止血带压迫对大鼠坐骨神经轴浆转运的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:止血带用于肢体手术,可以减少病人出血量,清晰手术视野,便于解剖结构辨认,缩短手术时间,减少并发症,目前广泛应用于骨科和整形外科手术。但应用止血带压迫本身也可以引起一些不良反应,如出现疼痛、高血压等。既往对止血带导致不良反应的研究主要集中在止血带压迫区域,或者是止血带压迫下方的缺血区域,而对于止血带压迫上方区域研究较少。本实验通过观察止血带压迫大鼠坐骨神经对类胰岛素样生长因子-1(Insulin-like growth factor-1, IGF-1)运输的变化情况,来研究止血带压迫对轴浆转运的影响。
     方法:采用12周龄的雄性sprague dawley大鼠,48只,体重250-300g,随机分为8组:止血带压迫1h组(A组)、2h组(B组)、4h组(C组)和12h组(D组)、神经结扎1h组(E组)、2h组(F组)、4h组(G组)和12h组(H组),每组6只。全身麻醉后,随机决定每只大鼠的左侧或右侧坐骨神经是处理组或对照组。压迫或结扎达到目标时间后取材,通过免疫组化的方法观察坐骨神经受压或结扎部位上方、下方IGF-1的堆积情况,然后计算出每张免疫组化图片的平均光密度值,用处理组平均光密度值与对照组平均光密度值之比(ratio of experimental average optic density to control, E/C)来判断IGF-1堆积的程度。
     结果:D组有一只大鼠死亡,其实验数据予以排除,其余四十七只大鼠实验结果纳入分析使用。A、B、C、D组为止血带压迫组,止血带压迫上方区域有明显的IGF-1免疫反应性物质堆积,E/C值均大于1,随着压迫时间的延长而增加,分别为1.30±0.28、1.57±0.30、2.78±0.56、5.91±1.22。止血带压迫下方区域未见明显IGF-1免疫反应性物质堆积,E/C值在1左右,也不随压迫时间的延长而改变,分别为1.03±0.05、1.00±0.01、1.08±0.12、1.02±0.04。A组内的三只大鼠,B组内的一只大鼠坐骨神经压迫部位上方区域IGF-1免疫反应性物质堆积不明显;E、F、G、H组为神经结扎组,结扎痕迹上方及下方都有IGF-1免疫反应性物质的明显堆积,且结扎痕迹上方区域堆积的程度较下方明显。四组在结扎痕迹上方及下方区域E/C值都大于1,且随着时间的延长而增加。结扎上方的E/G值分别为1.53±0.51、2.89±0.67、4.04±0.77和7.99±1.18。结扎下方的E/G值分别为1.19±0.24、1.86±0.24、2.17±0.33和4.04±1.69。E组有两只大鼠坐骨神经结扎部位上方及下方IGF-1免疫反应性物质堆积不明显。
     结论:1.止血带压迫可影响坐骨神经的轴浆转运,在止血带压迫部位的上方区域出现IGF-1的明显堆积,并随时间延长增加;而止血带压迫部位的下方区域未见明显IGF-1堆积,也不随时间改变。2.结扎大鼠坐骨神经可以阻断坐骨神经的轴浆转运,在结扎部位的上方和下方均出现明显的IGF-1堆积,并随时间延长增加;
     3.神经结扎导致的IGF-1堆积程度明显超过止血带压迫导致的IGF-1堆积。
Background:Tourniquet is widely useu in extremity surgery to reduce bleeding, achieve a bloodless field and facilitate the identification of anatomical structures, which is expected to shorten the operative time and decrease complications. So the tourniquet is extensive used in orthopedic and plastic surgery. It also can cause some pathophysiology changes, even adverse reactions, for example tourniquet pain, tourniquet hypertension and so on. The research of tourniquet side effect mainly focus on the area, which is compressed by tourniquet or distal to compressed site. But few research pay attention to the area, which is proximal tourniquet compressed site. In this experiment, to study the tourniquet compression on axonal transport, the transport of insulin like growth factor-1 in rat sciatic nerve axon was observed.
     Methods:Forty-eight 12-week-old, weight 250-300g male sprague dawley rats were included in this study, and random divided into eight groups:Tourniquet compressed 1h group (group A),2h group (group B),4h group (group C),12h group (group D), nerve ligation 1h group (group E),2h group (group F),4h group (group G),12h group (group H). Six rats in every group. After anesthesia, the left or right side of each rat sciatic nerve is randomly separated into the treatment group or control group. After treatment reach target time, drawing materials. And, the immunohistochemistry was used to observation the accumulation of IGF-1 of the area around sciatic nerve compression or ligation site. Then calculated the average optical density for each immunohistochemical picture. After that the ratio of experimental average optic density to control was used to measure the degree of IGF-1 accumulation.
     Results:One of rats was dead in group D, and the data was excluded from the result. The experimental data of remaining 47 rats were included in the analysis. Group A, B, C and D was tourniquet compression group, there was obvious IGF-1 immunoreactivity material accumulation on the area proximal tourniquet compressed site. And all of the E/C values were greater than 1. The accumulation was severer with the compressed time extended. The E/C values of group A, B, C and D were 1.30±0.28,1.57±0.30,2.78 ±0.56,5.91±1.22, respectively. But there was no significant IGF-1 immunoreactivity material accumulation on the area distal to tourniquet compressed site. And the values of group A, B, C, D were 1.03±0.05,1.00±0.01,1.08±0.12,1.02±0.04, around 1, there was no obvious change with treatment time extended. There were three rats in group A and one rat in group B no obvious IGF-1 immunoreactivity material accumulation at the proximal Sciatic nerve compression site. Group E, F, G and H were nerve ligation group. Both proximal and distal compressed site were IGF-1 immunoreactivity material accumulation, and the accumulation of proximal was more severe. The values of group E, F, G, H were 1.53±0.51,2.89±0.67,4.04±0.77,7.99±1.18 at the proximal ligation site,1.19±0.24、1.86±0.24、2.17±0.33和4.04±1.69 at the distal ligation site. There were two rats in group E no obvious IGF-1 immunoreactivity material accumulation.
     Conclusion:1.The use of tourniquet can affect the sciatic nerve axonal transport. There were apparent accumulation of IGF-1 in proximal tourniquet compressed site, and accumulation degree severer with time extended. But in distal tourniquet compressed site, there were no significant accumulation, and little change with time extended. 2. The ligation of rat sciatic nerve can block axonal transport, both the proximal and distal ligation site were apparent IGF-1 accumulation, and severer with time extended. 3. The accumulation degree of IGF-1 was severer in nerve ligation group than tourniquet compressed group.
引文
[1]Omeroglu H, Ucaner A, Tabak AY, Guney 0, Bicimoglu A, Gunel U. The effect of using a tourniquet on the intensity of postoperative pain in forearm fractures. A randomized study in 32 surgically treated patients[J]. Int Orthop,1998,22(6):369-373.
    [2]Mitchell D, Friedman RJ, Baker JD,3rd, Cooke JE, Darcy MD, Miller MC,3rd. Prevention of thromboembolic disease following total knee arthroplasty. Epidural versus general anesthesia[J]. Clin Orthop Relat Res,1991, (269):109-112.
    [3]Cole F. Tourniquet pain[J]. Current researches in anesthesia & analgesia,1952,31(1):63-64.
    [4]Briden,:augh PO, Hagenouw RR, Gielen MJ, Edstrom HH. Addition of glucose to bupivacaine in spinal anesthesia increases incidence of tourniquet pain[J]. Anesth Analg,1986, 65(11):1181-1185.
    [5]Concepcion MA, Lambert DH, Welch KA, Covino BG. Tourniquet pain during spinal anesthesia:a comparison of plain solutions of tetracaine and bupivacaine[J]. Anesth Analg,1988, 67(9):828-832.
    [6]Tetzlaff JE, Yoon HJ, Walsh M. Regional anaesthetic technique and the incidence of tourniquet pain[J]. Can J Anaesth,1993,40(7):591-595.
    [7]Inal S, Er M, Ozsoy M, Cavusoglu A, Dincel V, Sakaogullari A. Comparison of two different anesthesia techniques for tourniquet pain with the use of forearm tourniquet[J]. Iowa Orthop J, 2009,29:55-59.
    [8]Sen H, Kulahci Y, Bicerer E, Ozkan S, Dagli G, Turan A. The analgesic effect of paracetamol when added to lidocaine for intravenous regional anesthesia[J]. Anesth Analg,2009, 109(4):1327-1330.
    [9]Celik M, Saricaoglu F, Canbay 0, Dal D, Uzumcigil A, Leblebicioglu G, Aypar U. The analgesic effect of paracetamol when added to lidocaine for intravenous regional anesthesia[J]. Minerva Anestesiol,2009.
    [10]Viscomi CM, Friend A, Parker C, Murphy T, Yarnell M. Ketamine as an adjuvant in lidocaine intravenous regional anesthesia:a randomized, double-blind, systemic control trial[J]. Reg Anesth Pain Med,2009,34(2):130-133.
    [11]Maclver MB, Tanelian DL. Activation of C fibers by metabolic perturbations associated with tourniquet ischemia[J]. Anesthesiology,1992,76(4):617-623.
    [12]Egbert LD, Deas TC. Cause of pain from a pneumatic tourniquet during spinal anesthesia [J]. Anesthesiology,1962,23:287-290.
    [13]Hagenouw RR, Bridenbaugh PO, van Egmond J, Stuebing R. Tourniquet pain:a volunteer study[J]. Anesth Analg,1986,65(11):1175-1180.
    [14]Farah RS, Thomas PS. Sympathetic blockade and tourniquet pain in surgery of the upper extremity[J]. Anesth Analg,1987,66(10):1033-1035.
    [15]Rydevik B, Nordborg C. Changes in nerve function and nerve fibre structure induced by acute, graded compression[J]. Journal of neurology, neurosurgery, and psychiatry,1980, 43(12):1070-1082.
    [16]Chabel C, Russell LC, Lee R. Tourniquet-induced limb ischemia:a neurophysiologic animal model[J]. Anesthesiology,1990,72(6):1038-1044.
    [17]Dilley A, Bove GM. Disruption of axoplasmic transport induces mechanical sensitivity in intact rat C-fibre nociceptor axons[J]. J Physiol,2008,586(2):593-604.
    [18]Brochu RM, Dick IE, Tarpley JW, McGowan E, Gunner D, Herrington J, Shao PP, Ok D, Li C, Parsons WH, Stump GL, Regan CP, Lynch JJ, Jr., Lyons KA, McManus OB, Clark S, Ali Z, Kaczorowski GJ, Martin WJ, Priest BT. Block of peripheral nerve sodium channels selectively inhibits features of neuropathic pain in rats[J]. Mol Pharmacol,2006,69(3):823-832.
    [19]Lombet A, Laduron P, Mourre C, Jacomet Y, Lazdunski M. Axonal transport of the voltage-dependent Na+channel protein identified by its tetrodotoxin binding site in rat sciatic nerves[J]. Brain research,1985,345(1):153-158.
    [20]Kretschmer T, Happel LT, England JD, Nguyen DH, Tiel RL, Beuerman RW, Kline DG. Accumulation of PN1 and PN3 sodium channels in painful human neuroma-evidence from immunocytochemistry[J]. Acta Neurochir (Wien),2002,144(8):803-810; discussion 810.
    [21]Devor M. Sodium channels and mechanisms of neuropathic pain[J]. J Pain,2006,7(1 Suppl 1):S3-S12.
    [22]Burchiel KJ, Russell LC. Effects of potassium channel-blocking agents on spontaneous discharges from neuromas in rats[J]. J Neurosurg,1985,63(2):246-249.
    [23]Tohda C, Sasaki M, Konemura T, Sasamura T, Itoh M, Kuraishi Y. Axonal transport of VR1 capsaicin receptor mRNA in primary afferents and its participation in inflammation-induced increase in capsaicin sensitivity[J]. J Neurochem,2001,76(6):1628-1635.
    [24]Zochodne DW, Allison JA, Ho W, Ho LT, Hargreaves K, Sharkey KA. Evidence for CGRP accumulation and activity in experimental neuromas[J]. Am J Physiol,1995,268(2 Pt 2):H584-590.
    [25]Ruger U, Irnich D, Abahji TN, Crispin A, Hoffmann U, Lang PM. Characteristics of chronic ischemic pain in patients with peripheral arterial disease[J]. Pain,2008,139(1):201-208.
    [26]Strichartz GZ, M. An explanation for pain originating from tourniquet during regional anesthesia[J]. Reg Anesth,1984,9(1):44-45.
    [27]姚家祥,付惠群,进刘.缺血预处理不能减轻止血带疼痛[J].中国疼痛医学杂志,2007,13(3):181-182.
    [28]Devor M. Neuropathic pain and injured nerve:peripheral mechanisms[J]. Br Med Bull, 1991,47(3):619-630.
    [29]Dougherty PM, Cata JP, Burton AW, Vu K, Weng HR. Dysfunction in multiple primary afferent fiber subtypes revealed by quantitative sensory testing in patients with chronic vincristine-induced pain[J]. J Pain Symptom Manage,2007,33(2):166-179.
    [30]Nozaki-Taguchi N, Chaplan SR, Higuera ES, Ajakwe RC, Yaksh TL. Vincristine-induced allodynia in the rat[J]. Pain,2001,93(1):69-76.
    [31]Thibault K, Elisabeth B, Sophie D, Claude FZ, Bernard R, Bernard C. Antinociceptive and anti-allodynic effects of oral PL37, a complete inhibitor of enkephalin-catabolizing enzymes, in a rat model of peripheral neuropathic pain induced by vincristine[J]. Eur J Pharmacol,2008, 600(1-3):71-77.
    [32]Green LS, Donoso JA, Heller-Bettinger IE, Samson FE. Axonal transport disturbances in vincristine-induced peripheral neuropathy[J]. Annals of neurology,1977, 1(3):255-262.
    [33]Tanner KD, Levine JD, Topp KS. Microtubule disorientation and axonal swelling in unmyelinated sensory axons during vincristine-induced painful neuropathy in rat[J]. J Comp Neurol,1998,395(4):481-492.
    [34]Rinderknecht E, Humbel RE. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin[J]. J Biol Chem,1978,253(8):2769-2776.
    [35]Stromberg T, Ekman S, Girnita L, Dimberg LY, Larsson 0, Axelson M, Lennartsson J, Hellman U, Carlson K, Osterborg A, Vanderkerken K, Nilsson K, Jernberg-Wiklund H. IGF-1 receptor tyrosine kinase inhibition by the cyclolignan PPP induces G2/M-phase accumulation and apoptosis in multiple myeloma cells[J]. Blood,2006,107(2):669-678.
    [36]Kasuga M, Van Obberghen E, Nissley SP, Rechler MM. Demonstration of two subtypes of insulin-like growth factor receptors by affinity cross-linking[J]. J Biol Chem,1981, 256(11):5305-5308.
    [37]Rechler MM, Nissley SP. The nature and regulation of the receptors for insulin-like growth factors[J]. Annu Rev Physiol,1985,47:425-442.
    [38]Sacheck JM, Ohtsuka A, McLary SC, Goldberg AL. IGF-Ⅰ stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1[J]. Am J Physiol Endocrinol Metab,2004,287(4):E591-601.
    [39]Canalis E, Centrella M, Burch W, McCarthy TL. Insulin-like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures[J]. J Clin Invest,1989, 83(1):60-65.
    [40]Long L, Nip J, Brodt P. Paracrine growth stimulation by hepatocyte-derived insulin-like growth factor-1:a regulatory mechanism for carcinoma cells metastatic to the liver[J]. Cancer Res, 1994,54(14)3732-3737.
    [41]Patterson LT, Dressler GR. The regulation of kidney development:new insights from an old model[J]. Curr Opin Genet Dev,1994,4(5):696-702.
    [42]Sadagurski M, Yakar S, Weingarten G, Holzenberger M, Rhodes CJ, Breitkreutz D, Leroith D, Wertheimer E. Insulin-like growth factor 1 receptor signaling regulates skin development and inhibits skin keratinocyte differentiation[J]. Mol Cell Biol,2006, 26(7):2675-2687.
    [43]Liu H, Chang L, Rong Z, Zhu H, Zhang Q, Chen H, Li W. Association of insulin-like growth factors with lung development in neonatal rats[J]. J Huazhong Univ Sci Technolog Med Sci, 2004,24(2):162-165.
    [44]李光振,朱刚,陈菁,冯华,王宪荣.IGF-1对大鼠坐骨神经再生早期的影响[J].第三军医大学学报,2008,30(11):1025-1027.
    [45]Dentremont KD, Ye P, D'Ercole AJ, O'Kusky JR. Increased insulin-like growth factor-Ⅰ (IGF-Ⅰ) expression during early postnatal development differentially increases neuron number and growth in medullary nuclei of the mouse[J]. Brain Res Dev Brain Res,1999,114(1):135-141.
    [46]Kanje M, Skottner A, Sjoberg J, Lundborg G. Insulin-like growth factor Ⅰ (IGF-Ⅰ) stimulates regeneration of the rat sciatic nerve[J]. Brain research,1989,486(2):396-398.
    [47]Hansson HA, Dahlin LB, Danielsen N, Fryklund L, Nachemson AK, Polleryd P, Rozell B, Skottner A, Stemme S, Lundborg G. Evidence indicating trophic importance of IGF-Ⅰ in regenerating peripheral nerves[J]. Acta Physiol Scand,1986,126(4):609-614.
    [48]Rabinovsky ED, Gelir E, Gelir S, Lui H, Kattash M, DeMayo FJ, Shenaq SM, Schwartz RJ. Targeted expression of IGF-1 transgene to skeletal muscle accelerates muscle and motor neuron regeneration [J]. FASEB J,2003,17(1):53-55.
    [49]Hansson HA, Rozell B, Skottner A. Rapid axoplasmic transport of insulin-like growth factor I in the sciatic nerve of adult rats[J]. Cell and tissue research,1987,247(2):241-247.
    [50]Oxman T, Arad M, Klein R, Avazov N, Rabinowitz B. Limb ischemia preconditions the heart against reperfusion tachyarrhythmia[J]. Am J Physiol,1997,273(4 Pt 2):H1707-1712.
    [51]Selimoglu 0, Ugurlucan M, Basaran M, Gungor F, Banach M, Cucu 0, Ong LL, Gasparyan AY, Mikhailidis D, Ogus TN. Efficacy of remote ischaemic preconditioning for spinal cord protection against ischaemic injury:association with heat shock protein expression[J]. Folia Neuropathol,2008,46(3):204-212.
    [52]Lubinska L. On axoplasmic flow[J]. Int Rev Neurobiol,1975,17:241-296.
    [53]郭桂平,刘耕砚,吴松.大鼠坐骨神经结扎后脊髓钙结合蛋白Calbindin D-28k的表达变化[J].现代生物医学进展2007,7(07):1031-1032.
    [54]郑林丰,张建伟,许愿忠,易西南,吴贤群,张灵芝.坐骨神经结扎后大鼠背根神经节和脊髓CGRP表达的变化[J1.中国组织化学与细胞化学杂志,2006,15(4):396-392.
    [55]Stemme S, Hansson HA, Holmgren A, Rozell B. Axoplasmic transport of thioredoxin and thioredoxin reductase in rat sciatic nerve[J]. Brain research,1985,359(1-2):140-146.
    [56]Anderson DR, Hendrickson A. Effect of intraocular pressure on rapid axoplasmic transport in monkey optic nerve[J]. Investigative ophthalmology,1974,13(10):771-783.
    [57]McLean WG. Pressure-induced inhibition of fast axonal transport of proteins in the rabbit vagus nerve in galactose neuropathy:prevention by an aldose reductase inhibitor[J]. Diabetologia,1988,31(7):443-448.
    [58]Dahlin LB, Meiri KF, McLean WG, Rydevik B, Sjostrand J. Effects of nerve compression on fast axonal transport in streptozotocin-induced diabetes mellitus. An experimental study in the sciatic nerve of rats[J]. Diabetologia,1986,29(3):181-185.
    [59]田河林,任雷鸣,何东伟,赵丁.多沙唑嗪对映体对大鼠血压和排尿功能的影响[J].中国药理学通报,2007,23(2):240-245.
    [60]杜淑旭,金红芳,梁银芳,赵霞,魏红铃,汪立,杜军保,唐朝枢.二氧化硫及其衍生物对大鼠血压的影响[J].实用儿科临床杂志,2008,23(1):22-24.
    [61]Tucek S, Hanzlikova V, Stranikova D. Effect of ischemia on axonal transport of choline acetyltransferase and acetylcholinesterase and on ultrastructural changes of isolated segments of rabbit nerves in situ[J]. Journal of the neurological sciences,1978,36(2):237-246.
    [62]Leone J, Ochs S. Anoxic block and recovery of axoplasmic transport and electrical excitability of nerve[J]. J Neurobiol,1978,9(3):229-245.
    [63]Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, Sheng ZH. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation[J]. Cell, 2008,132(1):137-148.
    [64]Shea TB, Flanagan LA. Kinesin, dynein and neurofilament transport[J]. Trends Neurosci,2001,24(11):644-648.
    [65]Hargens AR, McClure AG, Skyhar MJ, Lieber RL, Gershuni DH, Akeson WH. Local compression patterns beneath pneumatic tourniquets applied to arms and thighs of human cadavera[J]. J Orthop Res,1987,5(2):247-252.
    [66]Verhaak PF, Kerssens JJ, Dekker J, Sorbi MJ, Bensing JM. Prevalence of chronic benign pain disorder among adults:a review of the literature[J]. Pain,1998,77(3):231-239.
    [67]Merskey H, Spear FG. The concept of pain[J]. J Psychosom Res,1967, 11(1):59-67.
    [68]Bonica JJ. The need of a taxonomy[J]. Pain,1979,6(3):247-248.
    [69]McCleskey EW, Gold MS. Ion channels of nociception[J]. Annu Rev Physiol,1999, 61:835-856.
    [70]Melzack R, Wall PD. Pain mechanisms:a new theory[J]. Science,1965, 150(699):971-979.
    [71]Reynolds DV. Surgery in the rat during electrical analgesia induced by focal brain stimulation[J]. Science,1969,164(878):444-445.
    [72]Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR. Identification of two related pentapeptides from the brain with potent opiate agonist activity[J]. Nature,1975,258(5536):577-580.
    [73]Ochs S. Rate of fast axoplasmic transport in mammalian nerve fibres[J]. The Journal of physiology,1972,227(3):627-645.
    [74]Martin M, lyadurai SJ, Gassman A, Gindhart JG, Jr., Hays TS, Saxton WM. Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport[J]. Mol Biol Cell,1999,10(11):3717-3728.
    [75]Schnapp BJ, Reese TS. Dynein is the motor for retrograde axonal transport of organelles[J]. Proc Natl Acad Sci U S A,1989,86(5):1548-1552.
    [76]Hendry IA, Stockel K, Thoenen H, Iversen LL. The retrograde axonal transport of nerve growth factor[J]. Brain research,1974,68(1):103-121.
    [77]Stoeckel K, Thoenen H. Retrograde axonal transport of nerve growth factor: specificity and biological importance[J]. Brain research,1975,85(2):337-341.
    [78]Mazarakis ND, Azzouz M, Rohll JB, Ellard FM, Wilkes FJ, Olsen AL, Carter EE, Barber RD, Baban DF, Kingsman SM, Kingsman AJ, O'Malley K, Mitrophanous KA. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery[J]. Hum Mol Genet,2001,10(19):2109-2121.
    [79]Bearer EL, Breakefield XO, Schuback D, Reese TS, LaVail JH. Retrograde axonal transport of herpes simplex virus:evidence for a single mechanism and a role for tegument[J]. Proc Natl Acad Sci U S A,2000,97(14):8146-8150.
    [80]Price DL, Griffin J, Young A, Peck K, Stocks A. Tetanus toxin:direct evidence for retrograde intraaxonal transport[J]. Science,1975,188(4191):945-947.
    [81]Kuypers HG, Maisky VA. Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat[J]. Neurosci Lett,1975,1(1):9-14.
    [82]Enevoldson TP, Gordon G, Sanders DJ. The use of retrograde transport of horseradish peroxidase for studying the dendritic trees and axonal courses of particular groups of tract cells in the spinal cord[J]. Exp Brain Res,1984,54(3):529-537.
    [83]Meller ST, Gebhart GF. Spinal mediators of hyperalgesia[J]. Drugs,1994,47 Suppl 5:10-20; discussion 46-17.
    [84]McMahon SB, Lewin GR, Wall PD. Central hyperexcitability triggered by noxious inputs[J]. Curr Opin Neurobiol,1993,3(4):602-610.
    [85]US VE, Gaddum JH. An unidentified depressor substance in certain tissue extracts[J]. J Physiol,1931,72(1):74-87.
    [86]Hokfelt T, Kellerth JO, Nilsson G, Pernow B. Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons[J]. Brain Res,1975,100(2):235-252.
    [87]Bennett GW, Nathan PA, Wong KK, Marsden CA. Regional distribution of immunoreactive-thyrotrophin-releasing hormone and substance P, and indoleamines in human spinal cord[J]. J Neurochem,1986,46(6):1718-1724.
    [88]Suzuki H, Yoshioka K, Maehara T, Guo JZ, Nonomura Y, Otsuka M. Differential effects of wortmannin on the release of substance P and amino acids from the isolated spinal cord of the neonatal rat[J]. Br J Pharmacol,1998,125(8):1661-1668.
    [89]Sahbaie P, Shi X, Guo TZ, Qiao Y, Yeomans DC, Kingery WS, Clark JD. Role of substance P signaling in enhanced nociceptive sensitization and local cytokine production after incision[J]. Pain,2009,145(3)341-349.
    [90]Rusin KI, Ryu PD, Randic M. Modulation of excitatory amino acid responses in rat dorsal horn neurons by tachykinins[J]. J Neurophysiol,1992,68(1):265-286.
    [91]Urban L, Thompson SW, Dray A. Modulation of spinal excitability:co-operation between neurokinin and excitatory amino acid neurotransmitters[J]. Trends Neurosci,1994, 17(10):432-438.
    [92]Uddman R, Edvinsson L, Ekman R, Kingman T, McCulloch J. Innervation of the feline cerebral vasculature by nerve fibers containing calcitonin gene-related peptide:trigeminal origin and co-existence with substance P[J]. Neurosci Lett,1985,62(1):131-136.
    [93]Cridland RA, Henry JL. Effects of intrathecal administration of neuropeptides on a spinal nociceptive reflex in the rat:VIP, galanin, CGRP, TRH, somatostatin and angiotensin II[J]. Neuropeptides,1988, 11(1):23-32.
    [94]Oku R, Satoh M, Fujii N, Otaka A, Yajima H, Takagi H. Calcitonin gene-related peptide promotes mechanical nociception by potentiating release of substance P from the spinal dorsal horn in rats[J]. Brain Res,1987,403(2):350-354.
    [95]Sun RQ, Tu YJ, Lawand NB, Yan JY, Lin Q, Willis WD. Calcitonin gene-related peptide receptor activation produces PKA-and PKC-dependent mechanical hyperalgesia and central sensitization[J]. J Neurophysiol,2004,92(5):2859-2866.
    [96]Sun RQ, Lawand NB, Lin Q, Willis WD. Role of calcitonin gene-related peptide in the sensitization of dorsal horn neurons to mechanical stimulation after intradermal injection of capsaicin[J]. J Neurophysiol,2004,92(1)320-326.
    [97]Biella G, Panara C, Pecile A, Sotgiu ML. Facilitatory role of calcitonin gene-related peptide (CGRP) on excitation induced by substance P (SP) and noxious stimuli in rat spinal dorsal horn neurons. An iontophoretic study in vivo[J]. Brain Res,1991,559(2)352-356.
    [98]Neugebauer V, Rumenapp P, Schaible HG. Calcitonin gene-related peptide is involved in the spinal processing of mechanosensory input from the rat's knee joint and in the generation and maintenance of hyperexcitability of dorsal horn-neurons during development of acute inflammation[J]. Neuroscience,1996,71(4):1095-1109.
    [99]Yu LC, Hansson P, Brodda-Jansen G, Theodorsson E, Lundeberg T. Intrathecal CGRP8-37-induced bilateral increase in hindpaw withdrawal latency in rats with unilateral inflammation[J]. Br J Pharmacol,1996,117(1):43-50.
    [100]Kawamura M, Kuraishi Y, Minami M, Satoh M. Antinociceptive effect of intrathecally administered antiserum against calcitonin gene-related peptide on thermal and mechanical noxious stimuli in experimental hyperalgesic rats[J]. Brain Res,1989,497(1):199-203.
    [101]Lofgren O, Yu LC, Theodorsson E, Hansson P, Lundeberg T. Intrathecal CGRP(8-37) results in a bilateral increase in hindpaw withdrawal latency in rats with a unilateral thermal injury[J]. Neuropeptides,1997,31(6):601-607.
    [102]Yu LC, Hansson P, Lundeberg S, Lundeberg T. Effects of calcitonin gene-related peptide-(8-37) on withdrawal responses in rats with inflammation[J]. Eur J Pharmacol,1998, 347(2-3):275-282.
    [103]Sun RQ, Lawand NB, Willis WD. The role of calcitonin gene-related peptide (CGRP) in the generation and maintenance of mechanical allodynia and hyperalgesia in rats after intradermal injection of capsaicin[J]. Pain,2003,104(1-2):201-208.
    [104]Bennett AD, Chastain KM, Hulsebosch CE. Alleviation of mechanical and thermal allodynia by CGRP(8-37) in a rodent model of chronic central pain[J]. Pain,2000,86(1-2):163-175.
    [105]Zhang L, Hoff AO, Wimalawansa SJ, Cote GJ, Gagel RF, Westlund KN. Arthritic calcitonin/alpha calcitonin gene-related peptide knockout mice have reduced nociceptive hypersensitivity[J]. Pain,2001,89(2-3):265-273.
    [106]Bird GC, Han JS, Fu Y, Adwanikar H, Willis WD, Neugebauer V. Pain-related synaptic plasticity in spinal dorsal horn neurons:role of CGRP[J]. Mol Pain,2006,2:31.
    [107]Carlton SM. Peripheral excitatory amino acids[J]. Curr Opin Pharmacol,2001, 1(1):52-56.
    [108]Carlton SM, Hargett GL, Coggeshall RE. Localization and activation of glutamate receptors in unmyelinated axons of rat glabrous skin[J]. Neurosci Lett,1995,197(1):25-28.
    [109]Coggeshall RE, Carlton SM. Ultrastructural analysis of NMDA, AMPA, and kainate receptors on unmyelinated and myelinated axons in the periphery[J]. J Comp Neurol,1998, 391(1):78-86.
    [110]Calkins DJ. Localization of ionotropic glutamate receptors to invaginating dendrites at the cone synapse in primate retina[J]. Vis Neurosci,2005,22(4):469-477.
    [111]Alfredson H, Forsgren S, Thorsen K, Lorentzon R. In vivo microdialysis and immunohistochemical analyses of tendon tissue demonstrated high amounts of free glutamate and glutamate NMDAR1 receptors, but no signs of inflammation, in Jumper's knee[J]. J Orthop Res,2001,19(5):881-886.
    [112]Ma QP, Hargreaves RJ. Localization of N-methyl-D-aspartate NR2B subunits on primary sensory neurons that give rise to small-caliber sciatic nerve fibers in rats[J]. Neuroscience, 2000,101(3):699-707.
    [113]Marvizon JC, McRoberts JA, Ennes HS, Song B, Wang X, Jinton L, Corneliussen B, Mayer EA. Two N-methyl-D-aspartate receptors in rat dorsal root ganglia with different subunit composition and localization[J]. J Comp Neurol,2002,446(4):325-341.
    [114]Liu H, Wang H, Sheng M, Jan LY, Jan YN, Basbaum Al. Evidence for presynaptic N-methyl-D-aspartate autoreceptors in the spinal cord dorsal horn[J]. Proc Natl Acad Sci U S A, 1994,91(18):8383-8387.
    [115]Du J, Zhou S, Coggeshall RE, Carlton SM. N-methyl-D-aspartate-induced excitation and sensitization of normal and inflamed nociceptors[J]. Neuroscience,2003,118(2):547-562.
    [116]Leem JW, Hwang JH, Hwang SJ, Park H, Kim MK, Choi Y. The role of peripheral N-methyl-D-aspartate receptors in Freund's complete adjuvant induced mechanical hyperalgesia in rats[J]. Neurosci Lett,2001,297(3):155-158.
    [117]Cairns BE, Svensson P, Wang K, Hupfeld S, Graven-Nielsen T, Sessle BJ, Berde CB, Arendt-Nielsen L. Activation of peripheral NMDA receptors contributes to human pain and rat afferent discharges evoked by injection of glutamate into the masseter muscle[J]. J Neurophysiol, 2003,90(4):2098-2105.
    [118]Jin YH, Nishioka H, Wakabayashi K, Fujita T, Yonehara N. Effect of morphine on the release of excitatory amino acids in the rat hind instep:Pain is modulated by the interaction between the peripheral opioid and glutamate systems[J]. Neuroscience,2006,138(4):1329-1339.
    [119]Gibson W, Arendt-Nielsen L, Sessle BJ, Graven-Nielsen T. Glutamate and capsaicin-induced pain, hyperalgesia and modulatory interactions in human tendon tissue[J]. Exp Brain Res,2009,194(2):173-182.
    [120]Trujillo KA, Akil H. Excitatory amino acids and drugs of abuse:a role for N-methyl-D-aspartate receptors in drug tolerance, sensitization and physical dependence[J]. Drug Alcohol Depend,1995,38(2):139-154.
    [121]Huang NK, Tseng CJ, Wong CS, Tung CS. Effects of acute and chronic morphine on DOPAC and glutamate at subcortical DA terminals in awake rats[J]. Pharmacol Biochem Behav, 1997,56(3):363-371.
    [122]Tai YH, Wang YH, Tsai RY, Wang JJ, Tao PL, Liu TM, Wang YC, Wong CS. Amitriptyline preserves morphine's antinociceptive effect by regulating the glutamate transporter GLAST and GLT-1 trafficking and excitatory amino acids concentration in morphine-tolerant rats[J]. Pain, 2007,129(3):343-354.
    [123]Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y, Al-Gazali L, Hamamy H, Valente EM, Gorman S, Williams R, McHale DP, Wood JN, Gribble FM, Woods CG. An SCN9A channelopathy causes congenital inability to experience pain[J]. Nature,2006,444(7121):894-898.
    [124]Dong XW, Goregoaker S, Engler H, Zhou X, Mark L, Crona J, Terry R, Hunter J, Priestley T. Small interfering RNA-mediated selective knockdown of Na(V)1.8 tetrodotoxin-resistant sodium channel reverses mechanical allodynia in neuropathic rats[J]. Neuroscience,2007, 146(2):812-821.
    [125]Amaya F, Wang H, Costigan M, Allchorne AJ, Hatcher JP, Egerton J, Stean T, Morisset V, Grose D, Gunthorpe MJ, Chessell IP, Tate S, Green PJ, Woolf CJ. The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity[J]. J Neurosci,2006, 26(50):12852-12860.
    [126]Wood JN, Boorman JP, Okuse K, Baker MD. Voltage-gated sodium channels and pain pathways[J]. J Neurobiol,2004,61(1):55-71.
    [127]Lindia JA, Kohler MG, Martin WJ, Abbadie C. Relationship between sodium channel NaV1.3 expression and neuropathic pain behavior in rats[J]. Pain,2005,117(1-2):145-153.
    [128]Patel AJ, Honore E, Maingret F, Lesage F, Fink M, Duprat F, Lazdunski M. A mammalian two pore domain mechano-gated S-like K+channel[J]. EMBO J,1998,17(15):4283-4290.
    [129]Maingret F, Lauritzen I, Patel AJ, Heurteaux C, Reyes R, Lesage F, Lazdunski M, Honore E. TREK-1 is a heat-activated background K(+) channel[J]. EMBO J,2000,19(11):2483-2491.
    [130]Bearzatto B, Lesage F, Reyes R, Lazdunski M, Laduron PM. Axonal transport of TREK and TRAAK potassium channels in rat sciatic nerves[J]. Neuroreport,2000, 11(5):927-930.
    [131]Moriyama T, Higashi T, Togashi K, lida T, Segi E, Sugimoto Y, Tominaga T, Narumiya S, Tominaga M. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins[J]. Mol Pain,2005,1:3.
    [132]Chen JJ, Vasko MR, Wu X, Staeva TP, Baez M, Zgombick JM, Nelson DL. Multiple subtypes of serotonin receptors are expressed in rat sensory neurons in culture[J]. J Pharmacol Exp Ther,1998,287(3):1119-1127.
    [133]Chemin J, Girard C, Duprat F, Lesage F, Romey G, Lazdunski M. Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+channels[J]. EMBO J,2003,22(20):5403-5411.
    [134]Murbartian J, Lei Q, Sando JJ, Bayliss DA. Sequential phosphorylation mediates
    receptor-and kinase-induced inhibition of TREK-1 background potassium channels[J]. J Biol Chem, 2005,280(34):30175-30184.
    [135]Alloui A, Zimmermann K, Mamet J, Duprat F, Noel J, Chemin J, Guy N, Blondeau N, Voilley N, Rubat-Coudert C, Borsotto M, Romey G, Heurteaux C, Reeh P, Eschalier A, Lazdunski M. TREK-1, a K+channel involved in polymodal pain perception[J]. EMBO J,2006,25(11):2368-2376.
    [136]Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. A proton-gated cation channel involved in acid-sensing[J]. Nature,1997,386(6621):173-177.
    [137]Krishtal 0. The ASICs:signaling molecules? Modulators?[J]. Trends Neurosci,2003, 26(9):477-483.
    [138]Lingueglia E. Acid-sensing ion channels in sensory perception[J]. J Biol Chem,2007, 282(24):17325-17329.
    [139]Hesselager M, Timmermann DB, Ahring PK. pH Dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits[J]. J Biol Chem,2004,279(12):11006-11015.
    [140]Mamet J, Lazdunski M, Voilley N. How nerve growth factor drives physiological and inflammatory expressions of acid-sensing ion channel 3 in sensory neurons[J]. J Biol Chem,2003, 278(49):48907-48913.
    [141]Voilley N, de Weille J, Mamet J, Lazdunski M. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors[J]. J Neurosci,2001,21(20):8026-8033.
    [142]Wu U, Duan B, Mei YD, Gao J, Chen JG, Zhuo M, Xu L, Wu M, Xu TL. Characterization of acid-sensing ion channels in dorsal horn neurons of rat spinal cord[J]. J Biol Chem,2004, 279(42):43716-43724.
    [143]Staniland AA, McMahon SB. Mice lacking acid-sensing ion channels (ASIC) 1 or 2, but not ASIC3, show increased pain behaviour in the formalin test[J]. Eur J Pain,2009,13(6):554-563.
    [144]Sutherland SP, Benson CJ, Adelman JP, McCleskey EW. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons[J]. Proc Natl Acad Sci U S A, 2001,98(2):711-716.
    [145]Bevan S, Szolcsanyi J. Sensory neuron-specific actions of capsaicin:mechanisms and applications[J]. Trends Pharmacol Sci,1990,11(8)330-333.
    [146]Helliwell RJ, McLatchie LM, Clarke M, Winter J, Bevan S, Mclntyre P. Capsaicin sensitivity is associated with the expression of the vanilloid (capsaicin) receptor (VR1) mRNA in adult rat sensory ganglia[J]. Neurosci Lett,1998,250(3):177-180.
    [147]Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor:a heat-activated ion channel in the pain pathway[J]. Nature,1997, 389(6653):816-824.
    [148]Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia[J]. Nature,2000,405(6783):183-187.
    [149]Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum Al, Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor[J]. Science,2000,288(5464):306-313.
    [150]Sasamura T, Sasaki M, Tohda C, Kuraishi Y. Existence of capsaicin-sensitive glutamatergic terminals in rat hypothalamus[J]. Neuroreport,1998,9(9):2045-2048.
    [151]Santos AR, Calixto JB. Ruthenium red and capsazepine antinociceptive effect in formalin and capsaicin models of pain in mice[J]. Neurosci Lett,1997,235(1-2):73-76.
    [152]Sitte N, Busch M, Mousa SA, Labuz D, Rittner H, Gore C, Krause H, Stein C, Schafer M. Lymphocytes upregulate signal sequence-encoding proopiomelanocortin mRNA and beta-endorphin during painful inflammation in vivo[J]. J Neuroimmunol,2007,183(1-2):133-145.
    [153]Baamonde A, Lastra A, Juarez L, Garcia-Suarez 0, Meana A, Hidalgo A, Menendez L. Endogenous beta-endorphin induces thermal analgesia at the initial stages of a murine osteosarcoma[J]. Peptides,2006,27(11):2778-2785.
    [154]Stein C, Hassan AH, Lehrberger K, Giefing J, Yassouridis A. Local analgesic effect of endogenous opioid peptides[J]. Lancet,1993,342(8867):321-324.
    [155]Stein C, Lang U. Peripheral mechanisms of opioid analgesia[J]. Curr Opin Pharmacol, 2009,9(1):3-8.
    [156]Stein C, Zollner C. Opioids and sensory nerves[J]. Handb Exp Pharmacol,2009, (194):495-518.
    [157]Stein C, Schafer M, Machelska H. Attacking pain at its source:new perspectives on opioids[J]. Nat Med,2003,9(8):1003-1008.
    [158]Mousa SA, Cheppudira BP, Shaqura M, Fischer 0, Hofmann J, Hellweg R, Schafer M. Nerve growth factor governs the enhanced ability of opioids to suppress inflammatory pain[J]. Brain,2007,130(Pt 2):502-513.
    [159]Endres-Becker J, Heppenstall PA, Mousa SA, Labuz D, Oksche A, Schafer M, Stein C, Zollner C. Mu-opioid receptor activation modulates transient receptor potential vanilloid 1 (TRPV1) currents in sensory neurons in a model of inflammatory pain[J]. Mol Pharmacol,2007, 71(1):12-18.
    [160]Duggan AW, Hope PJ, Lang CW. Microinjection of neuropeptide Y into the superficial dorsal horn reduces stimulus-evoked release of immunoreactive substance P in the anaesthetized cat[J]. Neuroscience,1991,44(3):733-740.
    [161]Zhang X, Bao L, Xu ZQ, Kopp J, Arvidsson U, Elde R, Hokfelt T. Localization of neuropeptide Y Y1 receptors in the rat nervous system with special reference to somatic receptors on small dorsal root ganglion neurons[J]. Proc Natl Acad Sci U S A,1994, 91(24):11738-11742.
    [162]Marchand JE, Cepeda MS, Carr DB, Wurm WH, Kream RM. Alterations in neuropeptide Y, tyrosine hydroxylase, and Y-receptor subtype distribution following spinal nerve injury to rats[J]. Pain,1999,79(2-3):187-200.
    [163]Hiruma H, Saito A, Kusakabe T, Takenaka T, Kawakami T. Neuropeptide Y inhibits axonal transport of particles in neurites of cultured adult mouse dorsal root ganglion cells[J]. J Physiol,2002,543(Pt 1):85-97.
    [164]Mantyh PW, Allen CJ, Rogers S, DeMaster E, Ghilardi JR, Mosconi T, Kruger L, Mannon PJ, Taylor IL, Vigna SR. Some sensory neurons express neuropeptide Y receptors:potential paracrine inhibition of primary afferent nociceptors following peripheral nerve injury[J]. J Neurosci,1994,14(6):3958-3968.
    [165]Lambertini F, Re G, Cavalli G. [The effect of phenobarbital on anti-mitotic activity of vincristine and colchicine. Experimental study][J]. Arch Sci Med (Torino),1980,137(3):405-410.
    [166]Owellen RJ, Owens AH, Jr., Donigian DW. The binding of vincristine, vinblastine and
    colchicine to tubulin[J]. Biochem Biophys Res Commun,1972,47(4):685-691.
    [167]Jordan MA, Wilson L. Microtubules as a target for anticancer drugs[J]. Nat Rev Cancer, 2004,4(4):253-265.
    [168]Jackson P, Diamond J. Colchicine block of cholinesterase transport in rabbit sensory nerves without interference with the long-term viability of the axons[J]. Brain research,1977, 130(3):579-584.
    [169]Tiedt TN, Wisler PL, Younkin SG. Neurotrophic regulation of resting membrane potential and acetylcholine sensitivity in rat extensor digitorum longus muscle[J]. Exp Neurol, 1977,57(3):766-791.
    [170]Vergara C, Ramirez B, Behrens MI. Colchicine alters apamin receptors, electrical activity, and skeletal muscle relaxation[J]. Muscle Nerve,1993,16(9):935-940.
    [171]Kingery WS, Guo TZ, Poree LR, Maze M. Colchicine treatment of the sciatic nerve reduces neurogenic extravasation, but does not affect nociceptive thresholds or collateral sprouting in neuropathic or normal rats[J]. Pain,1998,74(1):11-20.
    [172]Fitzgerald M, Woolf CJ, Gibson SJ, Mallaburn PS. Alterations in the structure, function, and chemistry of C fibers following local application of vinblastine to the sciatic nerve of the rat[J]. J Neurosci,1984,4(2):430-441.
    [173]Katoh K, Tohyama M, Noguchi K, Senba E. Axonal flow blockade induces alpha-CGRP mRNA expression in rat motoneurons[J]. Brain research,1992,599(1):153-157.
    [174]Kashiba H, Senba E, Kawai Y, Ueda Y, Tohyama M. Axonal blockade induces the expression of vasoactive intestinal polypeptide and galanin in rat dorsal root ganglion neurons[J]. Brain research,1992,577(1):19-28.
    [175]Zhuo H, Lewin AC, Phillips ET, Sinclair CM, Helke CJ. Inhibition of axoplasmic transport in the rat vagus nerve alters the numbers of neuropeptide and tyrosine hydroxylase messenger RNA-containing and immunoreactive visceral afferent neurons of the nodose ganglion[J]. Neuroscience,1995,66(1):175-187.
    [176]Devor M, Govrin-Lippmann R. Axoplasmic transport block reduces ectopic impulse generation in injured peripheral nerves[J]. Pain,1983,16(1):73-85.
    [177]Liverant S, Meiri H. Colchicine prevents recovery of nerve conduction at chronic demyelination[J]. Brain research,1990,519(1-2):50-56.
    [178]Colburn RW, DeLeo JA. The effect of perineural colchicine on nerve injury-induced spinal glial activation and neuropathic pain behavior[J]. Brain Res Bull,1999,49(6):419-427.
    [179]Davies AM, Bandtlow C, Heumann R, Korsching S, Rohrer H, Thoenen H. Timing and site of nerve growth factor synthesis in developing skin in relation to innervation and expression of the receptor[J]. Nature,1987,326(6111)353-358.
    [180]Rohrer H, Heumann R, Thoenen H. The synthesis of nerve growth factor (NGF) in developing skin is independent of innervation[J]. Dev Biol,1988,128(1):240-244.
    [181]Anand P. Neurotrophic factors and their receptors in human sensory neuropathies[J]. Prog Brain Res,2004,146:477-492.
    [182]Ruiz G, Banos JE. Heat hyperalgesia induced by endoneurial nerve growth factor and the expression of substance P in primary sensory neurons[J]. Int J Neurosci,2009, 119(2):185-203.
    [183]Ochs S. Local supply of energy to the fast axoplasmic transport mechanism[J]. Proc Natl Acad Sci U S A,1971,68(6):1279-1282.
    [184]Hirokawa N, Noda Y, Tanaka Y, Niwa S. Kinesin superfamily motor proteins and intracellular transport[J]. Nat Rev Mol Cell Biol,2009,10(10):682-696.
    [185]Ueno S, Tsuda M, Iwanaga T, Inoue K. Cell type-specific ATP-activated responses in rat dorsal root ganglion neurons[J]. Br J Pharmacol,1999,126(2):429-436.
    [186]Tominaga M, Wada M, Masu M. Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia[J]. Proc Natl Acad Sci U S A,2001,98(12):6951-6956.
    [187]Ralevic V, Burnstock G. Receptors for purines and pyrimidines[J]. Pharmacol Rev,1998, 50(3):413-492.
    [188]Liu XJ, Salter MW. Purines and pain mechanisms:recent developments[J]. Curr Opin Investig Drugs,2005,6(1):65-75.
    [189]Sakama R, Hiruma H, Kawakami T. Effects of extracellular atp on axonal transport in cultured mouse dorsal root ganglion neurons[J]. Neuroscience,2003,121(3):531-535.
    [190]Li JY, Dahlstrom AM, Hersh LB, Dahlstrom A. Fast axonal transport of the vesicular acetylcholine transporter (VAChT) in cholinergic neurons in the rat sciatic nerve[J]. Neurochemistry international,1998,32(5-6):457-467.
    [191]Hahnenberger RW. Inhibition of fast anterograde axoplasmic transport by a pressure barrier. The effect of pressure gradient and maximal pressure[J]. Acta Physiol Scand,1980, 109(2):117-121.
    [192]Quigley HA, Anderson DR. Distribution of axonal transport blockade by acute intraocular pressure elevation in the primate optic nerve head[J]. Invest Ophthalmol Vis Sci,1977, 16(7):640-644.
    [193]Fink BR, Kennedy RD, Hendrickson AE, Middaugh ME. Lidocaine inhibition of rapid axonal transport[J]. Anesthesiology,1972,36(5):422-432.
    [194]Fink BR, Kish SJ. Reversible inhibition of rapid axonal transport in vivo by lidocaine hydrochloride[J]. Anesthesiology,1976,44(2):139-146.
    [195]Kanai A, Hiruma H, Katakura T, Sase S, Kawakami T, Hoka S. Low-concentration lidocaine rapidly inhibits axonal transport in cultured mouse dorsal root ganglion neurons[J]. Anesthesiology,2001,95(3):675-680.
    [196]Hiruma H, Shimizu K, Takenami T, Sugie H, Kawakami T. Effects of clonidine on lidocaine-induced inhibition of axonal transport in cultured mouse dorsal root ganglion neurones[J]. Br J Anaesth,2008,101(5):659-665.
    [197]Lavoie PA. Block of fast axonal transport in vitro by the local anesthetics dibucaine and etidocaine[J]. J Pharmacol Exp Ther,1982,223(1):251-256.
    [198]Edstrom A, Hansson HA, Norstrom A. Inhibition of axonal transport in vitro in frog sciatic nerves by chlorpromazine and lidocain. A biochemical and ultrastructural study[J]. Z Zellforsch Mikrosk Anat,1973,143(1)53-69.
    [199]Lavoie PA, Khazen T, Filion PR. Mechanisms of the inhibition of fast axonal transport by local anesthetics[J]. Neuropharmacology,1989,28(2):175-181.
    [200]Armstrong BD, Hu Z, Abad C, Yamamoto M, Rodriguez WI, Cheng J, Lee M, Chhith S, Gomariz RP, Waschek JA. Induction of neuropeptide gene expression and blockade of retrograde transport in facial motor neurons following local peripheral nerve inflammation in severe combined immunodeficiency and BALB/C mice[J]. Neuroscience,2004,129(1):93-99.
    [201]Oaklander AL, Spencer PS. Cold blockade of axonal transport activates premitotic activity of Schwann cells and wallerian degeneration[J]. J Neurochem,1988,50(2):490-496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700