C17.2神经干细胞的质膜蛋白质组及其糖基化修饰研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经干细胞(NSC)是神经系统中能够自我更新并具有多向分化潜能的细胞,在一定条件下能分化为神经元、星形胶质细胞和少突胶质细胞。由于其具有高度的自我更新能力、低免疫源性、多潜能分化、迁移功能及良好的组织融合性等特性,因此可以作为基因或药物治疗载体以及修复许多中枢神经系统损伤或疾病。寻找参与神经干细胞分化相关新的信号通路,弄清神经干细胞多能性(自我更新或增殖)维持及分化所涉及的机制是神经干细胞研究的重要领域之一。神经干细胞在自我更新和分化的过程中,细胞质膜蛋白质作为外界微环境改变引起胞内信号传导的起始部位,起着举足轻重的作用。存在于细胞膜上的各类离子通道,抗原分子,及表面受体在细胞增殖、迁移、凋亡和分化过程中起着非常重要的作用。本实验旨在研究C17.2神经干细胞的质膜蛋白质。C17.2神经干细胞是在小鼠原代小脑的神经干细胞中转入v-myc基因构建成的永生化神经干细胞系。运用双水相方法获取C17.2神经干细胞的质膜,将质膜经裂解液裂解后进行SDS电泳,酶解,最后通过LC-MS/MS质谱分析鉴定以及生物信息学分析,共鉴定得到了222个质膜蛋白质。其中转运蛋白质含量最多,大量的受体、信号分子、酶类等也得到了鉴定。许多蛋白质如Presenilin-1, Nicastrin, Cell adhesion molecule 1等与神经干细胞的增殖与分化密切相关。本实验首次对C17.2神经干细胞的质膜蛋白质进行鉴定和分析,此数据对神经干细胞的增殖与定向分化以及退行性疾病修复等方向的研究提供了应用价值。
     细胞膜蛋白中大部分都是经过糖基化修饰的蛋白质,糖链如细胞表面的天线,成为细胞相互识别、粘着、信号接收、通讯联络、免疫应答等的分子基础,已知的多种疾病标志性分子和重要的抗体分子都是膜糖蛋白。目前通过富集质膜的方法结合质谱及数据库搜寻得到的多为一些丰度较高的蛋白质,细胞表面糖基化蛋白这样的低丰度蛋白则较少得到可靠鉴定。因此,从复杂的生物样品体系中富集糖蛋白/糖肽是蛋白质糖基化研究的重点和难点。本文中,运用细胞表面蛋白捕获技术(Cell Surface Capturing, CSC-technology)对神经干细胞表面糖蛋白进行富集和鉴定。利用此方法共鉴定到了非冗余糖肽有188条,对应于99个糖基化修饰蛋白质及200个糖基化位点,其中有70%的糖基化位点,包括Neural cell adhesion molecule L1、Eph receptor、Neuropilin-1等等一些与神经干细胞增殖分化及神经疾病修复密切相关蛋白质的糖基化位点,为本实验鉴定确认的新的糖基化位点。很多低丰度的受体蛋白及CD分子蛋白如Interleukin-6 receptor, Lysophosphatidic acid receptor 4, CD276, CD98等等均得到鉴定。本工作首次构建C17.2神经干细胞的膜糖蛋白数据,得到了许多与神经干细胞增殖与分化以及退行性疾病修复相关的蛋白质,细胞表面糖蛋白的鉴定对于神经干细胞在这些方向的研究提供了重要信息;鉴定到了26个CD分子,有助于发现新的神经干细胞表面标志物;并且,在这99个糖蛋白中,仅有28个蛋白质与利用双水相方法提取质膜所得的222个质膜蛋白相匹配,因此进一步补充了神经干细胞质膜蛋白质数据。
Neural stem cells are the multipotential,self-renewing cells in many regions of the mammalian central nervous system. They are able to differentiate into neurons, astrocytes and oligodendrocytes under certain conditions. According to their capacity of self-renewal, multipotency and low immunogenic properties as well as migration and integration with the host tissue, they can be used for gene therapy and rehabilitation of a number of central nervous system injury or diseases. Searching for new signal pathway involved in differentiation of neural stem cells and clarifying the mechanism of pluripotency (self-renewal or proliferation) and differentiation is one of the most important areas in the research of neural stem cells. In the process of their self-renewal and differentiation, plasma membrane proteins play pivotal role which transmiss signal transduction as the starting position according to external micro-environmental changes. Lots of studies have shown that various types of ion channels, antigen molecules, and surface receptors of plasma membrane play very important roles in cell proliferation, migration, apoptosis and differentiation. Our experiment aimed at studying the plasma membrane proteins of neural stem cells. By aqueous two-phase partition, we purified plasma membrane of mNSCs(line C17.2), which are immortalized neural stem cell lines which were transfected v-myc gene.Through SDS-PAGE, trypsin digestion, LC-MS/MS and bioinformatics, we identified 222 plasma membrane proteins. Transport proteins accounted for the largest amouts. A great many receptors, signals and enzymes were also found, which contributed to the further study of neural stem cells and application. Many proteins such as Presenilin-1, Nicastrin, Cell adhesion molecule 1 were related to proliferation and differentiation of neural stem cells. We identified and analysed PM proteins of C 17.2 neural stem cells for the first time.The date can provide application value for the research in proliferation and directional differentiation as well as repair of degenerative diseases.
     Most membrane proteins are glycosylated protein. Cell surface glycoproteins have important biological functions, including mutual recognition between cells, adhesion, signal reception, communications, immune response, etc. A variety of known diseases biomarkers and important molecule antibody molecules are glycoproteins. However, based on the enrichment method of plasma membrane and mass spectrometry technology currently, high-abundance proteins were identified substantially rather than low-abundance glycoproteins. Therefore, efficient glycoprotein or glycopeptides enrichment and removal of high-abundance proteins with non-glycosylation can greatly increase the efficiency of glycoproteins identification.In our study, We applyed the enrichment and identification technology of cell surface glycoprotein(Cell Surface Capturing, CSC-technology) that selectively enriched glycopeptides of C17.2 neural stem cells exposed to the cell exterior, which involved biotinylation of cell surface glycoproteins and affinity enrichment of the membrane glycoproteins. By analyzing only the N-glycosites, the sample complexity was drastically reduced and a relative large abundance range of the cell surface proteins were analyzed by mass spectrometry.188 glycopeptides with 200 glycosylation sites were identified,which resulted in the identification of 99 membrane glycoproteins, including 26 CD molecules.140 new N-glycosites were determined experimentally, including the new N-glycosites of Neural cell adhesion molecule L1,Eph receptor and Neuropilin-1,which have been reported to be involved in proliferation and differentiation of neural stem cells. A great many low-density glycoproteins were identified such as Interleukin-6 receptor and CD276.Therefore, we have built up a C17.2 membrane glycoprotein database for the first time. The cell surface glycoproteins had a great value for analysis of directional differentiation of neural stem cells and neurologic disease. Besides,the data had the potential to facilitate biomarker discovery. Futher more,only 28 glycoproteins were in the data of the plasma membrane proteins using aqueous two-phase partition, which added the data of neural stem cells plasma membrane proteins tremendously.
引文
[1]McKay R. Stem cells in the central nervous system[J]. Science, 1997,276:66-71.
    [2]Villa A, Navarro B, Martinez-Serrano A. Genetic perpetuation of in vitro expanded human neuralstem cells:cellular properties and therapeutic potential [J]. Brain Res Bull,2002,57:789-794.
    [3]Gage HF. Mammalian neural stem cells [J]. Science,2000,287: 1433-1438.
    [4]Galli R, Gritti A, Bonfanti L, et al. Neural stem cells:an overview [J]. Circulation Research,2003,4:598-608.
    [5]Vescovi AL, Synder EY. Establishment and properties of neural stem cell clones:plasticity in vitro and in VH [J]. Brain Pathology, 1999,9:569-598.
    [6]Kuhn HG, Svendsen CN. Origins, functions, and potenrial of adult neural stem cells [J]. Bio Essay,1999,21:625-630.
    [7]Clarke DL, Johansson CB, Wilbertz J, et al. Generalized potential of adult neural stem cells [J]. Science,2000,288:1660-1663.
    [8]Amar AP, Zlokovic BV, Apuzzo MLJ. Endovascular restorative neurosurgery:A novel concept for molecular and cellular therapy of the nervous system [J]. Neurosurgery,2003,52:402-413.
    [9]Modo M, Rezaie P, Heuschling P, et al. Transplantation of neural stem cells in a rat model of stroke:assessment of short-term graft survival and acute host immunological response [J]. Brain Research, 2002,958:70-82.
    [10]Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell [J].Dev Biol,1996,175:1-13.
    [11]Kirschenbaum B, Nedergoard M, Preuss A, et al. In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain [J].Cereb Cortex,1994,6:576-589.
    [12]Pincus DW, Keyoung H, Restelli C, et al. FGF2BDNF-responsive neuronal progenitor cells in the adult human subependyma [J].Ann Neurol,1998,43:576-585.
    [13]Doetsch F, Caille I, Lim DA, et al. Subventricular zone astrocytes are neural stem cells in the mammalian brain [J].Cell,1999, 97:703-716.
    [14]Kendler A, Golden JA. Progenitor cell proliferation outside the ventricular and subventricular zones during human brain development[J]. JNeuropathol Exp Neurol,1996,Dec,55:1253-1258.
    [15]Groszer M, Erickson R, Scripture-Adams DD. et al. Negative regulation of neural stem:progenitor cell proliferation by the pten tumor suppressor gene in vivo [J]. Science,2001,294:2186-2189.
    [16]Zhong W, Jiang MM, Schonemann MD, et al. Mouse numb is an essential gene involved in cortical neurogenesis [J]. Proc Natl Acad Sci USA,2000,97:6844-6849.
    [17]Nunes MC, Roy NS, Keyoung HM, et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain [J]. Nat Med,2003,Apr,9:439-447.
    [18]Zang Y, Yu LF, Pang T, et al. AICAR Induces Astroglial Differentiation of Neural Stem Cells via Activating the JAK/STAT3 Pathway Independently of AMP-activated Protein Kinase [J]. J Biol Chem,2008,283:6201-6208.
    [19]Kim JH, Auerbach JM, Velasco I, et ul. Dopamine neurons derived from embryonic stem cells function in an animal model of parkinson's disease [J]. Nature,2002,418:50-56.
    [20]Modo M, Rezaie P, Heuschling P, et al. Transplantation of neural stem cells in a rat model of stroke:assessment of short-term graft survival and acute host immunological response [J]. Brain Research, 2002,958:70-82.
    [21]Philips MF, Mattiasson G, W ieloch T, et al. Neuroprotective and behavioral efficacy of nelTe growth factor-transfected hippocampal progenitor cell transplants after experimental traumatic brain Injury [J]. JNeurosurg,2001,94:765-774.
    [22]Yang H, Mujtaba T, Venkatraman G, et al. Region-specific
    diferentiation of neural tube-derived neuronal restricted progenitor cells after heterotopic transplantation [J]. Proc Natl Acad Sci USA, 2000,97:13366-13371.
    [23]Shihabuddin LS, Homer PJ, Ray J, et al. Aduh spinal cord stem cells generateneurons after transplantation in the adult dentate gyrus [J]. J Neurosci,2000,20:8727-8735.
    [24]Suhonen JO, Peterson DA, Ray J, et al. Differentiation of adult hippocampus derived progenitors into olfactory neurons in vivo[J]. Nature,1996,383:624-627.
    [25]李巍,李成仁,蔡文琴,周得山.BDN基因修饰神经干细胞移植后大鼠脊髓损伤移植处的基因表达变化[J].第三军医大学学报,2003,1:43-44.
    [26]Wallin E, Von HG. Genome wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms [J]. Prot Sci,1998,7:1029-1038.
    [27]Blay JY, Le Cesne A, Alberti L, et al. Targeted cancer therapies [J]. Bull Cancer,2005,92:13-18.
    [28]Marmagne A, Salvi D, Rolland N, et al. Purification and fractionation of membranes for proteomic analyses [J]. Methods Mol Biol,2006, 323:403-420.
    [29]Bionder J, Terunuma A, Conrads PT, et al. A proteomic characterization of the plasma membrane of human epidermis by high-throughput mass spectrometry [J]. J Invest Dermatol,2004, 123:691-699.
    [30]Adam PJ, Boyd R, Tyson kL, et al. Comprehensive proteomic analysis of breast cancer cell membranes reveals unique proteins with potential roles in clinical cancer[J]. JBiol Chem,2003,278:6482-6489.
    [31]Zhang L, Xie J, Wang X, et al. Proteomic analysis of mouse liver plasma membrane:use of differential extraction to enrich hydrophobic membrane proteins [J].Proteomics,2005,5:4510-4524.
    [32]Zhang LJ, Wang XE, Peng X, et al. Proteomic analysis of low-abundant integral plasma membrane proteins based on gels [J]. Cell Mol Life Sci,2006,63:1790-1804.
    [33]Zhao Y, Zhang W, Kho Y, et al. Proteomic Analysis of Integral Plasma Membrane Proteins [J]. Anal Chem,2004,76:1817-1823.
    [34]Pierce MJ, Wait R, Begum S, et al. Expression profiling of Lymphocyte Plasma membrane proteoins [J]. Mol Cell Proteomics, 2004,3:56-65.
    [35]Zhang W, Zhou G, Zhao Y, et al. Affinity enrichment of plasma membrane for proteomics analysis [J]. Electrophoresis,2003,24: 2855-2863
    [36]Cao R, Li X, Liu Z, et al. Integration of a Two-Phase Partition Proteins [J]. J Proteome Res,2006,5:634-642.
    [37]Smithies O, Poulik MD. Two-dimensional electrophoresis of serum
    proteins [J]. Nature,1956,177:1033.
    [38]Blonder J, Goshe MB, Moore RJ, et al. Enrichment of Integral Membrane Proteins for Proteomic Analysis Using Liquid Chromatography-Tandem Mass Spectrometry [J]. J Proteome Res, 2002,1:351-360.
    [39]Nouwens AS, Cordwell SJ, Larsen MR, et al. Complementing genomics with proteomics:the membrane subproteome of Pseudomonas aeruginosa PAO1 [J]. Electrophoresis,2000,21:3797-3809.
    [40]Santoni V, Molly M, Rabilloud T. Membrane proteins and proteomics: un amour impossible [J]. Electrophoresis,2000,21:1054-1070.
    [41]Molloy MP, Herbert BR, Slade MB, et al. Proteomic analysis of the Escherichia coli outer membrane [J]. Eur J Biochem,2000,267:2871-2881.
    [42]Adam PJ, Boyd R, Tyson kL, et al. Comprehensive proteomic analysis of breast cancer cell membranes reveals unique proteins with potential roles in clinical cancer [J]. J Biol Chem,2003, 278:6482-6489.
    [43]Marmagne A, Rouet MA, Ferro M, et al. Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome [J]. Mol Cell Proteomics,2004,3:675-691.
    [44]Macfarlane DE. Two dimensional benzyldimethyl-n
    hexadecylammonium chloride----sodium dodecyl sulfate preparative polyacrylamide gel electrophoresis:a high capacity high resolution technique for the purification of proteins from complex mixtures [J]. Anal Biochem,1989,176:457-463.
    [45]Babusiak, M., Man, P., Petrak, J., and Vyoral, D. Native proteomic analysis of protein complexes in murine intestinal brush border membranes [J]. Proteomics,2007,7:121-129.
    [46]Washburn MP, Wolters D, Yates JR 3rd, et al. Large-scale analysis of the yeast proteome by multidimensional protein identification technology [J]. Nat Biotechnol,2001,19:242-247.
    [47]Wolters DA, Washburn MP, Yates JR 3rd. An automated multidimensional protein identification technology for shotgun proteomics [J]. Anal Chem,2001,73:5683-5690.
    [48]Paoletti AC, Zybailov B, Washburn MP, et al. Principles and applications of multidimensional protein identification technology [J]. Expert Rev Proteomics,2004,1:275-282.
    [49]Domon B, Aebersold R. Mass spectrometry and protein analysis [J]. Science,2006,312:212-217.
    [50]Dolan JW. Temperature selectivity in re versed-phase high performance liquid chromatography [J]. J Chromatogr A,2002,965: 195-205.
    [51]Hagglund P, Bunkenborg J, Elortza F, et al. A new strategy for
    identification of N-Glycosylated proteins and unambiguous assignment of their glycosylation sites using LILIC enrichment and partial deglycosylation [J].J.Proteome Res.2004,3,556-566.
    [52]Pauline MR, Tim E, Peter C, et al. Glycosylation and the immune system [J].Science,2001,291:2370-2376.
    [53]Helenius A, Markus A, Intracellular functions of N-Linked glycans [J].Science,2001,291:2376-2378.
    [54]Morelle W, Kevin C, Frederic C, et al. The use of mass spectrometry for the proteomics analysis of glycosylation [J].Proteomics 2006,6:3993-4015.
    [55]Sun, B. Y., Ranish, J. A., Utleg, A. G, White, J. T. et al., Shotgun glycopeptides-capture approach coupled with mass spectrometry for comprehensive glycoproteomics [J].Mol Cell Proteomics,2007,6,141-149.
    [56]Bundy J, Feselau C.Lectin and carbohydrate affinity capture surfaces for mass spectrometric analysis of microorganisms[J].Anal Chem,2001 73:751-757.
    [57]Wang LJ, Li FX, Sun W, et al. Concanavalin A-captured glycoproteins in healthy human urine [J]. Mol Cell proteomics,2006,5,560-562.
    [58]Yang ZP, Hancock WS, et al. Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column [J].J Chromatogr A,2004,1053:79-88.
    [59]Schwientek T, Mandel U, Roth, et al. A serial lectin approach to the mucin-type O-glycoproteome of Drosophila melanogaster S2 cells [J].Proreomics,2007,7:3264-3277.
    [60]Zhang H, Li XJ, Martin DB, et al. Identification and quantification of N-linked glycoproteins using hydrazide chemistry,stable isotope labeling and mass spectrometry [J]. Nat Biotechnol,2003,21:660-666.
    [61]Liu T, Qian WJ, Gritsenko MA, et al. High Dynamic Range Characterization of the Trauma Patient Plasma Proteome [J].Mol. Cell Proteomics,2006,5:1899-1913.
    [62]Sun B, Ranish JA, Utleg AG, et al. Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics [J]. Mol Cell Ptroteomics,2007,6:141-149.
    [63]Yan J, Fang H,Wang B. Boronolectins and fluorescent boronolectins:an examination of the detailed chemistry issues important for the design [J]. Med Res Rev,2005,25:490-520.
    [64]Wuhrer M, Koeleman CAM, Hokke C H, et al. Protein Glycosylation Analyzed by Normal-Phase Nano-Liquid Chromatography-Mass Spectrometry of Glycopeptides [J]. Anal. Chem,2005,77:886-894.
    [65]Ding W, Hill JJ, Kelly J, et al. Selective Enrichment of Glycopeptides from Glycoprotein Digestes Using Ion-Pairing Normal-Phase Liquid Chromatography [J].Anal Chem,2007,79, 8891-8899.
    [66]Snyder EY, Deitcher DL, Walsh C, et al. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum [J]. Cell,1992,68:33-51.
    [67]Placido N, David DN, Morre DJ. Isolation of purified plasma membranes from cultured cells and hepatomas by two-phase partition and preparative Free-flow electrophoresis [J]. Cancer research,1989,49:2147-2156.
    [68]Morre DM, Morre DJ. Aqueous two-phase partition applied to the solation of plasma membranes and Golgi apparatus from cultured mammalian cells [J]. J chromatogr B,2000,74:3377-3387.
    [69]Walter H, Johansson G, Brooks DE. Partitioning in Aqueous Two-Phase Systems:recent results [J]. Anal Biochem,1991, 197:1-18.
    [70]Morre DJ, Morre DM. Cell membrane techniques. Preparation of mammalian plasma membranes by aqueous two-phase partition [J]. BioTechniques,1989,7:946-958.
    [71]Hiroyuki K, Tsuyoshi T, Yasushi I, et al. Efficient in-gel digestion procedure using 5-cyclohexyl-l-pentyl-b-D-maltoside as an additive for gel-based membrane proteomics. Rapid Commun [J]. Mass Spectrom,2004,18,:2388-2394.
    [72]Ashburner M, Ball CA, Blake JA, et al. Gene Ontology:tool for the unification of biology [J]. Nature Genetics,2000,25:25-29.
    [73]Krogh A, Larsson B, Heijne G, et al. Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes [J]. J. Mol Biol,2001,305:567-580.
    [74]Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein [J]. J. Mol Biol,1982,157, 105-132.
    [75]Jiang XS, Zhou H, Zhang L, et al. high-throughput approach for subcellular proteome [J]. Mol Cell Proteomics,2004,3:441-455.
    [76]Helena S, Petr H, Petr V, et al. A proteomic approach to studying the differentiation of neural stem cells [J]. Proteomics,2007,7, 1825-1838.
    [77]Yang M, Stull ND, Berk MA, et al. Neural stem cells spontaneously express dopaminergic traits after transplantation into intact or 6-hydroxydopamine-lesioned rat [J]. Exp Neurol,2002,177:50-60.
    [78]Cheng A, Chan S1, Milhavet O, et al. p38MAPkinase mediates nitric oxide-induced apoptosis of neural progenitor cells [J]. J Biol Chem,2001,276:43320-43327.
    [79]Riess P, Zhang C, Saatman KE, et al. Transplanted neural stem cells survive,differentiate,and improve neuroligical motor function after experimental traumatic brain injury [J]. Neurosurgery,2005,51:
    1043-1052.
    [80]Whittemore SR, Snyder EY. Physiologic relevance and functional potential of CNS-derived cell lines [J]. Molec Neurobiol,1996, 12:13-38.
    [81]Lacorazza HD, Flax JD, Snyder EY, et al. Expression of human β-hexosaminidase a-subunit gene(the gene defect of Tay-Sachs disease)in mouse brains upon engraftment of transduced progenitor cells [J]. Nature,1996,2:424-429.
    [82]Durr E, Yu J, Krasinska KM, Carver LA, Yates JR. Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture [J]. Nature Biotechnol,2004,22:985-992.
    [83]Bagshaw RD, Mahuran DJ, Callahan JW. A proteomic analysis of lysosomal integral membrane proteins reveals the diverse composition of the organelle [J]. Mol Cell Proteomics,2005, 4:133-143.
    [84]Campion D, Dumamchin C, Hannequin D, et al. Early-onset autosomal dominant Alzheimer disease prevalence, genetic heterogeneity,and mutation spectrum [J]. Am J Hum Genet,1999,65(3):664-70.
    [85]Black IB, Woodbury D. Adult rat and human bone marrow stromal stem cells differentiate into neurons [J]. Blood Cells Mol Dis,2001,27:632-636.
    [86]Handler M, Yang X, Shen J, et al. Presenilin-1 regulates neuronal differentiation during neurogenesis [J].Development,2000,127: 2593-2606.
    [87]Wollscheid B, Bausch-Fluck D, Henderso C, et al. Phenotyping cells without antibodies:Mass-Spectrometric Identification and Quantitation of N-linked Cell Surface Glycoproteins [J]. Nat Biotechnol,2009,27:378-386.
    [88]Zhou Y, Aebersold R, Zhang H, et al. Isolation of N-Linked Glycopeptides from Plasma [J].Anal Chem,2007,79:5826-5837.
    [89]Freitag S, Le TI, Chilkoti A, et al. Structural studies of binding site tryptophan mutants in the high-affinity streptavidin-biotin complex [J]. J Mol Biol,1998,279:211-221.
    [90]Polyak B, Geresh S, Marks RS, et al. Synthesis and characterization of a biotin-alginate conjugate and its application in a biosensor construction [J]. Biomacromolecules,2004,5:389-96.
    [91]Humbert N, Zocchi A, Ward TR, et al. Electrophoretic behavior of streptavidin complexed to a biotinylated probe:a functional screening assay for biotin-binding proteins [J].Electrophoresis,2005,26:47-52.
    [92]Schiemer DC, Yalcin T, Li L, et al. MALDI mass spectrometry combined with avidin-biotin chemistry for analysis of protein modifications [J]. Anal Chem,1998,70:1569-1575.
    [93]Reisfeld A, Rothenberg JM, Bayer EA, et al. Nonradioactive hybridization probes prepared by the reaction of biotin hydrazide with DNA [J]. Biochem Biophys Res Commun,1987,142:519-526.
    [94]Wilechek M, Bayer EA, Livnah O, et al. Essentials of biorecognition:the (strept)avidin-biotin system as a model for protein-protein and protein-ligand interaction [J].Imumuol Lett,2006,103:27-32.
    [95]Jurinke C,van den Boom D, Collazo V, et al. Recovery of nucleic acids from immobilized biotin-streptavidin complexes using ammonium hydroxide and applications in MALDI-TOF mass spectrometry [J]. Anal Chem,1997,69:904-910.
    [96]Freitag S, Le Trong I, Klumb L, et al. Temperature control of biotin binding and release with A streptavidin-poly(N-isopropylacrylamide) site-specific conjugate [J]. Bioconjug Chem,1999,0:395-400.
    [97]Santoni V, Kieffer S, Desclaux D,et al. Membrane proteomics:use of addictive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties [J]. Electrophoresis,2000,21:3329-3344.
    [98]van Montfort BA, Doeven MK, Canas B, et al. Combined in-gel tryptic digestion and CNBr cleavage for the generation of peptide maps of an integral membrane protein with MALDI-TOF mass spectrometry [J]. Biochim Biophys Acta,2002,1555:111-115.
    [99]Fox GB, Kjolle C, Murphy KJ, et al. The modulations of NCAM polysialytion state that follow transient global ischemia are brief on neurons but enduring on glia [J]. J Neuropathol Exp Neurol,2001,60: 132-140.
    [100]Goldshmit Y,Mclenachan S,Turnley A,et al. Roles of Eph receptors and ephrins in the normal and damaged adult CNS [J].Brain Res Rev,2006,52:327-345.
    [101]王岩峰,吕刚,赵宇,et al.神经干细胞分化过程中Eph/ephrin A3的表达及意义[J].中国医科大学学报,2008,第37卷,第一期.
    [102]He Z, Tessier-Lavigne M. Neuropilin is a receptor for the axonal chemorepellent Semaphorin Ⅲ[J]. Cell,1997,90:739-751.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700