有限元法建立寰椎后弓骨折模型及内固定手术的有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本文通过有限元法建立寰椎后弓骨折的三维有限元模型并模拟内固定术后模型的生物力学进行分析和验证,以便对临床进一步诊治寰椎后弓骨折提供一定的理论依据。
     方法:(1)获取健康成年男性的寰枢椎复合体CT扫描的计算机数字图像数据,利用Mimics软件将图像坐标数据转换成ASCII格式的点云数据,并利用CATIA软件对点云进行处理,随后通过Geomagic studio、Catia建立寰枢椎几何模型,然后导入有限元处理软件Hypermesh、Ls-dyna建立枕颈区有限元模型,并确定模型加载的边界条件和加载方式。(2)将健康寰枢椎模型中的C2椎体下表面定位,模拟颈椎大幅度的俯仰运动、轴向大载荷加载,了解寰椎正常模型和骨折模型在各种工况下的受力情况。(3)对于骨折模型,按照后路钛板、螺钉内固定手术进行处理,模拟颈椎的正常动作检验手术的有效性。
     结果:(1)所建上颈椎的有限元模型外形逼真,几何相似性好,正常模型共包含35719个节点,8797个单元,骨折模型共包含38451个节点,9782个单元;(2)应用上颈椎模型在枕骨加载面压力,模拟头颅位于中立、前屈、后伸位时,寰椎前弓受力最大,其次是后弓及侧块;(3)单独应用寰椎模型,直接在寰椎上关节面加载力,模拟头颅在中立、前屈、后伸位时寰椎最大应力集中于前弓,次级应力集中区域为侧块及后弓与侧块的交界处;直接在后弓加载力模拟头部过度后伸时,最大应力集中于后弓与侧块交界处。(4)对于寰椎后弓骨折模型,在模拟头颅中立、前屈、后伸位时在钛板、螺钉处存在应力集中,但仍在理想范围之内。
     结论:1、所建模型外观逼真符合实验要求,所得数据和图像可以重复使用。2、在模型上可以施加确切模拟和理想化的边界载荷条件,从而验证骨折的受伤机理。3、内固定术后模型验证寰椎后弓骨折内固定术后钛板和螺钉处存在应力集中,但是仍在理想范围之内,证明该手术方法是可靠的。
Objective:In this paper, finite element method fracture of the posterior arch of atlas three-dimensional finite element model and simulate the internal fixation biomechanical model analysis and verification, in order to further diagnosis and treatment of clinical fractures of the posterior arch of atlas provide a theoretical basis.
     Methods:(1) The coordinate data of healthy men's atlas was got by SCT. Then the picture data was converted to ASCII cloudy point by MIMICS. The point data was deal with CATIA software. GEOMAGIC STUDIO and CATIA were used to establish geometry model. The pre-post was carried out by HYPERMESH and LS-DYNA. The finite model was loaded and validated by some test data. (2) The underside of C2 in the healthy atlantoaxial model was fixed, and the significant movement of neck was simulated such as pitching, axial large load, to understand atlantoaxial model under the condition of various movements and forces. (3) Fracture model is treated with internal fixation operation to simulate the normal cervical spine motion, and thus test the feasibility of surgery.
     Results:1) The established finite element model of upper cervical spine, which contains a total of 35719 nodes,8797 elements, has accurate appearance and good geometric similarity; 2) Using upper cervical spine model (C0-C2) and exerting surface pressure on occipital simulates the situation that when head is in neutral, anteflexion, extension positions, atlas anterior arch is acted by the largest force, followed by the posterior arch and lateral mass; 3) Using atlas model alone and exerting force to upper joint surface of atlas simulates the situation that when head is in neutral, anteflexion, extension positions, atlas maximum stress concentrates on anterior arch and secondary stress concertrates on lateral mass and the junction between posterior arch and lateral mass; directly exerting force to posterior arch simulates the situation that when head is in the position of over-extension, the maximum stress concentrates on the junction between posterior arch and interal mass.4) Finite element analysis of internal fixation model after simulated surgery to the model of atlas posterior arch fracture concludes that when simulating the situation that head is in neutral, anteflexion, extension positions, there is stress concentration in position of screw, but in the ideal range.
     Conclusion:1, the model looks realistic with the experimental requirements, the data and images can be reused.2, the model can be applied accurately simulated and idealized boundary load conditions, which verifies the fracture mechanism of injury.3, model validation after internal fixation of posterior arch of atlas fracture fixation plate and screws there is stress concentration, but still within the ideal range, show that the surgical method is reliable.
引文
[1]汪金平,杨天府.有限元分析在骨折生物力学研究中的应用[J].临床骨科杂志,2005,8:283-285.
    [2]王迎松,刘路平,张颖,鲁宁,陈鸿,解京明.C12椎弓根钉棒固定治疗寰椎骨折(Jefferson骨折)疗效分析[J].脊柱外科杂志,2010.2.1-3.
    [3]宋哲明,倪斌.寰椎骨折.The Journal of bone and joint injury,2003,NO.4: Vol.18.
    [4]夏虹,张美超,赵卫东,欧陕兴,尹庆水,昌耘冰,钟世镇,刘景发.寰椎三维有限元模型的建立及其骨折机制.中华创伤杂志.2004.4:209-212.
    [5]Kobayoshi AS.Analysis of the corneowleral shell by the methods of direct stiffness (J). Biomechanics.1971;4:322-330.
    [6]中国解剖学会体质调查委员会编.中国人解剖学数值.北京:人民卫生出版社,2002:27.
    [7]Panjabi, M. M., Crisco, J. J., Vasavada, A., Oda, T., Cholewicki, J., Nibu, K., and Shin, E. (2001) Mechanical properties of the human cervical spine as shown by three -dimensional loaddisplacement curves. Spine 26,2692-2700.
    [8]van der Horst, M. J. (2002) Human head neck response in frontal, lateral and rear end impact loading:modelling and validation. PhD. Thesis, Technical University of Eindhoven.
    [9]Yoganandan, N., Kumaresan, S. C., Voo, L., Pinter, F. A., and Larson, S. J. (1996) Finite element modeling of the C4-C6 cervical spine unit. Medical Engineer-ing and Physics 18,569-574.
    [10]Yoganandan, N., Kumaresan, S., and Pintar, F. A. (2001) Biomechanics of the cervical spine Part 2. Cervical spine soft tissue responses and biomechanical mod-eling. Clinical Biomechanics 16,1-27.
    [11]Halldin P. Prevention, prediction of head, neck injury in traffic accidents: Using experimental, numerical methods. Department of Aeronautics, Royal Institute of Technology, doctoral thesis, Report 2001-1. Stockholm, Sweden,2001.
    [12]Halldin P, Jakobsson L, Brolin K, et al. Investigation of conditions that aff-ect neck compression-flexion injuries using numerical techniques. Borttaget:The 44th STAPP Car Crash J,2000:44.2000-01-SC10.
    [13]Dvorack J, Schneider E, Saldinger P, et al. Biomechanics of the craniocervi-cal region:The alar and transverse ligaments. J Orthop Res 1988;6:452-61.
    [14]Carter DR, Hayes WC. The compressive behavior of bone as a two phase porous structure. J Bone Joint Surg 1977;59A:954-62.
    [15]Dvorack J, Schneider E, Saldinger P, et al. Biomechanics of the craniocer-vical region:The alar and transverse ligaments. J Orthop Res 1988;6:452-61.
    [16]Myklebust JB, Pintar F, Yoganandan N, et al. Tensile strength of spinal ligaments. Spine 1988; 13:526-31.
    [17]Chancey, V. C., Van Ee, C. A. Nightingale, R. W., Camacho,D. L. and Myers, B. S. (2000). Understanding and minimizing error in cervical spine tensile testing. In NHTSA ed. Injury Biomechanics Research:28th International Workshop, San Antonio, U.S.A.
    [18]Myers, B. (2002). Personal Communication. Nov. at Jacksonville. U.S.A.
    [19]Myers, B. (2003). Personal Communication. March at Washinton D.C., U.S.A.
    [20]Nightingale, R., Chancey, V., Luck, J., Tran, L., Ottaviano,D. and B. Myers, (2002). Accounting for Frame and Fixation Compliance in Cervical Spine Tensile Testing, In NHTSA ed. Injury Biomechanics Research:30th International Workshop, Jacksonville, Florida, U.S.A.
    [21]Panjabi MM, Oda T, Crisco JJ 3rd, et al. Experimental study of atlas injuries I:biomechanical analysis of their mechanism and fracture patterns. Spine, 1991,16 (10 Suppl):S460-S465.
    [22]陈新成等.上颈椎解剖学研究、外科治疗和疗效评定[J]中国脊柱脊髓杂志,2002,13(1),38-41.
    [23]张朝跃,苗惊雷,易西南等,内窥镜下经口咽入路寰枢椎手术的可行性研究[J],中华骨科杂志,2004,5(5):299-303.
    [24]Brkelmans WAM, Rybick EF, Burdeaux BD,A new method analysis the Mechanical behavior of skeletal parts (J).Acta Ortho scand,1972,43:301-305.
    [25]Rybicki ER, Yang KH.On the mathematical analysis of stress in the human femur(J).Biomech,1972,5:203-207.
    [26]Bozic KJ, Keyak J H,Skinner HB,et al. Three2dimensional finite element modeling of a cervical vertebra:An inverstigation of burst fracture mechanism[J]. J Spinal Disorders,1994,7:102-110.
    [27]Voo L,Denman J, Kumaresan S,et al. Development of 32D finite element model of cervical spine [J]. Avd Bioeng,1995,31:13-14.
    [28]李玲.上下颌三维重建及有限元建模[D].上海:上海第二医科大 学,2001,5:11-12.
    [29]Nagasao T, Kobayashi M, Tsuchiya Y, et al. Finite element analysis of the stre-sses around endosseous implants in various reconstructed mandibular models [J] J Caniomaxillofac Surg,2002,30 (3):170-177.
    [30]Yoganandan, N., Kumaresan, S., and Pintar, F. A. (2000) Geometric and mech -anical properties of human cervical spine ligaments. Journal of Biomechanical Engineering.122,623-629.
    [31]Yoganandan, N., Kumaresan, S., and Pintar, F. A. (2001) Biomechanics of the cervical spine Part 2. Cervical spine soft tissue responses and biomechanical mod-eling. Clinical Biomecanics 16,1-2
    [1]强化,贾连顺.上颈椎损伤的诊断和治疗进展[J].骨与关节损伤杂志,2000,15(1):73-75.
    [2]Hadley MN,Dickman CA,Browner CM,Sonntag VKH. Acute traumatic atlas fractures:Management and long term outcome[J]. Neurosurgery,2008,23:31-35.
    [3]Levine AM,Edwards CC. Fractures of the atlas[J]. J Bone Joint Surg AM,1991,73A:680-691.
    [4]Sherk HH,Nicholson JT. Fractures of the atlas[J]. J Bone Joint Surg Am,2007,52A:1017-1024.
    [5]Dickman CA,Greene KA,Sonntag VKH. Injuries involving the transverse atlantal ligament:Classification and treatment guidelines based upon experience with 39 injuries[J].Neurosurgery,1996,38:44-50.
    [6]Hadley MN,Dickman CA,Browner CM.Sonntag VKH.Acute traumatic atlas fractures:Management and long termoutcome[J]. Neurosurgery,1998,23:31-35.
    [7]Hinchey JJ. Bickel WH. Fracture of the atlas:Review and presentation of data on eight case[J]. Ann Surg,2005,121:826-830.
    [8]Spence KF Jr, Decker S, Sell KW. Bursting atlantal fracture associated with rupture of the transverse ligament[J]. J Bone Joint Surg Am,2007,52A:543-549.
    [9]Fowler JL, Sandhu A, Fraser RD. A review of fractures of the atlas vertebral[J]. J Spinal Disord,2000,3:19-24.
    [10]Lee TT, Green BA, Petrin DR:Treatment of stable burst fracture of the atlas(Jefferson fracture)with rigid cervical collar[J]. Spine,1998,23.-2003-2007.
    [11]Zimmerman E,Grant J,Vise WM,Yashon D,Hunt WE. Treatment of Jefferson fracture with a halo apparatus:Report of two cases[J]. J Neurosurg,2006。 4:372-375.
    [12]Oda T,Panjabi MM,CriSCO JJ III,Oxland TR. Multidirectional instabil iyies of experimental burst fractures of the atlas[J]. Spine,2002.17:1285-1290.
    [13]Dickman CA,Sonntag VKH. Injuries involving the transverse atlantal ligament:Classification and treatment guidelines based upon experience with 39 injuries[J]. Neurosurgery,1997,40:886-887.
    [14]Lee TT,Green BA,Petrin DR. Treatment of stable burst fracture of the atlas(Jefferson fracture)with rigid cervical collar[J]. Spine,1998,23:1963-1967.
    [15]Lee C. Woodring JH. Unstable Jefferson variant atlas fractures:An unrecognized cervical injury[J]. AJR Am J Neuroradiol,1991,12:1105-1110.
    [16]Ruf, Michael MD,Harms,et al. Transoral Reduction and Osteosynthesis Cl as a Function-Preserving Option in the Treatment of Unstable Jefferson Fractures [J]. Spine,2004,29(7):823-82.
    [17]Turner MS.Clough RW,Martin HC,et al. Stiffness and deflection analysis of complex structure[J]. J Aero Sci,2006,23:805-807.
    [18]Brekelmans WAN,et al. A new method to analysis the mechanical behavior of skeletal parts[J]. Acta Orthop Scand,2002,43(5):301-306.
    [19]YangKH,ZhuF,LuanF,et al. Development of a finite element model of the human neck [R]. Proceeding of the 42 Stapp Car Crash Conference. SAE983157, 2008,1-11.
    [20]Liu YK,Ray QHirsch C. The resistance of the lumber spine to direct shear[J]. Orthop Clin north Am,1975,6(1):33-49.
    [21]Saito T,Yamamuro T,Shikata J,et al. Analysis and prevention of spinal column deformity following cervical laminectomy,pathogenetic analysis of post laminectomy deformities [J]. Spine,1991,16:494-502.
    [22]Kleinberger M. Application of finite element techniques to the study of cervical spine mechanics[A].37 Stapp Car Crash Conf Proc[C]. USA:SAE International,1993,261-272.
    [23]Bozic KJ,Keyak JH,Skinner HB. Three-dimensional finite element modeling of a cervical vertebra[J]. J Spinal Disord,1994,7(2):102-110.
    [24]Teo EC,Paul JP,Evans JH. Finite-element stress-analysis of a cadaver 2 cervical vetebra[J]. Med Biol Eng Comput,1994,32(2):236-238.
    [25]Yoganandan N,Kumaresan S,Voo L,et al. Spine update:finite element applications in human cervical modeling[J]. Spine,1996,21:1824-1834.
    [26]Maurel N,Lavaste F. Skalli W.A three-dimensional parameterized finite element model of the lower cervical spine:Study of the influence of the posterior articular facets [J]. J Biomech,1997,30(9):921-931.
    [27]Geol VK,Clausen JD. Prediction of load sharing among spinal components of a C5-6 motion segment using the finite element approach[J]. Spine,1998.23(6): 684-691.
    [28]Teo EC. Ng HW. First cervical vetebra (atlas) fracture mechanism studies using finite element method[J]. J Biomech,2001,34:13-21.
    [29]Bozkus H,Karakas A,Hanci M,et al. Finite element model of Jefferson fracture:comparison with a cadaver model[J]. Eur Spine,2001,10:257-263.
    [30]Carlos G,Lopez-Espina MS,Farid Amirouche,et al. Multilevel Cervical Fusion and Its Effect on Disc Degeneration and Osteophyte Formation[J]. Spine, 2006,31(9),972-978.
    [31]Brian D,Stemper,Narayan Yoganandan,et al. Anterior longitudinal ligament injuries in whiplash may lead to cervical instability[J]. Medical Engineering&Physics, 2006,28,515-524.
    [32]于力牛,常伟,王成焘,等.基于实体模型的牙颌组织三维有限元建模问题探讨[J].机械设计与研究,2002,18(2):59-61.
    [33]Nagasao T,Kobayashi M,Tsuchiya Y,et al. Finite element analysis of the stresses around endosseous implants in various reconstructed mandibular models[J]. J Caniomaxillofac Surg,2002,30(3):170-177.
    [34]张美超,钟世镇.国内生物力学中有限元的应用研究进展[J].解剖科学进展,2003,9(1),53-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700