCDA方法。此外,多种方法可供选择的优点在于可以选择最适宜的方法来反映特定的决策制定环境。
     值得注意的是频繁应用于工程设计应用的方法属于补充类的MCDA方法。AHP和TOPSIS方法也是两种在工程设计领域很常用的方法,然而通过语言形式或者定性信息描述的决策问题一般用AHP方法解决。现有的文献中,MCDA也常用于与新产品研发相关的产品概念设计阶段或概念选择。概念以及早期设计阶段的主观性和信息和数据的不确定性可以用不同的方法描述,例如模糊集理论。
     这是由于模糊逻辑方便将工程设计的自然语言表述为数学模型。因此,可以将主观形式的专家意见转换成计算机算法。在工程设计方面,MCDA是进行辅助设计评估和选择的重要环境。就工程设计研究活动的目的并不是推动MCDA技术的发展,但是其研究过程有助于多种设计和决策制定工具/环境的发展。同时,我们还发现是MCDA易于对所有的可行标准进行数学推导平衡决策,但是最后的优化设计结果可能还是不能满足所有的相关者。因此,必须认识到,最终决策或选择必须结合数序结论和专家判断,而不是单单取决于计算结果。
     本文的研究目的是改进空间运载火箭的的概念设计和决策过程。为此,研究着力于回答上层问题:如何有效组织子系统成分来构建上层空间运载火箭概念结构?使用的工具应该满足什么条件?为了快速高效的确定空间运载火箭结构规模,并估计其绩效参数?如何在设计参数不确定或指标冲突的情况下评估不同空间运载火箭结构的优劣?
     为此,首先定义了系统功能性要求或概念目标。第二,应用头脑风暴法构建可能的系统解决概念/构架。采用结构分析法构建结构矩阵以表示所有子系统层元素,并由其组合成为系统结构。第三,筛选具有兼容性的可能系统方案。第四,为兼容的设计概念制定各种绩效参数,目的是从绩效,可靠性,成本和项目等方面区分不同的设计概念。这一步是形成设计概念的具体过程。以空间运载火箭为例,以其执行任务要求的节数分析,将决定其技术参数。最后,基于性能和成本属性,备选设计概念将应用于多属决策分析以实现最终的评价和排序。敏感性分析用于检验MADM分析得到的排序结果的鲁棒性(稳健性)。因此,该方法从定义功能性要求开始,定义多种不同属性的设计概念,然后确定最理想的设计概念。
     按照给出的概念设计和评价模式,我们首先定义了系统概念设计的需求,并根据运载火箭的性质和类别指出了任务目标,并阐明了与输出目标相关的指标信息,如空间运载火箭的系统目标是发射一定预先设计的负重载荷到指定属性的轨道,相关指标包括地球特定方位的观测数据,气象信息等。圆周速度是代表发射系统的基本功效,它代表了发射系统可以到达的预订轨道。本文引入火箭方程,结合火箭分节原则计算圆周速度和发射系统基本功效,作为进一步设计和评价的基础,提高了评价的准确性。
     任务目标的另一个要求是确定火箭节数。其主要指标是发射系统的推进器效率,同时还要考虑火箭重量和空气阻力的制约。为了提供更高精度的数据和信息,我们采用火箭的齐奥尔科夫斯理想速度方程代替轨迹模拟方法,确定目标任务候选空间发射器的节数,有效的改进了概念设计过程中对绩效空间范围的确定。此外,我们还引入了技术功效参数,和项目相关的可操作性,柔性,可制造型以及成本参数,作为评价准则服务于备选设计概念。
     为了进行空间运载火箭成本估计,本研究系统的分析了三种不同成本估算方法的优劣,通过研究发现:类比估计法实施相对简单,但过度依赖于参照系统和专家经验,对项目系统和参考系统的差异分析要求高,在进行空间运载火箭成本估计时的精度难以保证。“自下而上”分析法具有较高的精度,但是要求下层结构分解的详细信息和精确数据,而这在概念设计阶段往往是难以实现的。参数估计法可以根据空间运载火箭各组成部分的历史数据较为精确的估计项目成本,同时避免了对下层组成详细分解的要求。通过比较,本文认为参数估计法有利于进行概念结构设计阶段的成本估计。
     由于相关的属性值由技术性能参数、程序以及空间运载火箭的成本数据构成,显然,特定的概念设计方案在特定的属性上非常适用,但在另一些特定的属性上则不适用。基于这些属性,本文将对空间概念设计方案进行多属性决策分析,为候选方案的排序,进而得到最优方案。同时,通过敏感性分析来论证多属性决策分析的鲁棒性(稳健性)。
     多属性决策分析包含多种赋权的准则。以往的文献中提出了很多测度准则权重的技术,比如熵权法、成分排名法、成对比较法等。本文对其进行对比分析,并分别利用这些方法进行方案选择。研究发现,成分排名法和成对比较权重分配法比熵权法更加适用。这是因为,熵权法仅通过决策矩阵计算出权重,而权重分配仅仅在输入数据时用作参考,而这些输入数据并不一定是现实和决策者意愿的真实反映。而另外两种决策方法以决策者的打分作为输入,能够通过决策问题的本质和股粉持有者的意愿来更好的反映准则的重要性。
     多属性决策分析的另一个重要方面就是MCDA技术本身。本文讨论了不同的技术对概念设计方案最终排序的影响。通过三种不同的方法,即熵权法、成分排名法、成对比较法所得到的准则权重分别用于TOPSIS, AHP和lexicographic三种MCDA决策技术。得到如下结论:假设使用TOPSIS技术,不同的权重分配方法并不改变最顶层的概念设计方案排序;AHP技术的结果与TOPSIS相同。容易得到,应用AHP技术时,成分排名法和成对比较法得出的概念设计方案前8名的排序相同。而熵权法所得到的前6名排序是相同的,接下来则出现了一些改变。应用lexicographic MCDA技术时,成分排名法和成对比较法所得到的结果相同,这是因为在这两种方法中,准则重要性的排列顺序是一致的。
     本文的目的在于提出一种可能的分析框架用于空间运载火箭装置的概念设计的多属性评价。我们回答了一个具有挑战性的课题,即如何有效地、系统地构建空间运载火箭的结构,以及如何在同时考虑到所有属性的情况下,评价候选的概念设计方案。本文的研究工作力求改进航空宇航概念设计和评价程序。主要贡献有以下几点:
     (1)本文的第一个创新点是设计了一个正规的概念设计和多属性评价框架。它的用途是对空间运载火箭的概念设计方案进行评价论证。这一框架结合了多准评价方法的优点,使得运载火箭概念设计方案的决策可以遵循一个简单化、系统化的程序,同时最大限度的保证了评价结果的准确性。
     (2)第二个创新点是基于分析矩阵的定义,提出了一种可自动实现的兼容性分析方法,并为分析大量可行概念设计方案提供了一种简单,高效,可计算的方法。
     (3)第三个创新点在于定义了理想速度齐奥尔科夫斯基火箭方程,并应用所提出的质量和推动力建模方法对其进行了补充,用来快速比较空间运载火箭的概念设计方案。经验证明这些方法在缺乏相关数据和信息的设计初期具有良好的效果。
     (4)第四个创新点为利用成本估算关系(CERs)建立了成本估计模型,用以更精确的测算空间运载火箭概念设计方案的成本。该方法避免了对专家意见以及系统底层信息的过度依赖,同时还保证了一定的精度。
Modern aerospace system conceptual design aims at choosing the most promising designconcept at first time and avoiding the costly design changes at a later stage. This requires system'stechnical performance parameters as well the overall program related issues such as cost, schedule,reliability and manufacturability etc. to be taken into account as early as at the conceptual designphase. In view of the numerous design and evaluation criteria which are often conflicting in nature,the final design concept is the result of a compromise solution. This is in contrast to the traditionalapproach of single objective of maximizing the performance or minimizing the cost. The designersdealing with conceptual design and evaluation studies are thus involved in balancing the multipleand potentially conflicting criteria involving diverse disciplines. Thus, one could state withconfidence that modern aerospace conceptual design is a multi-criteria decision making activity.
     The objective of the present thesis is to improve the process of aerospace vehicle conceptualdesign and decision making. To achieve this objective, this thesis presents a framework forconceptual design and multi-criteria evaluation of space launch vehicle. The proposed framework iscomprised of morphological matrix method to expedite the brain storming process by decomposingthe overall system function into sub-functions at lower levels of abstraction. Solutions to these sub-functions are then sought and synthesized together thus resulting in numerous candidate designconcepts. These concepts are then screened for compatibility in an automated way. The Tsiolkovskyideal velocity rocket equation is adopted to size the candidate space launch vehicle design conceptsfor required mission objectives. This has avoided the use of trajectory simulations based sizingapproaches which require precise information and data usually not available at the conceptual designphase. The use of Tsiolkovsky ideal velocity rocket equation supported by the proposed mass andpropulsion modeling approaches has improved the capability of the conceptual design process toestablish the performance trade space for a number of design concepts in an efficient manner.Reasonable estimates for the associated losses in velocity are introduced to result in more realisticcalculations. In addition to the technical performance parameters, certain program related issues suchas operability, flexibility, manufacturability and the cost related parameters are also calculated toserve as evaluation criteria. The qualitative judgment of program related issues is converted intonumerical values using fuzzy set theory. This is to address the prevailing subjectiveness inqualitative criteria rating and allowing natural language rules to be included in mathematicalcomputations.
     The cost modeling approach is based on the parametric cost estimating relationships which aredeveloped from the statistical data of similar systems completed in the past by correlating it with thebest fit curves. The cost items of space launch vehicle are categorized in design, development,testing and engineering cost and the theoretical first unit cost. This offers the flexibility ofcalculating the relevant cost items depending upon the scope of the study.
     From the relevant criteria values, it is observed that certain candidate design concepts performwell on certain criteria but performs bad on certain other criteria and there is no single designconcept which can be selected as best while simultaneously considering all criteria. This exhibits thetypical nature of multi-criteria decision analysis problem. An exhaustive review of the relevantliterature illustrated that multi-criteria decision analysis methods are pertinent to analyze thetradeoffs between various evaluation criteria and thus is a useful tool to support the space launchvehicle concept selection decisions. Hence, based on the performance parameters, program relatedissues and cost data, the candidate design concepts are subjected to multi-criteria decision analysis.This has ranked the design concepts and identified the most promising ones for furtherconsiderations. The robustness of the multi-criteria decision analysis is demonstrated with thesensitivity analysis. A comparative study is also conducted to observe the effect on the final rankingdue to the changing weight allocation and multi-criteria decision analysis technique. It is concludedthat for the space launch vehicle concept selection problem of present thesis, the subjective-objectiveweight allocation methods are more suitable than the purely objective weight method. This isbecause the objective weight method only solicits criteria weight from the decision matrix where theweight is assigned as a reference to the scatter in input data which may not be a true representationof the actual problem and the preferences of the decision maker. While the subjective-objectiveweight methods offer better chances of reflecting the criteria importance according to the nature ofthe decision problem and preferences of the stake holders by taking input from the decision maker.
     The innovation of the present thesis is the proposed framework which can be used for candidatedown-selection with an automated compatibility check when the morphological analysis results inhundreds of system concepts. Its successful application in conceptual design and evaluation of spacelaunch vehicle has demonstrated its utility in the early phase of the aerospace system design anddecision making.
引文
[1] Price M, Raghunathan S, Curran R. An integrated systems engineering approach to aircraftdesign. Progress in Aerospace Sciences,2006,42:331-376.
    [2] Saravi M, Newnes L, Mileham A R, Goh Y M. Estimating cost at the conceptual designstage to optimize design in terms of performance and cost. Advanced ConcurrentEngineering,2008,3:123-130.
    [3] Seo K K, Park J H, Jang D S, Wallace D. Approximate estimation of the product life cyclecost using artificial neural networks in conceptual design. International Journal of AdvancedManufacturing Technology,2002,19:461-471.
    [4] Qazi M u D, He L. Nearly-orthogonal sampling and neural network metamodel drivenconceptual design of multistage space launch vehicle. Computer Aided Design,2006,38:595-601.
    [5] Koelle D E. Cost efficiency as design and selection criterion for future launch vehicles. ActaAstronautics,2005,57:623-629.
    [6] Ryan R S and Townsend J S. Fundamentals and issues in launch vehicle design. Journal ofSpacecraft and Rockets,1997,34:192–198.
    [7] Pugh S. Creating Innovative Products Using Total Design: The Living Legacy of StuartPugh, Addison-Wesley,1st ed.,1996:167-176.
    [8] Mullur A, Mattson C A, Messac A. New decision matrix based approach for conceptselection using linear physical programming. AIAA,2003, AIAA2003-1446.
    [9] Zwicky F, Wilson A G. New Methods of Thought and Procedure; Contributions onSymposium on Methodologies. Springer-Verlag,1967.
    [10] Mattson C A, Messac A. Pareto Frontier Based Concept Selection Under Uncertainty withVisualization. Optimization and Engineering,2005,6:85-115.
    [11] Crossley W A, Martin E T, Fanjoy D W. A Multiobjective Investigation of50-SeatCommuter Aircraft Using a Genetic Algorithm. AIAA,1st AIAA Aircraft, Technology,Integration, and Operations Forum,2001, AIAA2001-5247.
    [12] Perez R E, Chung J, Behdinan K. Aircraft Conceptual Design Using Genetic Algorithms.8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis.
    [13] Yang R J, Chuang C H, Che X. Recent Applications of Topology Optimization.7thAIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization,1998, AIAA98-4849.
    [14] Villeneuve F. A method for concept and technology exploration of aerospace architectures,PhD Thesis, School of Aerospace Engineering, Georgia Institute of Technology,2007.
    [15] Jamilnia R, Naghash A. Simultaneous optimization of staging and trajectory of launchvehicles using two different approaches. Aerospace Science and Technology,2011,doi:10.1016/j.ast.2011.06.013.
    [16] Trulove A M, Whitaker K W. Rocket stage optimization using a simple genetic algorithm.AIAA,1993, AIAA1993-1778.
    [17] Xin L, Qian G T, Xiang A. A new efficient method of multistage solid rocket optimization.In33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Seattle, WA,July1997.
    [18] Li Y C. An intelligent, knowledge-based multiple criteria decision making advisor forsystems design. PhD Thesis, School of Aerospace Engineering, Georgia Institute ofTechnology,2007.
    [19] Biltgen and Mavris. Technique for Concept Selection Using Interactive ProbabilisticMultiple Attribute Decision Making. Journal of aerospace computing, information, andcommunication,2009,6.
    [20] Yoon K P, Hwang C L. Multiple attribute decision making: An introduction (SageUniversity Paper series on Quantitative Applications in the Social Sciences,07-104),1995,Thousand Oaks, CA: Sage.
    [21] Roy B. Multiple criteria decision analysis: State of the art surveys,2005, Chapter1:Paradigms and challenges. Springer. ISBN:0-387-23067-X
    [22] Hung K C. A decision support system for engineering design based on an enhanced fuzzyMCDM approach. Expert Systems with Applications,2010,37:202-213.
    [23] Chen S J, Hwang C L. Fuzzy multiple attribute decision making: Methods and applications.Lecture notes in economics and mathematical systems.1992, New York: Springer.
    [24] Fodor J, Roubens M. Fuzzy preference modeling and multicriteria decision support.1994,Dordrecht: Kluwer Academic Publishers.
    [25] Mattson C A, Mullur A A, Messac A. Case studies in concept exploration and selection withs-Pareto frontiers. International Journal of Product Development,2009,9(1/2/3):32-59.
    [26] Deb K. Multi-Objective Optimization Using Evolutionary Algorithms.2001, New York,Wiley&Sons.
    [27] Bore N K, Mavris D N. Formulation of a Multi-Mission Sizing Methodology for CompetingConfigurations.42nd Aerospace Sciences Meeting and Exhibit, AIAA-2004-0535.
    [28] Sen P, Yang J B. Multiple Criteria Decision Support in Engineering Design.1999, Springer-Verlag, London.
    [29] Saaty T L. The analytic hierarchy process.1980,1st ed. New York: McGraw-Hill.
    [30] Kaya T, Kahraman C. Fuzzy multiple criteria forestry decision making based on anintegrated VIKOR and AHP approach. Expert Systems with Applications,2011,38:7326-7333.
    [31] Hwang C L, Yoon K. Multiple attribute decision making-methods and applications.1981,Heidelberg: Springer-Verlag.
    [32] Lootsma F A. The French and the American school in multi-criteria decision analysis.Recherche Operationnele/Operations Research,1980,24(3):263-285.
    [33] Brans J P, L’ingénièrie de la decision, Elaboration d’instruments d’aide à la décision. Laméthode PROMETHEE. In R. Nadeau and M. Landry, editors, L’aide à la décision: Nature,Instruments et Perspectives d’Avenir, pages183–213, Québec, Canada,1982. Presses del’Université Laval.
    [34] Brans J P, Mareschal B, Vincke P. How to select and how to rank projects: ThePROMETHEE method. European Journal of Operational Research,1986,24(2):228-238.
    [35] Ozcan T, Celebi N, Esnaf S. Comparative analysis of multi-criteria decision makingmethodologies and implementation of a warehouse location selection problem. ExpertSystems with Applications,2011,38:9773-9779.
    [36] Shih H, Shyur H, Lee E S. An extension of TOPSIS for group decision making.Mathematical and Computer Modelling,2007,45:801-813.
    [37] Zanakis S H, Solomon A, Wishart N, Dublish S. Multi-attribute decision making: asimulation comparison of select methods. European Journal of Operations Research,1998,107:507-529.
    [38] Salminen P, Hokkanen J, Lahdelma R. Comparing multi-criteria methods in the context ofenvironmental problems. European Journal of Operations Research,1998,104:485-496.
    [39] Opricovic S, Tzeng G H. Compromise solution by MCDM methods: a comparative analysisof VIKOR and TOPSIS. European Journal of Operational Research,2004,156:445-455.
    [40] Parkan C, Wu M L. Comparison of three modern multi-criteria decision making tools.International Journal of Systems Science,2000,31:497-517.
    [41] Roman F, Rolander N, Fernandez G M, Bras B, Allen J, Mistree F, Chastang P, Depince P,Bennis F. Selection without Reflection Is a Risky Business. In10th AIAA/ISSMOMultidisciplinary Analysis and Optimization Conference,2004, AIAA-2004-4429.
    [42] Guitouni A, Martel J M. Tentative guidelines to help choosing an appropriate MCDAmethod. European Journal of Operational Research,1998,109:501-521.
    [43] Yeh C H. A problem-based selection of multi-attribute decision making methods.International. Transactions in Operation Research,2002,9:169-181.
    [44] Margaret M W. Multiple criteria decision making for engineering. Editorial Omega,2008,36:337-339.
    [45] Hambali A, Sapuan S M, Ismail N, Nukman Y. Application of analytical hierarchy processin the design concept selection of automotive composite bumper beam during theconceptual design stage. Scientific Research and Essay,2009,4(4):198-211.
    [46] Sabharwall P. Evaluation methodology for advance heat exchanger concepts usinganalytical hierarch process. Nuclear Engineering Design,2012,http://dx.doi.org/10.1016/j.nucenfdes.20120.03.030.03.030
    [47] Kuo T C, Chang S H, Huang S H. Environmentally conscious design by using fuzzy multi-attribute decision making. The International Journal of Advanced ManufacturingTechnology,2006,29(5):419-425.
    [48] Gurumurthy A, Kodali R. An application of analytic hierarchy process for the selection of amethodology to improve the product development process Journal of Modelling inManagement,2012,7(1).
    [49] Woldemichael D E, Hashim FM, A framework for function-based conceptual designsupport system, Journal of Engineering, Design and Technology,2011,9(3):250-272.
    [50] Antonsson E K, Otto K N. Imprecision in engineering design. ASME Journal of MechanicalDesign,1995,117(B):25-32.
    [51] Huang H, Zhang, Lei, Liu Z F, Sutherland J. Multi-criteria decision making and uncertaintyanalysis for materials selection in environmentally conscious design. The InternationalJournal of Advanced Manufacturing Technology,2011,52(5-8):421-432.
    [52] Chen C T. Extensions of the TOPSIS for group decision making under fuzzy environment.Fuzzy Sets and Systems,2000,114:1-9.
    [53] Mavris D N, Kirby M R. Technology Identification, Evaluation, and Selection (TIES) forcommercial transport aircraft, SAWE, Annual Conference,58th, San Jose, CA; UNITEDSTATES;24-26May1999.
    [54] Yeo S H, Mak M W, Balon S A P. Analysis of decision-making methodologies fordesirability score of conceptual design. Journal of Engineering Design,2004,15(2):195-208.
    [55] Muller K, Sebastian H J. Intelligent systems for engineering design and configurationproblems. European Journal of Operational Research,1997,100:315-326.
    [56] Greco S, Matarazzo B, S owin S R. Rough sets theory for multi criteria decision analysis.European Journal of Operational Research,2001,129:1-47.
    [57] Perny P. Multi-criteria filtering methods based on concordance and non-discordanceprinciples. Annals of Operations Research,1998,80:137-165.
    [58] Thurston D L, Carnahan J V. Fuzzy ratings and utility analysis in preliminary designevaluation of multiple attributes. ASME Transactions on Mechanical Design1992,114(4):648-658.
    [59] Kuo-Chen H, Peter J, Terence C, Warren T J. A decision support system for engineeringdesign based on an enhanced fuzzy MCDM approach. Expert Systems with Applications,2010,37:202-213.
    [60] Ayag A, Ozdemir R G. A hybrid approach to concept selection through fuzzy analyticnetwork process. Computers&Industrial Engineering,2009,56:368-379.
    [61] Akay D, Osman K, Brian H. Conceptual design valuation using interval type-2fuzzyinformation axiom. Computer Industry,2010, doi:10.1016/j.compind.2010.10.007.
    [62] Jiao J, Tseng M M. Fuzzy ranking for concept evaluation in configuration design for masscustomization. Concurrent Engineering: Research and Application,1998,6(3):189-206.
    [63] Vanegas L V, Labib A W. Application of new fuzzy weighted average (NFWA) method toengineering design evaluation. International Journal of Production Research,2001,39(6):1147-1162.
    [64] Vanegas L V, Labib L W. Fuzzy approaches to evaluation in engineering design. Journal ofMechanical Design,2005,127(1):24-33.
    [65] Sharif Ullah A M M. A fuzzy decision model for conceptual design. Systems Engineering,2005,8(4):296-308.
    [66] Sharif Ullah A M M, Fisher A, Alawar A. Intelligent Computation of Imprecise Informationfor Engineering Design. SAE Technical Paper2008-01-0706.
    [67] Manu A, Om P Y, Rakesh J, Ajay P S R. Concept convergence process: A framework forimproving product concepts. Computers&Industrial Engineering,2010,59:367–377.
    [68] Geng X, Chu X, Zhang Z. A new integrated design concept evaluation approach based onvague sets. Expert Systems with Applications,2010,37:6629–6638.
    [69] Lian Y Z, Li Pheng K, Zhao-Wei Z. Design concept evaluation in product developmentusing rough sets and grey relation analysis. Expert Systems with Applications,2009,36:7072–7079.
    [70] Thurston D L. Formal Method for Subjective Design Evaluation with Multiple Attributes.Research in Engineering Design,1991,3:105-122.
    [71] Zha X F, Sriram R D, Fernandez M G, Mistree F. Knowledge-intensive collaborativedecision support for design processes: a hybrid decision support model and agent.Computers in Industry,2008,59:905-922.
    [72] Wang J. A fuzzy outranking method for conceptual design evaluation. International Journalof Production Research,1997,35(4):995–1010.
    [73] Wang J. Ranking engineering design concepts using a fuzzy outranking preference model.Fuzzy Sets and Systems,2001,119:161-170.
    [74] Wang J. Improved engineering design concept selection using fuzzy sets. InternationalJournal of Computer Integrated Manufacturing,2002,15(1):18-27.
    [75] Vesna C, Matja M. Systemic decision analysis approaches: Requisite tools for developingcreative ideas into innovations. Kybernetes,2006,35(7/8).
    [76] Kharrat A, Dhouib S, Chabchoub H, and Aouni B. Decision-maker’s preferences modellingin the engineering design through the interactive goal-programming. International Journal ofData Analysis Techniques and Strategies,2011,3(1):85–104.
    [77] Richard J M Jr., Jason M A, Christiaan J J P. Multi-attribute utility analysis in set-basedconceptual design. Computer-Aided Design,2009,41:214-227.
    [78] Hao-Tien L. Product design and selection using fuzzy QFD and fuzzy MCDM approaches.Applied Mathematical Modelling,2011,35:482-496.
    [79] Majid B, Kazemzadeh R B, Albadvi A, Aghdasi M. PROMETHEE: A comprehensiveliterature review on methodologies and applications. European Journal of OperationalResearch,2010,200:198-215.
    [80] Coelho R.F, Bouillard P A. Multi-criteria evolutionary algorithm for mechanical designoptimization with expert rules. International Journal for Numerical Methods in Engineering,2005,62:516–536.
    [81] Coelho R F, Bersini H, Bouillard Ph. Parametrical mechanical design with constraints andpreferences: Application to a purge valve. Computer Methods in Applied Mechanics andEngineering,2003,192:4355-4378.
    [82] Vinodh S, Girubha R J. PROMETHEE based sustainable concept selection. AppliedMathematical. Modelling,2012: doi:10.1016/j.apm.2011.12.030.
    [83] Grierson D E. Pareto multi-criteria decision making. Advanced Engineering Informatics,2008,22:371-384.
    [84] Pahl G, Beitz W. Engineering Design: A Systematic Approach,1996,2nd ed., Springer-Verlag, London.
    [85] Dym C L. Engineering Design: A Synthesis of Views,1994, Cambridge University Press.
    [86] Dragan C. Evolutionary Multi–Objective Decision Support Systems for ConceptualDesign.PhD thesis,2000, School of Computing, Faculty of Technology, University ofPlymouth, UK.
    [87] Dieter G E. Engineering Design.2000, Boston, McGraw-Hill.
    [88] Hatamura Y. Decision-Making in Engineering Design, Theory and Practice.2006, Springer.
    [89] Jelassi M, Foroughi A. Negotiation support systems: An overview of design issues andexisting software. Decision Support Systems,1989,5:167-181.
    [90] Buede D M. The Engineering Design of Systems: Models and Methods,2009,2nd ed., JohnWiley&Sons, Inc.
    [91] Howard R A.(1992). In praise of the old time religion. In Utility Theories: Measurementsand Applications,1992, W. Edwards (ed.):27-55. Kluwer Academic Publishers, Boston.
    [92] Andersen M, Khler S, Lund T. Design for Assembly,1986(IFS Publications, London).
    [93] Van D R. The manufacturing/design interface. R&D Management,1990,20:203-209.
    [94] Hazelrigg G A. System Engineering: An Approach to Information-Based Design.1996,New Jersey, Prentice Hall, Inc.Upper Saddle Rive.
    [95] Tate D. A Roadmap for Decomposition: Activities, Theories, and Tools for System Design.Ph.D Thesis,1999, Department of Mechanical Engineering, MIT.
    [96] Howe D. Aircraft Conceptual Design Synthesis.2000, Professional Engineering PublishingLimited, London.
    [97] Jeffrey W H, Linda C S. Viewing product development as a decision production system.Proceedings of DETC2002, ASME2002Design Engineering Technical Conferences andComputers and Information in Engineering Conference Montreal, Canada,2002.
    [98] Herrmann J W, Schmidt L C. Viewing product development as a decision productionsystem. In ASME2002Design Engineering Technical Conferences and Computers andInformation in Engineering Conference, DETC2002, Montreal.
    [99] Krishnan V, Ulrich K T. Product development decisions: a review of the literature.Management Science,2001,47(1):1-21.
    [100] Wang K. Knowledge discovery in manufacturing quality data to support design decisions.International conference on engineering design, iced’07,28-31August2007, cite dessciences et de l'industrie, paris, France.
    [101] Li H, Shapour A. Product line design selection under uncertainty and with competitiveadvantage. paper DETC2001/DAC-21022, In Proceedings of DETC’01, ASME2001Design Engineering Technical Conferences and Computers and Information in EngineeringConference, Pittsburgh, Pennsylvania, September9-12,2001.
    [102] Ayag Z. A fuzzy AHP-based simulation approach to concept evaluation in a NPDenvironment. IIE Transactions,2005,37:827–842.
    [103] Kurtoglu T, Campbell M. Automated Synthesis of Electromechanical DesignConfigurations from Empirical Analysis of Function to Form Mapping, Journal ofEngineering Design,2008,20:83-104.
    [104] Zwicky F. The Morphological Method of Analysis and Construction.1948, CourantAnniversary Volume, New York Wiley-Interscience.
    [105] Chang Y K, Hwang K L, Kang S K. SEDT (System Engineering Design Tool) developmentand its application to small satellite conceptual design. Acta Astronautica,2007,61(7/8):676-690.
    [106] Ullah R, Zhou D Q, Zhou P.一种商业软件决策属性的识别与排序方法,技术经济与管理研究(A new approach for identifying and prioritizing commercial software decisionattributes, Journal of Technical, Economic and Management research).
    [107] Zimmermann H J. Fuzzy Set Theory and Its Applications,1996,3rd ed., Kluwer AcademicPublishers, Boston.
    [108] Zadeh L A. Fuzzy sets, Information and Control,1965,8:338-353.
    [109] Beskese A, Kahraman C, Irani Z. Quantification of flexibility in advanced manufacturingsystems using fuzzy concept. International Journal of Production Economics,2004,89:45-56.
    [110] Li T S, Huang H H. Applying TRIZ and Fuzzy AHP to develop innovative design forautomated manufacturing systems. Expert Systems with Applications,2009,36:8302–8312.
    [111] Chang D Y. Applications of the extent analysis method on fuzzy AHP. European Journal ofOperational Research,1996,95:649–655.
    [112] Yong D. Plant location selection based on fuzzy TOPSIS. International Journal of AdvancedManufacturing Technologies,2006,28:839-844.
    [113] Seong K L, Gento M, Sang K L, Jong W K. Prioritizing the weights of hydrogen energytechnologies in the sector of the hydrogen economy by using a fuzzy AHP approach.International journal of hydrogen energy,2011,36:1897-1902.
    [114] Ley W, Wittmann K, Hallmann W. Handbook of Space Technology,2009, John Wiley&Sons Sussex.
    [115] Bayer M J. Analytic performance considerations for lifting ascent trajectories of wingedlaunch vehicles. Acta Astronautica,2004,54:713–721.
    [116] Meyer R X. Elements of Space Technology for Aerospace Engineers,1999, Academic Press.
    [117] Curtis H D. Orbital Mechanics for Engineering Students,2005, Butterworth–Heinemann.
    [118] Cornelisse J W, Sch yer H F R, Wakker K F. Rocket Propulsion and Spaceflight Dynamics,1979, Pitman Publishing.
    [119] Rohrschneider R R, Olds J R. A comparison of modern and historic mass estimatingrelationships on a two-stage to orbit launch vehicle. AIAA space conference and exposition,2001. AIAA2001-4542.
    [120] Rohrschneider R R. Development of a Mass Estimating Relationship Database for LaunchVehicle Conceptual Design, Georgia Institute of Technology, Technical report TRF-3.
    [121] Sutton P, Oscar B. Rocket Propulsion Elements,2001,7th ed., Wiley–Inter science.
    [122] Humble R W, Henry G N, Larson W J. Space Propulsion Analysis and Design.1995,McGraw-Hill.
    [123] Dieter K H, David H. H. Modern engineering for design of liquid-propellant rocket engines.AIAA Progress in Astronautics and Aeronautics,1992.
    [124] Bradford J E, Charania A., Germain B St. REDTOP-2: Rocket engine design tool featurngengine performance, weight, cost and reliability,40th AIAA/ASME/SAE/ASEE jointpropulsion conference and exhibit, AIAA2004-3514.
    [125] Rafique A F, He L, Kamran A, Zeeshan Q, Multidisciplinary design of air launched satellitelaunch vehicle: Performance comparison of heuristic optimization methods. ActaAstronautica,2010,67:826-844.
    [126] Yeh C H, Chang Y H. Modeling subjective evaluation for fuzzy group multi-criteriadecision making. European Journal of Operational Research,2009,194:464-473.
    [127] Wiley J L, James R W. Space mission analysis and design.1999,3rd ed. Kluwer academicpublishers, Dordrecht, The Netherlands.
    [128] Koelle D E. Cost efficiency as design and selection criterion for future launch vehicles. ActaAstronautica,2005,57:623-629.
    [129] Robert A G, Udo R. Low-cost management aspects for developing, producing and operatingfuture space transportation systems. Acta Astronautica,2005,56:337-346.
    [130] Jerome P, Wally Z, Thomas W, Stein C. Low-cost launch systems for the dual-launchconcept.51st International Astronautical Congress, IAA-00-IAA.1.1.06.
    [131] Curran R, Raghunathan S, Price M. Review of aerospace engineering cost modelling: Thegenetic causal approach. Progress in Aerospace Sciences,2004,40:487-534.
    [132] Asiedu Y, Gu P. Product life cycle cost analysis: state of the art review. InternationalJournal of Production Research,1998,36(4):883–908.
    [133] Schiller B. Essentials of economics.2001,4th ed. New York: McGraw-Hill/lrwin; ISBN0072374071.
    [134] Liebers A. An architecture for cost control, the use of cost information in order-relateddecisions. Ph.D. thesis,1998, University of Twente, Enschede, The Netherlands.
    [135] Roy R, Palacio A. Cost estimating and risk analysis in manufacturing processes.Proceedings of MATADOR2000conference,13–14July. Manchester:UMIST;2000:177–82, ISBN1-85233-323-5.
    [136] Department of Defence (DoD). Parametric estimating handbook,2nd ed. DoD,1999.
    [137] Koelle D E. Handbook of Cost Engineering for Space Transportation Systems, TCS–TransCost Systems, Germany,2003.
    [138] Koelle D E. The transcost-model for launch estimation and its application to future systemsanalysis. Acta Astronautica,1984,11(12):803-817.
    [139] Koelle H H, Johenning B. Space transportation simulation model (trasim2.0), ILR Mitt.319,Technische Universit t Berlin,1997.
    [140] Goehlich R A. A Representative Program Model for Developing Space Tourism, ISBN3-936846-29-4, Wissenschuftlicher Verlag, Berlin,2003.
    [141] Robert A. Goehlicha, Udo Rückera, Low-cost management aspects for developing,producing and operating future space transportation systems, Acta Astronautica56(2005)337–3464.
    [142] Snead J M. Cost estimates of near-term, fully-reusable space access systems, In: AIAASpace Conference (Space2006), San Jose, California,19–21September2006, AIAA2006-7209.
    [143] Isakowitz S J, Hopkins J B, Hopkins J B Jr. International reference guide to space launchsystems.2004,4th ed. AIAA Inc.
    [144] Rafique A F, He L, Kamran A, Zeeshan Q. Hyper Heuristic Approach for Design andOptimization of Satellite Launch Vehicle. Chinese Journal of Aeronautics,2011,24:150-163.
    [145] Jahangir J,Masoud E, Jafar R. Multidisciplinary design optimization of a small solidpropellant launch vehicle using system sensitivity analysis. Structural and MultidisciplinaryOptimization.2009,38:93-100, DOI10.1007/s00158-008-0260-5.
    [146] Robert L M. Multidisciplinary Cost and Performance optimization of a Two Stage LiquidPropulsion Based Launch Vehicle, American institute of aeronautics and astronautics,AIAA-2008-2642.
    [147] Zachary C K, Alan W. An Approach for Calculating the Cost of Launch Vehicle Reliability,AIAA SPACE2007Conference&Exposition, American institute of aeronautics andastronautics, AIAA2007-9920.
    [148] Robert F S. Propulsion and staging considerations for an orbital sortie vehicle. ActaAstronautica,1987,15(1):29-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700