广东罗坑鳄蜥性二型性及咬力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动物的形态特征与其环境适应能力的关系是进化生物学研究的主要内容之一,动物咬力大小被证明与竞争(食物资源竞争、配偶竞争、领域竞争)以及反捕食行为紧密相关。国外关于蜥蜴的咬力报道较多,但是国内尚没见报道。鳄蜥(Shinisaurus crocodilurus)属鳄蜥科(Shiniasuridae)鳄蜥属(Shinisaurus),为单型科单型属,是国家一级保护动物,在进化生物学以及系统分类学上具有重要的研究价值。本文通过研究鳄蜥咬力大小与性二型关系及咬力在最大活动范围竞争中的作用,探讨鳄蜥两性异形的形成原因和咬力的作用机理,为进一步研究鳄蜥的繁殖输出、繁殖成效、领域行为与生物力学等方面提供依据。研究结果如下:
     1鳄蜥的两性异形
     通过比较鳄蜥的体型与头部大小等特征的差异,研究了鳄蜥的两性异形情况。结果表明:性成熟鳄蜥个体存在明显的体色差异,成年雄性头胸部腹面呈鲜红色或浅蓝色,而雌性为浅黄色或淡红色;成年雄性头部显著大于成年雌性(头长(HL),P<0.01;头宽(HW),P<0.01),成年雌性腹部长(AL)显著大于成年雄性(P=0.018);而成年雄性和成年雌性的体长(SVL)以及尾长(TL)差异不显著(SVL,P=0.193;TL,P=0.22);亚成体头长随体长的增长速率显著大于成年雌性(P=0.021),而亚成体头宽与成年雌性头宽差异不显著P=0.545);亚成体头部与成年雄性头部呈同速增长(HL,P=0.252;HW,P=0.441)。特定SVL时,亚成体头宽显著大于成年雌性头宽(P<0.01);亚成体头长显著大于成年雄性头长(P<0.01),但亚成体头宽与成年雄性头宽差异不显著(P>0.05)。研究结果表明鳄蜥存在局部两性异型。
     2鳄蜥的咬力大小及其影响因素
     不同性别年龄组的鳄蜥的咬力差异极显著(F2,88=161.303,P<0.01),雄性成体的咬力(14.74±0.16N)极显著大于雌性成体(13.55±0.26N)(P=0.003),雄性成体和雌性成体的咬力均显著高于亚成体(9.17±0.25N)(所有P<0.01)。逐步回归结果显示:下颚长度是影响咬力大小的主要因子(R=0.547,P<0.01),头长为次要因子(R=0.299,P=0.002)。以下颚长的回归剩余值为协变量进行协方差分析,结果显示雄性的咬力显著大于雌性(ANCOVA:BF—F1,54=9.896,P=0.003)。单独比较头部形态与咬力大小的关系时,以头部与体长SVL的回归剩余值为协变量,咬力原始值为白变量,协方差分析发现,雌雄两性鳄蜥的头长(斜率:F1,54=0.084,P=0.773,截距:F1,54=5.530,P=0.023),头高(斜率:F1,54=0.504,P=0.480,截距:F1,54=10.304,P=0.002),头宽(斜率:F1,54=0.014,P=0.908,截距:F154=10.109,P=0.002)越大,咬力就越大,且雄性大于雌性。研究结果表明,雄性成年鳄蜥的咬力大于雌性成年鳄蜥的咬力,下颚长与头长是影响咬力大小的两个主要因素。
     3饲养条件下鳄蜥活动面积及其与咬力的关系
     我们于2010年6月至8月,对广东省罗坑自然保护区饲养条件下鳄蜥的日活动面积与最大活动范围进行观察,同时测量实验个体的咬力大小,研究饲养条件下鳄蜥活动面积与咬力的关系。研究结果为:①同一鳄蜥的日活动面积存在显著差异(P<0.05),单因素方差分析多重比较(Multiple measures ANOVA)显示,六个饲养池内的雄性成体鳄蜥之间的日平均活动面积差异不显著(F5,235=1.777,P=0.118),雌性成体之间的日平均活动面也不存在差异(F5,233=1.827,P=0.108)。②把所有池子内的鳄蜥按年龄与性别分组进行比较,不同性别年龄组之间的日均活动面积存在极显著差异(F2,47=12.670,P<0.01),其中雄性日均活动面积(2.56±0.13m2)显著大于雌性(2.03±0.12 m2)(P=0.031),亚成体(3.14±0.21 m2)极显著大于雌性(P<0.01),亚成体大于雄性(P=0.028)。不同性别年龄组之间的最大活动范围也存在极显著差异(F2,47=5.807,P=0.006),其中雄性(8.77±0.22 m2)显著大于雌性(7.54±0.40m2)(P=0.034),亚成体(9.22±0.46m2)极显著大于雌性(P=0.008),亚成体与雄性差异不显著(P=0.686)。③同一池子内的鳄蜥之间的最大活动范围存在很大的重叠现象;④回归分析雄性成体最大活动范围影响因子显示只有咬力(x)与最大活动范围(y)呈显著正相关关系(P=0.028,R=0.516,回归方程为y=0.5898x+0.0958)⑤鳄蜥的最大活动范围(y)与日平均活动面积(x)呈正相关关系,其回归方程为:Y=0.816X+6.5526,(R2=0.1364,P<0.05)。
Studying the relationship between morphological characteristics and environment adaption of animals has been one of contains of evolution biology. Bite force capacities may be tightly linked to both the type and magnitude of the ecological challenges of food acquisition, mate acquisition, territory acquisition and antipredation in vertebrates. Bite forece of lizards had been reported widely in abroad, but no study was found in China. Shinisaurus crocodilurus is a National Class I protected animal in China, and has important scientific value in evolutionary and systematic biology. In this paper, we studied the relationship between bite force and sexual dimorphism in Shinisaurus crocodilurus, and studied the function of bite force in the maximun ranges of activity competition for understanding the cause of the sexual dimorphism and effect mechanism of bite force. This study is the basis for further studies on reproductive output, reproductive value, territory behavior and biomechanics of Shinisaurus crocodilurus
     1. Sexual dimorphism of Shinisaurus crocodilurus
     We studied the sexual dimorphism of Shinisaurus crocodilurus through comparing body size and head size among female, male and juveniles. The results show that the ventral color of head and breast between male and female is different, it is vivid red or light blue for male and light yellow or light red for female. The head size (including head width (HW) and head length (HL)) of male is significantly larger than that of female (HL, P<0.01; HW, P<0.01), and abdomen length (AL) of female is significantly longer than that of male (P=0.018). However, the snout-vent length (SVL) and tail length (TL) between male and female are not significantly different (for SVL, P=0.193; for TL, P=0.22). The increasing rate of head length with SVL for juveniles was higher than that for females (P=0.021), whereas the head width was not significantly different between juveniles and females (P=0.545). Both the head size (including head length and head width) of juveniles and males increased with SVL at the same rate (for HL, P=0.252, for HW, P=0.441). When SVL was kept constant, head width of juveniles was larger than that of females (P<0.01) and head length of juveniles was larger than that of males (P<0.01), but the head width between juveniles and males was not significantly different (P>0.05). The results indicated that partial sexual dimorphism existed in Shinisaurus crocodilurus.
     2. Bite force and its influencing factors in Shinisaurus crocodilurus
     Significant differences in bite force were observed among different sex and age groups (F2.88=161.303, P<0.01), the bite force of adult males (14.74±0.16N) was significantly higher than that of adult females (13.55±0.26N) (P=0.003), Both of male and females were significantly higher than that of juveniles (9.17±0.25N) (both P<0.01).A multiple regression analysis (stepwise) showed that lower jaw length was the first effect factor for bite force in the significant mode(R=0.547, P<0.01), and the head length was the second effect factor(R=0.299, P=0.002). Analyses of covariance with residual lower jaw length as the covariate demonstrated that adult males had significantly larger bite force than adult females (ANCOVA:BF—F1,54=9.896,P=0.003). When the relationships of only head shape (head length,head width, head heigth) and bite force in adult Shinisaurus crocodilurus were analyzed, results of analyses of covariance with residual head shape and snout-vent length as the covariate showed that increase with the head length (slopes:F1,54=0.084, P=0.773, intercept:F1,54=5.530, P=0.023), head width (slopes:F1,54=0.014,P=0.908, intercept:F1,54=10.109,P=0.002) and head heigth (slopes:F1,54=0.504,P=0.480, intercept:F1,54=10.304, P=0.002) the bite force increased at the same time, and the bite force of adult male was larger than that of adult females. In a word, the bite force of adult male is larger than that of adult female in Shinisaurus crocodiluru, and the lower jaw length and the head length were highly correlated with bite force.
     3. The relationship between activity area and bite force in Shinisaurus crocodilurus
     During June and Auguest,2010, we recorded the maximum range of activities and daily activity area, and tested the bite force of Shinisaurus crocodilurus which were reared in six captive pools in Luokeng Nature Reserve in Guangdong Province, and we studied the relationship between the home ranges and bite force. The results showed:①There was significant difference in daily activity area of the same individual (P<0.05); ANOVA multiple comparison showed that both daily activity areas of adult male and female among six pools were not different (for male F5,235=1.777,P=0.118; for female F5,233=1.827,P=0.108).②The results of One-way ANOVA showed that the daily activity areas among juveniles(3.14±0.21 m2), adult males(2.56±0.13m2) and adult females(2.03±0.12 m2)were significant different F2,47=12.670, P<0.001), and that of adult males was larger than that of adult females (P=0.031), and that of juveniles was larger than that of adult females (P<0.01) and adult males (P=0.028). The maximum range of activity areas of different age and sex groups were also significant different (F2,47=5.807, P=0.006), and that of adult males (8.77±0.22 m2) was larger than that of adult females (7.54±0.40m2) (P=0.034), that of juveniles(9.22±0.46m2) was larger than that of adult females (P=0.008), but the maximum range of activity between adult males and juveniles were not differece (P=0.686).③There were a large home range overlap in the same pool.④Regression analysis showed that only bite force (x) was positive correlative with the range of activity(y) (P=0.028,R=0.516, the Regression equation was:y=0.5898x+0.0958). The maximum range of activities (y) and the daily activity area (x) correlated significantly, the Regression equation was:Y= 0.816X+6.5526.(R2=0.1364, P<0.05)
引文
[1]Hovi M, Alatalo R V, Siikamaki P. Black grouse lekes in ice:Female mate samling by incitation or male competition[J]. Behavioral Ecology and Sociobiology,1995,37: 283-288.
    [2]林炽贤,邱清波,林隆慧,计翔.蜡皮蜥的两性异形和繁殖输出[J].动物学研究,2004:25(6):477-483.
    [3]Anderson RA, Vitt LJ. Sexual selection versus alternative causes of sexual dimorphism in teiid lizards[J]. Oecologia,1990,84:145-157.
    [4]Bonnet X, Shine R, Naulleau G, et al. Sexual dimorphism in snakes:Different reproductive roles favour different body plans[J]. Proceedings of Royal Society B, 1998,265:179-183.
    [5]计翔,黄红英,胡晓忠,杜卫国.中国石龙子雌体繁殖特征和卵孵化的地理变异.应用生态学报[J],2002a:13:680-684.
    [6]Ji X, Qiu QB, Diong CH. Sexual dimorphism and female reproductive characteristics in the oriental garden lizard, Calotes versicolor, from a population in Hainan, southern China [J].J. Herpetol,2002b,36:1-8.
    [7]Pratt NC, Alberts AC, Fulton-Medler KG, Phillips JA. Behavioral, physiological, and morphological components of dominance and mate attraction in male green iguanas[J]. Zoo Biology,1992,11:153-163.
    [8]Molina-Borja M, Padron-Fumero M, Alfonso-Martin MT. Morphological and behavioural traits affecting the intensity and outcome of male contests in Gallotia galloti galloti (Family Lacertidae)[J]. Ethology,1998,104:314-322..
    [9]Emlen DJ, Marangelo J, Ball B, Cunnigham CW. Diversity in the weapons of sexual selection:horn evolution in the beetle genus Onthophagus (Coleoptera: Scarabaeidae)[J]. Evolution,2005,59:1060-1084.
    [10]Vitt LJ, Cooper WE Jr. The evolution of sexual dimorphism in the skink Eumeces laticeps:an example of sexual selection[J]. Canadian Journal of Zoology,1985,63: 995-1002.
    [11]Hews DK. Examining hypotheses generated by field measures of sexual selection on male lizards[J]. Uta palmeri.Evolution,1990,44:1956-1966.
    [12]LeBas N. Microsatellite determination of male reproductive success in a natural population of the territorial ornate dragon lizard, Ctenophorus ornalus[J]. Molecular Ecology,2001,10:193-203.
    [13]Kwiatkowski MA, Sullivan BK. Mating system structure and population density in a polygynous lizard, Sauromalus obesus (=ater)[J]. Behavioral Ecology,2002a,13: 201-208.
    [14]计翔,马伟王,培潮.繁殖期北草晰的巢区研究[J].杭州师范学院学报,1989,6:60-63.
    [15]计翔,唐亚文,洪卫星.繁殖期北草晰活动型和巢区的进一步观察[J].动物学报,1994,40(2):207-210.
    [16]Turner, F.B., Jennrich, R.I.& Weintraub, J.D. Home ranges andbody sizeof lizards[J]. Ecology,1969,50,1076-1081.
    [17]Christian, K.A.& Waldschmidt, S. The relationship between lizard home range and body size:a reanalysis of the data[J]. Herpetologica,1984,40,68-75.
    [18]Perry, G&Garland, T. Lizard home ranges revisited:effects of sex, body size, diet, habitat, and phylogeny[J]. Ecology,2002,83,1870-1885.
    [19]Stanner, M.& Mendelssohn, M. Sexratio, population density and home range of the desert monitor (Varanus) griseus in the southern coastalplain of Israel[J]. Amphibia-Reptilia,1987,8,153-164.
    [20]Schoener, T.W.& Schoener, A. Intraspecific variationin home-range size in some Anolis lizards[J]. Ecology,1982,63,809-823.
    [21]Rose, B. Lizard home ranges:methodology and functions[J]. Herpetol,1982.16, 25-269.
    [22]Huey RB, Stevenson RD. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches[J]. American Zoologist,1979,19:357-366.
    [23]Arnold SJ. Morphology, performance, and fitness[J]. American Zoologist,1983,23: 347-361.
    [24]Fisher R A. The genetical theory of natural selection,2nd ed[M].New York:Dover Publications,1958.
    [25]Darwin, C. The descent of man, and selection in relation to sex[M]. Murray, London. 1871.
    [26]Gross MR. Alternative reproductive strategies and tactics:diversity within the sexes[J]. Trends and Reviews in Ecology and Evolution,1996,11:92-98.
    [27]Bauwens D, Diaz-Uriarte R. Covariation of life-history traits in lacertid lizards:a comparative study [J]. American Naturalist,1997,149:91-111.
    [28]Berglund A, Bisazza A, Pilastro A. Armaments and ornaments:an evolutionary explanation of traits of dual utility [J]. Biological Journal of the Linnean Society, 1996,58:385-399.
    [29]Backwell PRY, Christy JH, Telford SR, Jennions MD, Passmore NI. Dishonest signalling in a fiddler crab[J]. Proceedings of the Royal Society London Series B, BiologicalSciences,2000,267:719-724.
    [30]Vanhooydonck B, Herrel A, Van Damme R, Irschick DJ. Does dewlap size predict male bite performance in Jamaican Anolis lizards[J]? Functional Ecology,2005,19: 38-42.
    [31]Dodson GN. Behavior of the Phytalmiinae and the evolution of antlers in tephritid flies. In:Aluja M, Norrbom AL, eds. Fruit flies (Tephritidae):phylogeny and evolution of behavior[J]. New York, NY:CRC Press,2000,175-184.
    [32]Emerson SB. Vertebrate secondary sexual characteristics:physiological mechanisms and evolutionary patterns[J]. American Naturalist,2000,156:84-91.
    [33]AlcockJ, HustonTF. Mating system and male size in Australian hylaeine bees (Hymenoptera:Colletidae)[J]. Ethology,1996,102:591-610.
    [34]Huntingford F, Turner A. Animal Conflict[M]. New York:Chapman & Hall.1987.
    [35]林植华,计翔.浙江丽水中国石龙子的食性、两性异型和雌性繁殖[J].生态学报,2000,20(2):304-310.
    [36]杜卫国,计翔.蓝尾石龙子的生长、两性异形及雌性繁殖[J].动物学研究,2001,22(4):279-286.
    [37]计翔,王培潮,洪卫星.多疣璧虎的繁殖生态研究[J].动物学报,1991,37:185-192.
    [38]计翔,杜卫国.蝘蜒头、体大小的两性异形和雌体繁殖[J].动物学研究,2000,21(5):349-354.
    [39]刘洋,时磊.奇台沙蜥生长过程中的两性异形[J].四川动物,2009,28(5):710-713.
    [40]许雪峰.北草蜥的两性异型[J].滁州师专学报,1999,(2):41-43.
    [41]Herrel A, Van Damme R, DeVree F. Sexual dimorphism of head size in Podarcis hispanica:testing the dietary divergence hypothesis by bite force analysis[J]. Netherlands Journal of Zoology,1996,46:253-262.
    [42]Herrel A, Spithoven L, Van Damme R, De Vree F. Sexual dimorphism of head size in Gallotia galloti:testing the niche divergence hypothesis by functional analyses [J]. Functional Ecology,1999a,13:289-297.
    [43]Lappin AK, Husak JF. Weapon performance, not size,determines mating success and potential reproductive output in the collared lizard (Crotaphytus collaris)[J]. American Naturalist,2005.166:426-436.
    [44]Lappin AK, Hamilton PS, Sullivan BK. Bite force performance and head shape in a sexually dimorphic crevice-dwelling lizard, the common chuckwalla [Sauromalus ater (= obesus)][J]. Biological Journal of the Linnean Society,2006b,88:215-222.
    [45]McBrayer LD, Anderson RA. Sexual dimorphism in head shape and bite force in the Northern Alligator lizard, Elgaria coerulea[J]. Journal of Herpetology,2007,41: 554-559.
    [46]Cox RM, Skelly SL, John-Alder HB. A comparative test of adaptive hypotheses for sexual size dimorphism in Lizards[J]. Evolution,2003,57:1653-1669.
    [47]Shine R. Sexual dimorphism in snakes// Seigel RA, Collins JT, eds. Snakes:Ecology and Behavior[M]. New York:McGraw-Hill,1993,49-86.
    [48]Andersson, M. Sexual selection. Princeton Univ[M]. Press, Princeton, NJ.1994.
    [49]Blanckenhorn, W. U. Behavioral causes and consequences of sexual size dimorphism[J]. Ethology,2005,111:977-1016.
    [50]Censky EJ. The evolution of sexual size dimorphism in the teiid lizard. Ameiva Plei: a test of alternative hypotheses [A]. In:Powell R, Henderson RW, eds. Contributions to West Indian herpetology:a tribute to Albert Schwartz[C]. New York, NY:SSAR, 1996,277-289.
    [51]Gvozdik L, Van Damme R. Evolutionary maintenance of sexual dimorphism in head size in the lizard Zootoca vivipara:a test of two hypotheses[J]. Journal of Zoology, London,2003,259:7-13.
    [52]Li H, Ji X, Qu YF, et al. Sexual dimorphism and female reproduction in the multi-ocellated racerunner, Eremias multiocellata (Lacertidae)[J]. Acta Zoologica Sinica,2006,52:250-255.
    [53]Carothers JH. Sexual selection and sexual dimorphism in some herbivorous lizards[J]. The American Naturalist,1984,124:244-254.
    [54]Bull CM, Pamula Y. Sexually dimorphic head sizes and reproductive success in the sleepy lizard Tiliqua rugosa[J]. Journal of Zoology, London,1996.240:511-521.
    [55]Lailvaux SP, Herrel A, Vanhooydonck B, Meyers JJ, Irschick DJ. Fighting tactics differ in two distinct male phenotypes in a lizard:Heavyweight and lightweight bouts[J]. Proceedings of the Royal Society London Series B, Biological Sciences, 2004.271:2501-2508.
    [56]Anderson RA, Karasov WH. Energetics of the lizard, Cnemidophorus tigris, and life history consequences of food acquisition mode[J]. Ecological Monographs,1988,58: 79-110.
    [57]Marquez R, Cejudo D. Defensive behavior as an escape strategy in four species of Gallotia (Sauria, Lacertidae) from the Canary Islands (Spain)[J]. Copeia,2000, 601-605.
    [58]计翔.中国石龙子头、体大小的性二态[J].杭州师范学院学报(自然科学版),1994,(6):79-84.
    [59]Olsson M, Shine R. Sexual dimorphism in lizard body shape:The roles of sexual selection and fecundity selection[J]. Evolution,2002,56:1538-1542.
    [60]Zhang XD, Ji X, Luo LG, et al. Sexual dimorphism and female reproduction in the Qinghai toad-headed lizard Phrynocephalus vlangali[J]. Acta Zoologica Sinica, 2005,51:1006-1012.
    [61]King, J.A.The ecology of aggressive behavior[J]. Annual Review of Ecology, Evolution, and Systematics.1973,4,117-138.
    [62]Gillingham JC. Social behavior//Seigel RA, Collins JT, Novak SS, eds. Snakes: Ecology and Evolutionary Biology[M]. New York:McGraw-Hill,1987,184-209.
    [63]Arnold SJ, Bennett AF. Behavioural variation in natural populations. V. Morphological correlates of locomotion in the garter snake(Thamnophis radix)[J]. Biological Journal of the Linnean Society,1988,34:175-190.
    [64]林植华.丽纹攀蜥头体大小的两性异形和繁殖期的生长[J].四川动物,2004,23(3):277-280.
    [65]Weiss, S.L. ReProductive Signals of female lizards:Pattern of trait experssion and made response[J]. Ehtology,2002,108:793-813.
    [66]Stuart-fox, D. M., Ord, T.J. Secual selection, natural selection and the evolution of dimorphic coloration and ormamentation in agarnid lizards [J]. Proceedings of the Royal Society B:Biological Sciences,2004,271:2249-2255.
    [67]Motta PJ, Kotrschal KM. Correlative, experimental, and comparative evolutionary approaches in ecomorphology[J]. Netherlands Journal of Zoology,1992,42: 400-415.
    [68]Korff WL, Wainwright PC. Motor pattern control for increasing crushing force in the striped burrfish (Chylo- mycterus schoepfi)[J]. Zoology,2004.107:335-346.
    [69]Herrel A, Aerts P, Fret J, De Vree F. Morphology of the feeding system in agamid lizards:ecological correlates [J]. Anatomical Record,1999b,254:496-507.
    [70]Lappin AK. Evolutionary ecomorphology of the feeding biology of crotaphytid lizards [D]. PhD Thesis, University of California,1999.
    [71]Herrel A, Van Damme R, Vanhooydonck B, De Vree F. The implications of bite performance for diet in two species of lacertid lizards[J]. Canadian Journal of Zoology,2001b,79:662-670.
    [72]Perry G, LeVering K, Girard I, Garland T Jr. Locomotor performance and social dominance in male Anolis cristatellus[J]. Animal Behaviour,2004,67:37-47.
    [73]Stamps, J. A. Sexual selection, sexual dimorphism, and territoriality. In Lizard ecology:studies of a model organism (ed. R. B. Huey, E. R. Pianka & T. W. Schoener), Baltimore[D]. MD:John Hopkins University Press,1983,169-204.
    [74]Frazetta TH. A functional consideration of cranial kinesis in lizards. Journal of Morphology,1962.111:287-319.
    [75]Molina-borja, M Padron, and T.alfonso-martin. Morphological and behavioural trait saffecting the intensity and outcome of male contest in Gallotia galloti (Family Lacertidae)[J]. Ethology,1998,104:314-22.
    [76]Herrel A, De Grauw E, Lemos-Espinal JA. Head shape and bite performance in xenosaurid lizards[J]. Journal of Experimental Zoology,2001a,290:101-107.
    [77]Husak JF, Lappin AK, Fox SF, Lemos-Espinal JA. Bite force performance predicts dominance in male venerable collared lizards(Crotaphytus antiquus)[J]. Copeia. 2006a,301-306.
    [78]Herrel, A., Schaerlaeken, V., Meyers, J.J., Metzger, K.A., Ross, C.F., The evolution of cranial design and performance in squamates:consequences of skull-bone reduction on feeding behavior[J]. Integrative&Comparative Biology.2007,47, 107-117.
    [79]Verwaijen D, Van Damme R, Herrel A. Relationships between head size, bite force, prey handling efficiency and diet in two sympatric lacertid lizards[J]. Functional Ecology,2002,16:842-850.
    [80]Radford AN, du Plessis MA. Bill dimorphism and foraging niche partitioning in the green woodhoopoe[J]. Journal of Animal Ecology,2003,72:258-269.
    [81]Kwiatkowski MA, Sullivan BK. Geographic variation in sexual selection among populations of an iguanid lizard, Sauromalus obesus (=ater)[J]. Evolution,2002b, 56:2039-2051.
    [82]Kwiatkowski MA. Natural and sexual selection on color variation in the chuckwalla, Sauromalus obesus[D].PhD Thesis, Arizona State University,2001.
    [83]于仕,武正军,王振兴,陈亮,黄乘明,于海.广东罗坑自然保护区饲养鳄蜥的求偶和交配行为[J].动物学杂志,2009,44(5):38-44.
    [84]Rodda GH. The mating behavior of Iguana iguana[M]. Smithsonian Contributions to Zoology,1992,534:1-40.
    [85]Roger A. Anderson, Lance D. Mcbrayer and Anthony Herrel. Bite force in vertebrates:opportunities and caveats for use of a nonpareil whole-animal performance measure[J]. Biological Journal of the Linnean Society,2008,93, 709-720.
    [86]Herrel A, Joachim R, Vanhooydonck B, Irschick DJ. Ecological consequences of ontogenetic changes in head shape and bite performance in the Jamaican lizard Anolis lineatopus[J].Biological Journal of the Linnean Society,2006,89:44-454.
    [87]Anthony Herrel, Veronika Holanova. Cranial morphology and bite force in Chamaeleolis lizards-Adaptations to molluscivory[J]? Zoology,2008,111:467-475.
    [88]Katleen Huyghe, Anthony Herrel, Dominique Adriaens, Zoran Tadic and Raoul Van Damme. It is all in the head:morphological basis for differences in bite force among colour morphs of the Dalmatian wall lizard[J]. Biological Journal of the Linnean Society,2009,96,13-22.
    [89]Wintzer AP, Motta PJ. The effects of temperature on prey-capture kinematics of the bluegill (Lepomis macrochirus):implications for feeding studies[J]. Canadian Journal of Zoology,2004,82:794-799.
    [90]Erickson GM, Lappin AK, Van Vliet KA. The ontogeny of bite-force performance in American alligator(Alligator mississippiensis)[J]. Journal of Zoology,2003.260: 317-327.
    [91]Christiansen P, Adolfssen JS. Bite forces, canine strength, and skull allometry in carnivores (Mammalia, Carnivora)[J]. Journal of Zoology,2005,266:133-151.
    [92]Herrel A, O'Reilly JC. Ontogenetic scaling of bite force in lizards and turtles[J]. Physiological and Biochemical Zoology,2006,79:31-42.
    [93]Irschick DJ, Lailvaux SP. Age-specific forced polymorphism:implications of ontogenetic changes in morphology for male mating tactics[J]. Physiological and Biochemical Zoology,2006.79:73-82.
    [94]Anthony Herrel, Lance D. Mcbrayer and Peter M. Larson. Functional basis for sexual differences in bite force in the lizard Anolis carolinensis[J]. Biological Journal of the Linnean Society,2007,91,111-119..
    [95]Anthony Herrel, Jennifer A. Moore, Evan M. Bredweg and Nicola J. Nelaon. Sexual dimorphism, body size, bite force and male mating success in tuatara[J]. Biological Journal of the Linnean Society,2010,100,287-292.
    [96]Kernohan,B.J., Gitzen, R.A.& Millspaugh, J.J. Analysis of animal space use and movements[J]. In Radio tracking and animal populations,2001,125-166.
    [97]石建斌.动物活动区、领域及其估算方法[J].生物学通报,1996,31(3).16-18.
    [98]Carter,D.B. Courtship and mating in wild Varanus varius(Varanidae:Australia)[J]. Mem. Queensl. Mus,1990,29,333-338.
    199] G Thompson, M DeBoer&Pianka, E.R. Activity areas, daily movements, ecology and thermoregulation of an arboreal monitor Varanus tristis (Squamata:Varanidae) during the breeding season[J]. Australian Journal of Ecology,1998,24,117-122.
    [100]Guarino, F. Spatial ecology of alarge carnivorous lizard, Varanus varius (Squamata: Varanidae)[J]. Zool.(Lond.),2002,258,449-457.
    [101]Ibrahim, A.A. Activity area, movement patterns, and habitat use of the desertmonitor, Varanus griseus, in the Zaranik ProtectedArea, North Sinai, Egypt.Afr [J].Herpetol,2002,51,35-45.
    [102]Phillips J. A. Movement patterns and density of Varanus albigularis[J]. Herpet, 1995,29,407-416.
    [103]Thompson G. G. Activity area during the breeding season of Varanus gouldii (Reptilia:Varanidae) in an urban environment[J]. Antarctic Wildlife Research Unit, 1994,21,633-641.
    [104]Tsellarius A. Y., Men'shikov Y. G.& Tsellarius E. Y. Spacing pattern and reproduction in Varanus griseus of the western Kyzylkum. Russian [J]. Herpetol, 1995,2,153-165.
    [105]Auffenberg, W., Nazar, Q.& Khurshid, N. Preferred habitat, home range and movement patterns of Varanus bengalensis in southern Pakistan[J]. Mertensiella, 1991,2,7-28.
    [106]Fox, S.F. Lizard Eeology(Studies of a model, organism)[M].Harvard University Press,1983,149-158.
    [107]Edsman L. Territoriality and Competition in Wall lizards[D].PHD. University of Stockholm.1990.
    [108]Enquist M, Leimar O. volution of fighting behaviour:Decision rules and assessment of relative strength[J]. Journal of Theoretical Biology,1983,87-410.
    [109]张永普,计翔.尾石龙子的头部两性异形和食性[J].动物学报,2004,5:745-752.
    [110]Trivers RL. Sexual Selection and in the Descent of Man[J]. Chicago, Aldine Publishing Co,1972,1871-1979.
    [111]赵尔宓.中国动物志·爬行纲·第二卷·有鳞目,蜥蜴亚目[M].北京:科学出版社,1999.
    [112]张玉霞.鳄蜥生物学[M].桂林:广西师范大学出版社,2002
    [113]武正军,戴冬亮,黄乘明等.广东省罗坑自然保护区鳄蜥对溪沟林型的选择[J].生态学杂志,2007,26(11):1777-1781.
    [114]于海,黄乘明,武正军等.鳄蜥生活习性的观察[J].四川动物,2006,25(2):365-366.
    [115]戴冬亮,武正军,黄乘明,等.洗胃法在鳄蜥食性研究中的应用[J].四川动物,2007,26(2):438-441.
    [116]梁文波,张玉霞,苏萍.半自然状态下鳄蜥活动时间分配的初步研究[J].四川动物,2006,25(2):264-266.
    [117]宁加佳,黄乘明,于海等.广东罗坑自然保护区鳄蜥生境特征分析[J].动物学研究,2006,27(4):419-426.
    [118]王振兴,武正军,于海等.广东罗坑自然保护区鳄蜥的体温调节及静止代谢率的热依赖性[J].动物学报,2008,54(6):964-971.
    [119]马小梅,计翔.中国石龙子个体发育过程中头部两性异形和食性的变化[J].生态学杂志,2001,20(3):12-16.
    [120]许雪峰,计翔.山地麻蜥个体发育过程中头部两性异形和食性的变化[J].应用生态学报,2003,14(4):557-561.
    [121]King RB. Sexual dimorphism in snake tail length:Sexual selection, natural selection, or morphological constrain[J]. Biological Journal of the Linnean Society,1989,38: 133-154.
    [122]张永普,计翔.北草蜥个体发育过程中头部两性异形及食性的变化[J].动物学研究,2000,21(3):181-186.
    [123]Cooper WE, Vitt LJ. Female mate choice of large male broad-headed skinks[J]. Animal Behaviour,1993,45:683-693.
    [124]Lange H, Leimar O. The influence of predation risk on threat display in great tits[J]. Behavioral of Ecology,2001,14:375-380.
    [125]Huyghe K, Vanhooydonck B, Scheers H, Molina-Borja M, Van Damme R. Morphology, performance and fighting capacity in male lizards, Gallotia galloti[J]. Functional Ecology,2005,19:800-807.
    [126]Hernandez LP, Motta PL. Trophic consequences of differential performance in the sheepshead, Archsargus probatocephalus (Teleostei, Sparidae)[J]. Journal of Zoology,1997,243:737-756.
    [127]Grubich J. Morphological convergence of pharyngeal jaw structure in durophagous perciform fish[J]. Biological Journal of the Linnean Society,2003,80:147-165.
    [128]Sinclair AG. The mechanics of feeding of reptiles[D].DPhil Thesis, University of Leeds.1983.
    [129]王海涛,罗秋凤,周必方,E.J.Richter.压力薄膜力传感器及其牙咬力的测量应用研究[J].仪表仪器学报,2001,22(3),51-52.
    [130]Ewald, P.W., Orians, G.H. Effects of resource depression on use of inexpensive and escalated aggressive behavior:experimental tests using Anna hummingbirds[J]. Behavioral Ecology and Sociobiology,1983,7,273-279.
    [131]MarlerCA, WalsbergG, WhiteM, MooreMC. Increased energy expenditure due to increased territorial defense in male lizards after phenotypic manipulation [J]. Behavioral Ecology and Sociobiology,1995,37:225-331.
    [132]McBrayer LD, White TD. Bite force, behavior, and electromyography in the teeid lizard, Tupinambis teguixin[J].Copeia,2002:111-119.
    [133]Anthony herrel, Ed De Grauw, and Julioa, Lemos-espinal.Head shape and bite performance in xenosaurid lizards [J]. Journal of experimental zoology,2001,290: 101-107.
    [134]A.Kristopher lappin, Paul S. Hamilton and Brian K. Sullivan. Bite-force performance and head shape in a sexually dimorphic crevice-dwelling lizard, the common chuckwalla [Sauromalus ater (=obesus)][J]. Biological Journal of the Linnean Society,2006,88,215-222.
    [135]Levinton JS, Allen BJ. The paradox of the weakening combatant:trade-off between closing force and gripping speed in a sexually selected combat structure[J]. Functional Ecology,2005,19:159-165.
    [136]Lovern, M.B. Social and hormonal effects on the ontogenyof sex differences in behaviorin the lizard, Anolis carolinensis[D]. PhD Thesis, Virginia State University, 2000.
    [137]黄乘明,于海,李友邦,龚明昊.珍稀的国家一级保护动物-瑶山鳄蜥[J].野生动物杂志,2005,26(4):17.
    [138]宁加佳.广东罗坑自然保护区鳄蜥(Shinisaurus crocodilurus)的活动时间分配及食性[D].桂林:广西师范大学硕士学位论文,2007.
    [139]韦仕珍.鳄蜥胚后发育的观察[J].河池师专学报,1999,19(4):68-70.
    [140]Hooper RE, Plaistow SJ, Tsubaki Y. Signal function of wing colour in a polymorphic damselfly, Mnais costalis Selys (Zygoptera:Calopterygidae)[J]. Odonatologica,2006,35:15-22.
    [141]Hutchings JA, Myers RA. The evolution of alternative mating strategies in variable environments [J]. Evolutionary Ecology,1994,13:367-370.
    [142]Pryke SR, Griffith SC. Red dominates black:Agonistic signalling among head morphs in the colour polymorphic Gouldian finch[J]. Proceedings of the Royal Society. B,2006,273:949-957.
    [143]王永庆.美洲貂活动范围变化的分析[J].野生动物,1994,5:17-18.
    [144]刘伟,钟文勤,宛新荣.啮齿动物巢区研究进展[J].生态学杂志,2002,21(4):36-40.
    [145]刘晓庆,王小明,王正寰,刘群秀,马波.固定核空间法和最小凸多边形法估计藏狐家域的比较[J].兽类学报,2010,30(2):163-170.
    [146]蒋洁,武正军,于海,黄乘明,王振兴.鳄蜥的食物识别机制[J].动物学研究,2009,30:553-559.
    [147]Hack MA. The energetic costs of fighting in the house cricket, Acheta domesticus L[J]. Behavioral Ecology,1997,8:28-36.
    [148]Vehrencamp SL, Bradbury JW, Gibson RM. The energetic cost of display in male Sage Grouse[J]. Animal Behaviour,1989,38:885-896.
    [149]DuftyAM. Testosterone and survival:a cost of aggressiveness[J]? Hormones and Behavior,1989,23:185-193.
    [150]Tuttle MD, Ryan MJ. Bat predation and the evolution on frog vocalization[J]. Science,1981,214:677-678.
    [151]Maynard-Smith J, Parker GA. The logic of animal conflict[J]. Nature,1973, 246:15-18.
    [152]Elliott, J.M. Mechanisms responsible for population regulation in young migratory trout, Salmo trutta. III. Role of territorial behaviour[J]. Hormones and Behavior, 1990,59,803-818.
    [153]蒋志刚.动物行为原理和物种保护方法[M].科学出版社,2008,272-273.
    [154]尚玉昌.行为生态学[M].北京大学出版社,1998,255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700