醛固酮合酶和11-β羟化酶基因多态性与原发性醛固酮增多症发病风险的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     原发性醛固酮增多症(Primary aldosteronism,PA)是最常见的继发性高血压(Secondary Hypertension,SH)病因之一,以醛固酮的非抑制性自主高分泌紊乱为特征,可以引起低肾素、低血钾、钠水潴留和高血压等症候群。醛固酮瘤(Aldosterone-Producing Adenoma,APA)是PA最常见的亚型,约占PA 60%,其次是特发性醛固酮增多症(Idiopathic Hyperaldosteronism,IHA),约占PA 30%。醛固酮(Aldodosterone,ALD)在PA的发生、发展过程中扮演着非常重要的角色。ALD合成的最后关键步骤包括:脱氧皮质酮向皮质酮转化的11-β羟化反应、皮质酮转化为18-羟皮质酮的18-羟化反应和18-羟皮质酮转化为ALD的18-氧化反应。上述三个步骤均由醛固酮合酶(Aldosterone synthase)催化。编码该酶的基因是CYP11B2。在肾上腺皮质的束状带,11-脱氧皮质醇在11-β羟化酶的作用下产生皮质醇,编码11-β羟化酶的基因是CYP11B1。研究发现,CYP11B2和CYP11B1的几个常见的多态性位点(如:-344T/C、intron 2W/C、K173R、2803A/G等)与原发性高血压(Essential Hypertension,EH)相关,并影响ALD的合成。近年来,有关CYP11B2基因多态性与PA相关性研究的报道较少,且多为小样本研究。另外,尚未见到CYP11B1基因多态性与PA相关性研究的报道。
     方法
     1.收集118例正常人血液标本,134例APA患者肾上腺皮质腺瘤标本(88个冰冻标本和46个石蜡标本)和45例IHA患者肾上腺标本(31个冰冻标本和14个石蜡标本)。采用DNeasy Blood & Tissue试剂盒(Qiagen公司)提取标本DNA,-20℃保存。
     2.根据相关文献和公共SNP数据库(http://ncbi.nlm.nih.gov/SNP/和http://www.hapmap.org/)选择CYP11B2和CYP11B1基因中频数≥0.05、且文献报道与高血压病相关的6个位点(rs1799998、rs4539、rs6414、intron 2W/C、rs6410和rs6387)。
     3.对CYP11B2和CYP11B1基因的6个多态性位点进行检测。其中,intron 2W/C采用2个独立的PCR反应,其余位点均先后采用:聚合酶链式反应-限制性片段长度多态性(Polymerase Chain Reaction-Restriction Fragment Length PolymorphismPCR-RFLP)、MGB-Taqman探针法和测序法。并采用Haploview 4.0分析连锁不平衡(Linkage Disequilibrium,LD),在R statistics program 2.7.0程序包中使用SNPassoc1.5-3分析Hardy-Weinberg平衡。
     4.在R statistics program 2.7.0程序包中使用SNPassoc 1.5-3和Haplo.stats 1.3.8软件分析CYP11B2和CYP11B1基因多态性位点与PA的关系。
     结果
     1.基因型鉴定:本研究所选择的6个双等位基因多态性位点除rs6414外,均获得成功检测。各基因型分布均符合Hardy-Weinberg平衡(P>0.05)。rs6410和rs6387位点之间的LD最为强烈(D’0.66),LD最弱的是rs4539和intron 2 W/C位点(D’0.06)。
     2.比较PCR-RFLP法和MGB-Taqman探针法的优缺点:检测rs1799998和rs4539多态性位点时,MGB-Taqman探针法的误差率明显低于PCR-RFLP法(x~2=7.39,P=0.007;x~2=6.34,P=0.012)。采用MGB-Taqman探针法检测rs1799998和rs4539位点平均所用时间(1h左右)较PCR-RFLP法(6h左右)短,但其费用(15.00元人民币左右)较PCR-RFLP法(rs1799998位点为6.00,rs4539位点为12.00元人民币左右)高。
     3.CYP11B2和CYP11B1基因型和PA的关系:APA和IHA组中rs6410位点的A等位基因频数显著高于对照组(P=1.09×10~(-5),P=0.015)。与对照组相比,APA组中rs6410位点纯合子AA基因型和杂合子AG基因型比例较高(P=2.19×10~(-4))。与对照组相比,IHA组中纯合子AA基因型和杂合子AG基因型频数仅在年龄、性别和BMI校正后具有统计学意义(OR=4.06 95%CI 1.31-12.66;OR=2.41,95%CI 1.02-5.72)。本研究中,未发现rs4539、intron 2 W/C和rs1799998单个多态性位点与APA和IHA相关。
     4.CYP11B2和CYP11B1单体型和APA的关系:与对照组相比,AAAWT单体型频数在APA中显著增高(Empirical P=5.0×10~(-5))。相反,GGAWT单体型频数在APA中显著降低(Empirical P=1.0×10~(-4))。以年龄、性别和BMI进行校正后,发现AAAWT单体型与APA的发病风险增高相关(OR=1.44,95%CI 1.19-1.76),而GGAWT单体型则与APA的发病危险性降低相关(OR=0.73,95%CI 0.55-0.97)。
     5.CYP11B2-CYP11B1单体型与IHA的关系:与对照组相比,IHA组单体型AAAWT频数增高(P=0.002)。以年龄、性别和BMI进行校正后,发现AAAWT,AGGWT和AGAWC单体型与IHA的发病危险性增高相关(OR=1.55,95%CI 1.23-1.96;OR=1.49,95%CI 1.17-1.89;OR=1.40,95%CI 1.04-1.88)。而且,AAAWT在IHA中增高的幅度大于在APA中增高的幅度(OR=1.55比OR=1.44)。
     结论
     1.在选择基因多态性检测方法时,应该根据所选位点、样本量大小和实验室经费等情况综合考虑,选择最为合适的检测方法。MGB-Taqman探针法耗时少,效率高,准确性强。适用于大批量基因多态性检测。PCR-RFLP法适应于样本量小,内切酶价格低的多态性位点检测。
     2.CYP11B2和CYP11B1基因多态性与原发性醛固酮增多症的发病显著相关。通过对二者多态性位点的检测,有可能为预测原发性醛固酮增多症的发病提供一定的参考价值。
     3.本研究为进一步研究原发性醛固酮增多症的发病机制以及对其开展基因治疗提供了新的线索和思路。
Introduction
     Primary aldosteronism (PA) is now recognized as the most common form ofsecondary hypertension.Cross-sectional and prospective studies reported PA in more than10% of hypertensive patients,both in general and in specialty settings.The most commonclinical subtypes of primary aldosteronism are aldosterone-producing adenoma (APA),occurring in about 60% of cases,and idiopathic hyperaldosteronism (IHA) accounting forabout 30% of cases.Aldosterone plays a key role in APA,and the terminal stages in itssynthesis,the synthesis of aldosterone from l l-deoxycorticosterone in the zoneglomerulosa,arecatalyzed by aldosterone synthase,which is encoded by the CYP11B2gene.Parallel 11β-hydroxylation of the 17-hydroxysteroid,by the enzyme11β-hydroxylase encoded by the gene CYP11B1,produces cortisol in the zona fasciculata.CYP11B2 and CYPllB1 are situated approximately 40 kilobases apart,on chromosome 8,band 8q24 in man.Several frequent polymorphisms (E.g.-344T/C,intron 2 W/C andK173R) in CYP11B2 are suggested to have associations with essential hypertension andmay influence aldosterone secretion.However,there was few small sample of investigationin the genetic association between the CYP11B2 and CYP11B1 polymorphisms and thedevelopment of PA.No investigation in the association between the CYP11B1polymorphisms and the development of PA.In this study,we aimed to identifypolymorphisms in CYP11B2 and CYP11B1 genes that are associated with PA,with thehypothesis that genetic variants in them may contribute to PA.
     Methods
     1.Among the participants,119 cases (88 with APA and 31 with IHA) provided frozentissues,60 cases (46 with APA and 14 with IHA) provided paraffin-imbedded tissues and118 controls provided peripheral blood samples for genotyping.DNA was extracted fromthe tissues and peripheral blood using DNeasy Blood & Tissue Kit (Qiagen,Cat.No.69504,Germany) as instructed,and maintained at -20℃.
     2.For the CYP11B2 and CYP11B1 genes,6 polymorphisms of minor allele frequency≥0.05 were selected in public databases (http://ncbi.nlm.nih.gov/SNP/ andhttp://www.hapmap.org/) for study on the basis of evidence suggesting functional relevanceor reports of association with hypertension.Three SNPs span the CYP11B2 gene:rs1799998 in the promoter region (also known in previous publications as C-344T or SF-1),rs4539 in the third exon (also known as A2718G or K173R) and rs6414 in the third intron.Two SNPs span the CYP11B1 gene:rs 6410 (G225A) in the first exon and rs6387(A2803G) in the third intron.We also typed the biallelic intron 2W/C conversionpolymorphism in the CYP11B2 gene.
     3.Analysis of the intron 2W/C conversion polymorphism was performed by use of 2separate PCRs.The other polymorphisms of CYP11B2 and CYP11B1 genes were detectedusing the Polymerase Chain Reaction-Restriction Fragment Length Polymorphism(PCR-RFLP,MGB-Taqman probs and DNA sequencing methods in turn.With the help ofHaploview 4.0,pairwise LD was estimated by D',and difference of allelic frequenciesbetween cases and controls of each polymorphism and allelic permutation test with 10,000times were performed.Hardy-Weinberg equilibrium were determined by SNPassoc 1.5-3 inR statistics program 2.7.0.
     4.The genotype frequencies between cases and controls of each polymorphism weredetermined by SNPassoc 1.5-3.Haplotype frequencies for various polymorphismcombinations were estimated by Haplo.stats 1.3.8.The differences in haplotype frequencyprofiles between the case and control groups,and haplotype-based hypothesis tests ofgeneralized linear models were conducted using the software Haplo.stats 1.3.8.
     Results
     1.Genotyping:All the selected diallelic polymorphisms except rs6414 in thecase-control populations were successfully genetyped.The distribution of genotypes was in accordance with Hardy-Weinberg Equilibrium in each group (P>0.05).The degrees ofpairwise LD among all selected variants were estimated by the standardized disequilibriumcoefficient D'.It was shown that these 5 variants are in different strength of LD,with thers6410 and rs6387 polymorphism in the tightest LD (D' 0.66),and rs4539 and intron 2 W/Chaving the weakest LD (D' 0.06) in control subjects.
     2.Comparison of PCR-RFLP and MGB-Taqman probe:The error rate ofMGB-Taqman probe was significantly lower than that of PCR-RFLP for detectingrs1799998 and rs4539 (χ~2=7.39,P=0.007;χ~2=6.34,P=0.012;respectively).The averagetime for detecting rs1799998 and rs4539 by PCR-RFLP was about 6h,and byMGB-Taqman probe was 1 h.The average costs for detecting rs1799998 and rs4539 byPCR-RFLP were 6.00 and 12.00 yuan,respectively,and by MGB-Taqman probe were15.00 yuan.
     3.CYP11B2 - CYP11B1 genotypes in relation to PA:Univariate allelic frequencyanalyses revealed that only rs6410 was significantly associated with APA and IHA atP=1.09×10~(-5) and P=0.015,respectively.There was a relative excess of AA homozygotesand AG heterozygotes of rs6410 allele in APA group compared with control group (P=2.19×10~(-4)).Multivariate unconditional logistic regression analyses demonstrated that thissignificant association between rs6410 and APA was consistent even when adjusted for age,gender,and body mass index (BMI) (P<0.05).There were significantly different genotypesAA and AG of rs6410 allele between patients with IHA and controls only after adjusted forage,gender,and BMI (OR=4.06 95% CI 1.31-12.66;OR=2.41,95% CI 1.02-5.72.Incontrast,there was no significant difference in rs4539,Intron 2W/C and rs1799998 betweencontrol group and APA or IHA group.
     4.CYP11B2 -CYP11B1 haplotypes in relation to APA:A highly significant differencewas observed in the haplotype frequencies between the control subjects and the patientswith APA (Global-stat = 31.95,df = 9,P = 0.0002).Individually,the susceptible haplotypeAAAWT was identified to be significantly associated with APA with empirical P values of5.0×10~(-5).In contrast,one protective haplotype GGAWT showed significant differencebetween patients with APA and controls (Empirical P=1.0×10~(-4)).The susceptible haplotypeAAAWT displayed a significantly increased risk for APA (odds ratio 15.89,95% CI2.06-122.89),which was consistent even when adjusted for age,gender and BMI (odds ratio 1.44,95% CI 1.19-1.76).In contrast,the protective haplotype GGAWT exhibitedsignificantly decreased effect on APA (odds ratio 0.08,95% CI 0.01-0.69).In addition,twosusceptible haplotypes GAACT and AGGWT were found with a marginal significance inthe difference between control group and APA group after adjusted for age,gender andBMI (odds ratio 1.28,95% CI 0.97-1.71 and odds ratio 1.23,95% CI 0.99-1.54,respectively).
     5.CYP11B2 -CYP11B1 haplotypes in relation to IHA:A significant difference wasfound in the haplotype frequencies between the control subjects and the patients with IHA(Global-stat=19.06,df =9,P = 0.025).Interestingly,the haplotype AAAWT was alsoidentified to be significantly associated with IHA (P=0.002).The subjects carryingsusceptible haplotype AAAWT showed a significant increased risk for IHA (odds ratio4.99,95% CI 1.29-19.35),which was consistent even when adjusted for age,gender andBMI (odds ratio 1.55,95% CI 1.23-1.96).A susceptible haplotype AGGWT was foundwith a marginal significance in the difference between control group and IHA group (oddsratio 2.92,95% CI 0.82-10.45),and had a significantly increased risk after adjusted for age,gender and BMI (odds ratio 1.49,95% CI 1.17-1.89).Another susceptible haplotypeAGAWC was found to have a significantly increased risk only after adjusted for age,gender and BMI (odds ratio 1.40,95% CI 1.04-1.88).
     Conclusions
     1.The most appropriate method should be selected to detect the DNA polymorphismsaccording to the selected polymorphisms,the number of samples and the cost which youcan provide.MGB-Taqman probe could be used to detect the polymorphisms of largersamples for its less time-consuming,efficiency and accuracy.PCR-RFLP was suitable todetecting the smaller sample and those polymorphisms,the incision enzymes of which wereinexpensive.
     2.Our results reveal highly significant association between genetic variations inCYP11B2 and CYP11B1 genes and genetic predisposition to PA.PA may be prognosed bydetecting the polymorphisms of CYP11B2 and CYP11B1 genes.
     3.Our study maybe provided a way to investigate the pathogenesy and gene therapy of PAKeywords:primary aldosteronism;CYP11B2;CYP11B1;polymorphism
引文
1. Ranade K, Wu KD, Risch N et al. Genetic variation in aldosterone synthase predicts plasma glucose levels. Proc Natl Acad Sci U S A, 2001, 98:13219-24.
    2. Conn JW. Presidential address.Ⅰ. Painting background. Ⅱ. Primary aldosteronism, a new clinical syndrome. J Lab Clin Med, 1955,45:3-17.
    3. 叶章群主编.肾上腺疾病北京:人民卫生出版社,1997:63-64.
    4. Lim PO, MacDonald TM. Primary aldosteronism, diagnosed by the aldosterone to renin ratio, is a common cause of hypertension. Clin Endocrinol (Oxf), 2003, 59:427-30.
    5. Mulatero P, Stowasser M, Loh KC et al. Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers from five continents. J Clin Endocrinol Metab, 2004, 89:1045-50.
    6. Hood S, Cannon J, Foo R, Brown M. Prevalence of primary hyperaldosteronism assessed by aldosterone/renin ratio and spironolactone testing. Clin Med, 2005, 5: 5-60.
    7. Sealey JE, Gordon RD, Mantero F. Plasma renin and aldosterone measurements in low renin hypertensive states. Trends Endocrinol Metab, 2005,16:86-91.
    8. Giacchetti G, Ronconi V, Lucarelli G et al. Analysis of screening and confirmatory tests in the diagnosis of primary aldosteronism: need for a standardized protocol. J Hypertens, 2006, 24: 737-45.
    9. Ganguly A. Primary aldosteronism. N Engl J Med, 1998, 339:1828-34.
    10. Andersen GS, Toftdahl DB, Lund JO et al. The incidence rate of phaeochromocytoma and Conn's syndrome in Denmark, 1977-1981. J Hum Hypertens, 1988, 2:187-9.
    11. Berglund G, Andersson O, Wilhelmsen L. Prevalence of primary and secondary hypertension: studies in a random population sample. Br Med J, 1976, 2:554-6.
    12. Sinclair AM, Isles CG, Brown I et al. Secondary hypertension in a blood pressure clinic. Arch Intern Med, 1987, 147:1289-93.
    13. Streeten DH, Tomycz N, Anderson GH. Reliability of screening methods for the diagnosis of primary aldosteronism. Am J Med, 1979, 67:403-13.
    14. Fardella CE, Mosso L, Gomez-Sanchez C et al. Primary hyperaldosteronism in essential hypertensives: prevalence, biochemical profile, and molecular biology. J Clin Endocrinol Metab, 2000, 85:1863-7.
    15. Lim PO, Dow E, Brennan G et al. High prevalence of primary aldosteronism in the Tayside hypertension clinic population. J Hum Hypertens, 2000,14:311-5.
    16. Mosso L, Carvajal C, Gonzalez A et al. Primary aldosteronism and hypertensive disease. Hypertension, 2003, 42:161-5.
    17. Rossi GP, Bernini G, Caliumi C et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol, 2006,48:2293-300.
    18. Schwartz GL, Turner ST. Screening for primary aldosteronism in essential hypertension: diagnostic accuracy of the ratio of plasma aldosterone concentration to plasma renin activity. Clin Chem, 2005, 51:386-94.
    19. Okamoto M, Nonaka Y. Molecular biology of rat steroid 11 beta-hydroxylase [P450(11 beta)] and aldosterone synthase [P450(11 beta, aldo)]. J Steroid Biochem Mol Biol, 1992, 41:415-9.
    20. Wagner MJ, Ge Y, Siciliano M, Wells DE. A hybrid cell mapping panel for regional localization of probes to human chromosome 8. Genomics, 1991,10:114-25.
    21. Hautanena A, Lankinen L, Kupari M et al. Associations between aldosterone synthase gene polymorphism and the adrenocortical function in males. J Intern Med, 1998,244:11-8.
    22. Barbato A, Russo P, Siani A et al. Aldosterone synthase gene (CYP11B2) C-344T polymorphism, plasma aldosterone, renin activity and blood pressure in a multi-ethnic population. J Hypertens, 2004, 22:1895-901.
    23. Mayosi BM, Keavney B, Watkins H, Farrall M. Measured haplotype analysis of the aldosterone synthase gene and heart size. Eur J Hum Genet, 2003,11:395-401.
    24. Clyne CD, Zhang Y, Slutsker L et al. Angiotensin Ⅱ and potassium regulate human CYP11B2 transcription through common cis-elements. Mol Endocrinol, 1997, 11:638-49.
    25. Komiya I, Yamada T, Takara M et al. Lys(173)Arg and -344T/C variants of CYP11B2 in Japanese patients with low-renin hypertension. Hypertension, 2000, 35:699-703.
    26. Zhu H, Sagnella GA, Dong Y et al. Contrasting associations between aldosterone synthase gene polymorphisms and essential hypertension in blacks and in whites. J Hypertens, 2003, 21:87-95.
    27.Barr M,MacKenzie SM,Friel EC et al.Polymorphic variation in the 11beta-hydroxylase gene associates with reduced 11-hydroxylase efficiency.Hypertension,2007,49:113-9.
    28.Imrie H,Freel M,Mayosi BM et al.Association between aldosterone production and variation in the 11beta-hydroxylase (CYP11B1) gene.J Clin Endocrinol Metab,2006,91:5051-6.
    29.Keavney B,Mayosi B,Gaukrodger N,et al.Genetic variation at the locus encompassing 11-beta hydroxylase and aldosterone synthase accounts for heritability in cortisol precursor (11-deoxycortisol) urinary metabolite excretion.J Clin Endocrinol Metab,2005,90(2):1072-1077.
    30.Freel EM,Ingram M,Wallace AM,et al.Effect of variation in CYP11B1 and CYP11B2 on corticosteroid phenotype and hypothalamic-pituitary-adrenal axis activity in hypertensive and normotensive subjects.Clin Endocrinol (Oxf),2008,68:700-706.
    31.Gu D,Ge D,He J et al.Haplotypic analyses of the aldosterone synthase gene CYP11B2 associated with stage-2 hypertension in northern Han Chinese.Clin Genet,2004,66:409-16.
    32.Ganapathipillai S,Laval G,Hoffmann IS et al.CYP11B2-CYP11B1 haplotypes associated with decreased 11 beta-hydroxylase activity.J Clin Endocrinol Metab,2005,90:1220-5.
    33.Inglis GC,Plouin PF,Friel EC et al.Polymorphic differences from normal in the aldosterone synthase gene (CYP11B2) in patients with primary hyperaldosteronism and adrenal tumour (Conn's syndrome).Clin Endocrinol (Oxf),2001,54:725-30.
    34.Tanahashi H,Mune T,Takahashi Y et al.Association of Lys173Arg polymorphism with CYP11B2 expression in normal adrenal glands and aldosterone-producing adenomas.J Clin Endocrinol Metab,2005,90:6226-31.
    35.Mulatero P,Schiavone D,Fallo F et al.CYP11B2 gene polymorphisms in idiopathic hyperaldosteronism.Hypertension,2000,35:694-8.
    36.Hampf M,Widimsky J,Bernhardt R.Aldosterone synthase gene in patients suffering from hyperaldosteronism.Endocr Res,1998,24:877-80.
    37.龚艳春,张华,初少莉,等.原发性醛固酮增多症亚型临床及基因分型研究.上海医学,2007,30:51.
    1. Keavney B. Genetic association studies in complex diseases. J Hum Hypertens, 2000, 14:361-7.
    2. Abou-Sleiman PM, Hanna MG, Wood NW. Genetic association studies of complex neurological diseases. J Neurol Neurosurg Psychiatry, 2006, 77:1302-4.
    3. Martin M, Reidhaar-Olson JF, Rondinone CM. Genetic association meets RNA interference: large-scale genomic screens for causation and mechanism of complex diseases. Pharmacogenomics, 2007, 8:455-64.
    4. Wang DG, Fan JB, Siao CJ et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998, 280:1077-82.
    5. Zhang J, Li K, Liao D et al. Different applications of polymerases with and without proofreading activity in single-nucleotide polymorphism analysis. Lab Invest, 2003,83:1147-54.
    6. Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res, 1998, 8:1229-31.
    7. Czerska K, Nawara M, Bal J. [Ⅰ. Single nucleotide polymorphism in human genetic analyses]. Med Wieku Rozwoj, 2003,7:531-46.
    8. Sherry ST, Ward MH, Kholodov M et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res, 2001, 29:308-11.
    9. Tseng LH, Chen PJ, Lin MT et al. Simultaneous genotyping of single nucleotide polymorphisms in the IL-1 gene complex by multiplex polym erase chain reaction-restriction fragment length polymorphism. J Immunol Methods, 2002, 267:151-6.
    10. Hamai Y, Matsumura S, Matsusaki K et al. A single nucleotide polymorphism in the 5 untranslated region of the EGF gene is associated with occurrence and malignant progression of gastric cancer. Pathobiology, 2005, 72:133-8.
    11. Livak KJ, Flood SJ, Marmaro J et al. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl, 1995, 4: 357-62.
    12. Livak KJ, Marmaro J, Todd JA. Towards fully automated genome-wide polymorphism screening. Nat Genet, 1995, 9:341-2.
    13. Lie YS, Petropoulos CJ. Advances in quantitative PCR technology: 5' nuclease assays. Curr Opin Biotechnol, 1998, 9:43-8.
    14. Shi MM, Myrand SP, Bleavins MR, de la Iglesia FA. High throughput genotyping for the detection of a single nucleotide polymorphism in NAD(P)H quinone oxidoreductase (DT diaphorase) using TaqMan probes. Mol Pathol, 1999,52:295-9.
    15. Forster V. Zwischenmolekulare Energiewanderung und Fluoreszenz. Annals of Physics, 1948,437:55-75.
    16. Lakowicz JR, Maliwal BP. Oxygen quenching and fluorescence depolarization of tyrosine residues in proteins. J Biol Chem, 1983,258:4794-801.
    17. Haffty BG, Hurley RA, Peters LG Carcinoma of the larynx treated with hypofractionated radiation and hyperbaric oxygen: long-term tumor control and complications. Int J Radiat Oncol Biol Phys, 1999,45:13-20.
    18. Livak KJ. Allelic discrimination using fluorogenic probes and the 5' nuclease assay. Genet Anal, 1999,14:143-9.
    19. Myakishev MV, Khripin Y, Hu S, Hamer DH. High-throughput SNP genotyping by allele-specific PCR with universal energy-transfer-labeled primers. Genome Res, 2001, 11:163-9.
    20. Borodina TA, Lehrach H, Soldatov AV. Ligation detection reaction-TaqMan procedure for single nucleotide polymorphism detection on genomic DNA. Anal Biochem, 2004, 333:309-19.
    21. Tournier I, Raux G, Di Fiore F et al. Analysis of the allele-specific expression of the mismatch repair gene MLH1 using a simple DHPLC-Based Method. Hum Mutat, 2004, 23:379-84.
    22. Eryol NK, Kilic H, Gul A et al. Are the high levels of cytomegalovirus antibodies a determinant in the development of coronary artery disease? Int Heart J, 2005, 46:205-9.
    23. Maekawa M, Nagaoka T, Taniguchi T et al. Three-dimensional microarray compared with PCR-single-strand conformation polymorphism analysis/DNA sequencing for mutation analysis of K-ras codons 12 and 13. Clin Chem, 2004,50:1322-7.
    1.Schroder S,Komminoth P,Padberg B,Heitz PU.Morphological typing,evaluation of tumor dignity and prognosis and etiologic classification of adrenomedullary and adrenocortical neoplasias.Pathologe,1995,16:307-14.
    2.Kjellman M,Larsson C,Backdahl M.Genetic background of adrenocortical tumor development.World J Surg,2001,25:948-56.
    3.叶章群主编.肾上腺疾病.北京:人民卫生出版社,1997:63-64.
    4.周景.肾上腺皮质肿瘤的功能分类和形态分类.临床与实验病理学杂志,2002,18:634-7.
    5.苗英,何向蕾,甘永利,等.肾上腺皮质腺瘤、腺癌48例临床病理分析.诊断病理学杂志,2004,11:380-2.
    6.Wagner MJ,Ge Y,Siciliano M,Wells DE.A hybrid cell mapping panel for regional localization of probes to human chromosome 8.Genomics,1991,10:114-25.
    7.Hautanena A,Lankinen L,Kupari M et al.Associations between aldosterone synthase gene polymorphism and the adrenocortical function in males.J Intern Med,1998,244:11-8.
    8.Barbato A,Russo P,Siani A et al.Aldosterone synthase gene (CYP11B2) C-344T polymorphism,plasma aldosterone,renin activity and blood pressure in a multi-ethnic population.J Hypertens,2004,22:1895-901.
    9.Mayosi BM,Keavney B,Watkins H,Farrall M.Measured haplotype analysis of the aldosterone synthase gene and heart size.Eur J Hum Genet,2003,11:395-401.
    10.Clyne CD,Zhang Y,Slutsker L et al.Angiotensin Ⅱ and potassium regulate human CYP11B2 transcription through common cis-elements.Mol Endocrinol,1997,11:638-49.
    11.Komiya I,Yamada T,Takara M et al.Lys(173)Arg and-344T/C variants of CYP11B2 in Japanese patients with low-renin hypertension.Hypertension,2000,35:699-703.
    12.Zhu H,Sagnella GA,Dong Y et al.Contrasting associations between aldosterone synthase gene polymorphisms and essential hypertension in blacks and in whites.J Hypertens,2003,21:87-95.
    13.Barr M,MacKenzie SM,Friel EC et al.Polymorphic variation in the 11beta-hydroxylase gene associates with reduced 11-hydroxylase efficiency.Hypertension,2007,49:113-9.
    14.Imrie H,Freel M,Mayosi BM et al.Association between aldosterone production and variation in the 11beta-hydroxylase (CYP11B1) gene.J Clin Endocrinol Metab,2006,91:5051-6.
    15.Inglis GC,Plouin PF,Friel EC et al.Polymorphic differences from normal in the aldosterone synthase gene (CYP11B2) in patients with primary hyperaldosteronism and adrenal tumour (Conn's syndrome).Clin Endocrinol (Oxf),2001,54:725-30.
    16.Tanahashi H,Mune T,Takahashi Y et al.Association of Lys173Arg polymorphism with CYP11B2 expression in normal adrenal glands and aldosterone-producing adenomas.J Clin Endocrinol Metab,2005,90:6226-31.
    17.Igaz P,Wiener Z,Szabo P et al.Functional genomics approaches for the study of sporadic adrenal tumor pathogenesis:clinical implications.J Steroid Biochem Mol Biol,2006,101:87-96.
    18.杨义生.肾上腺皮质肿瘤发病的分子机制.国外医学内分泌学分册,2002,22:106-9.
    19.Reincke M.Mutations in adrenocortical tumors.Horm Metab Res,1998,30:447-55.
    20.Wang DG,Fan JB,Siao CJ et al.Large-scale identification,mapping,and genotyping of single-nucleotide polymorphisms in the human genome.Science,1998,280:1077-82.
    21.Cha DR,Kang YS,Han SY et al.Role of aldosterone in diabetic nephropathy.ephrology (Carlton),2005,10 Suppl:S37-9.
    22.Luo Y,Chen YP.The effect of tubular epithelial cells activated by aldosterone on renal interstitial fibroblasts in co-culture system.Zhonghua Yi Xue Za Zhi 2005;85:2070-5.
    23.Okamoto M,Nonaka Y.Molecular biology of rat steroid 11 beta-hydroxylase [P450 (11 beta)]and aldosterone synthase [P450 (11 beta,aldo)].J Steroid Biochem Mol Biol,1992,41:415-9.
    24.Curnow KM,Tusie-Luna MT,Pascoe L et al.The product.of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex.Mol Endocrinol,1991,5:1513-22.
    25. Connell JM, Fraser R, MacKenzie SM et al. The impact of polymorphisms in the gene encoding aldosterone synthase (CYP11B2) on steroid synthesis and blood pressure regulation. Mol Cell Endocrinol, 2004,217:243-7.
    26. Davies E, Holloway CD, Ingram MC et al. Aldosterone excretion rate and blood pressure in essential hypertension are related to polymorphic differences in the aldosterone synthase gene CYP11B2. Hypertension, 1999, 33:703-7.
    27. Brand E, Chatelain N, Mulatero P et al. Structural analysis and evaluation of the aldosterone synthase gene in hypertension. Hypertension, 1998, 32:198-204.
    28. Matsubara M, Sato T, Nishimura T et al. CYP11B2 polymorphisms and home blood pressure in a population-based cohort in Japanese: the Ohasama study. Hypertens Res , 2004, 27:1-6.
    29. Staessen JA, Wang JG, Brand E et al. Effects of three candidate genes on prevalence and incidence of hypertension in a Caucasian population. J Hypertens, 2001,19:1349-58.
    30. Russo P, Siani A, Venezia A et al. Interaction between the C(-344)T polymorphism of CYP11B2 and age in the regulation of blood pressure and plasma aldosterone levels: cross-sectional and longitudinal findings of the Olivetti Prospective Heart Study. J Hypertens, 2002, 20:1785-92.
    31. Mulatero P, Schiavone D, Fallo F et al. CYP11B2 gene polymorphisms in idiopathic hyperaldosteronism. Hypertension, 2000, 35:694-8.
    32. Keavney B, Mayosi B, Gaukrodger N et al. Genetic variation at the locus encompassing 11-beta hydroxylase and aldosterone synthase accounts for heritability in cortisol precursor (11-deoxycortisol) urinary metabolite excretion. J Clin Endocrinol Metab, 2005, 90:1072-7.
    33. Freel EM, Ingram M, Wallace AM et al. Effect of variation in CYP11B1 and CYP11B2 on corticosteroid phenotype and hypothalamic-pituitary-adrenal axis activity in hypertensive and normotensive subjects. Clin Endocrinol (Oxf), 2008, 68:700-6.
    34. Kennon B, Ingram MC, Friel EC et al. Aldosterone synthase gene variation and adrenocortical response to sodium status, angiotensin Ⅱ and ACTH in normal male subjects. Clin Endocrinol (Oxf), 2004, 61:174-81.
    35. Ganapathipillai S, Laval G, Hoffmann IS et al. CYP11B2-CYP11B1 haplotypes associated with decreased 11 beta-hydroxylase activity. J Clin Endocrinol Metab, 2005, 90:1220-5.
    36. Kumar NN, Benjafield AV, Lin RC, et al. Haplotype analysis of aldosterone synthase gene (CYP11B2) polymorphisms shows association with essential hypertension. J Hypertens, 2003, 21:1331-7.
    2. Phillips JL, Walther MM, Pezzullo JC et al. Predictive value of preoperative tests in discriminating bilateral adrenal hyperplasia from an aldosterone-producing adrenal adenoma. J Clin Endocrinol Metab, 2000, 85:4526-33.
    3. Mattsson C, Young WF, Jr. Primary aldosteronism: diagnostic and treatment strategies. Nat Clin Pract Nephrol, 2006,2:198-208.
    4. Young WF, Jr. Minireview: Primary aldosteronism--changing concepts in diagnosis and treatment. Endocrinology, 2003,144:2208-13.
    5. Lim PO, MacDonald TM. Primary aldosteronism, diagnosed by the aldosterone to renin ratio, is a common cause of hypertension. Clin Endocrinol (Oxf), 2003,59:427-30.
    6. Cha DR, Kang YS, Han SY et al. Role of aldosterone in diabetic nephropathy. Nephrology (Carlton), 2005,10 Suppl:S37-9.
    7. Luo Y, Chen YP. The effect of tubular epithelial cells activated by aldosterone on renal interstitial fibroblasts in co-culture system. Zhonghua Yi Xue Za Zhi, 2005, 85:2070-5.
    8. Okamoto M, Nonaka Y. Molecular biology of rat steroid 11 beta-hydroxylase [P450(11 beta)] and aldosterone synthase [P450(11beta, aldo)]. J Steroid Biochem Mol Biol,1992, 41:415-9.
    9. Wagner MJ, Ge Y, Siciliano M, Wells DE. A hybrid cell mapping panel for regional localization of probes to human chromosome 8. Genomics, 1991,10:114-25.
    10. Hautanena A, Lankinen L, Kupari M et al. Associations between aldosterone synthase gene polymorphism and the adrenocortical function in males. J Intern Med, 1998,244:11-8.
    11. Barbato A, Russo P, Siani A et al. Aldosterone synthase gene (CYP11B2) C-344T polymorphism, plasma aldosterone, renin activity and blood pressure in a multi-ethnic population. J Hypertens, 2004, 22:1895-901.
    12. Mayosi BM, Keavney B, Watkins H, Farrall M. Measured haplotype analysis of the aldosterone synthase gene and heart size. Eur J Hum Genet, 2003,11:395-401.
    13. Clyne CD, Zhang Y, Slutsker L et al. Angiotensin Ⅱ and potassium regulate human CYP11B2 transcription through common cis-elements.Mol Endocrinol,1997,11:638-49.
    14.Komiya I,Yamada T,Takara M et al.Lys(173)Arg and-344T/C variants of CYP11B2 in Japanese patients with low-renin hypertension.Hypertension,2000,35:699-703.
    15.Zhu H,Sagnella GA,Dong Y et al.Contrasting associations between aldosterone synthase gene polymorphisms and essential hypertension in blacks and in whites.J Hypertens,2003,21:87-95.
    16.Barr M,MacKenzie SM,Friel EC et al.Polymorphic variation in the 11beta-hydroxylase gene associates with reduced 11-hydroxylase efficiency.Hypertension,2007,49:113-9.
    17.Imrie H,Freel M,Mayosi BM et al.Association between aldosterone production and variation in the 11beta-hydroxylase (CYP11B1) gene.J Clin Endocrinol Metab,2006,91:5051-6.
    18.Mulatero P,Schiavone D,Fallo F et al.CYP11B2 gene polymorphisms in idiopathic hyperaldosteronism.Hypertension,2000,35:694-8.
    19.龚艳春,张华,初少莉,等.原发性醛固酮增多症亚型临床及基因分型研究.上海医学,2007,30:51.
    20.Conn JW.Presidential address.Ⅰ.Painting background.Ⅱ.Primary aldosteronism,a new clinical syndrome.J Lab Clin Med,1955,45:3-17.
    21.Fardella CE,Mosso L.Primary aldosteronism.Clin Lab,2002,48:181-90.
    22.Schirpenbach C,Reincke M.Primary aldosteronism:current knowledge and controversies in Conn's syndrome.Nat Clin Pract Endocrinol Metab,2007,3:220-7.
    23.Wisgerhof M,Carpenter PC,Brown RD.Increased adrenal sensitivity to angiotensin Ⅱ in idiopathic hyperaldosteronism.J Clin Endocrinol Metab,1978,47:938-43.
    24.Wisgerhof M,Brown RD,Hogan MJ et al.The plasma aldosterone response to angiotensin Ⅱ infusion in aldosterone-producing adenoma and idiopathic hyperaldosteronism.J Clin Endocrinol Metab,1981,52:195-8.
    25.Griffing GT,Berelowitz B,Hudson M et al.Plasma immunoreactive gamma melanotropin in patients with idiopathic hyperaldosteronism,aldosterone-producing adenomas,and essential hypertension.J Clin Invest,1985,76:163-9.
    26.Schiffrin EL,Chretien M,Seidah NG et al.Response of human aldosteronoma cells in culture to the N-terminal glycopeptide of pro-opiomelanocortin and gamma 3-MSH.Horm Metab Res,1983,15:181-4.
    27.Nakada T,Furuta H,Katayama T et al.The effect of adrenal surgery on plasma atrial natriuretic factor and sodium escape phenomenon in patients with primary aldosteronism.J Urol,1989,142:13-8.
    28.Davies LA,Hu C,Guagliardo NA et al.TASK channel deletion in mice causes primary hyperaldosteronism.Proc Natl Acad Sci U S A,2008,105:2203-8.
    29.Freel EM,Connell JM.Mechanisms of hypertension:the expanding role of aldosterone.J Am Soc Nephrol,2004,15:1993-2001.
    30.王蕊,王晋明,谢忆山,等.醛固酮合酶基因多态性与原发性高血压及血浆醛固酮水平的关系.临床内科杂志,2004,21:524-6.
    31.陈丹,王琳,薛雨,等.醛固酮合成酶CYP11B2基因C-344T多态性与原发性高血压相关性研究.大连医科大学学报,2006,28:446-9.
    32.牛文全,王建炳,李素洁,等.北方汉族人群醛固酮合成酶基因多态性与高血压的关系.中国医学科学院学报,2007,29 329-335.
    33.许骥,华琦,李东宝,等.醛固酮合成酶基因CYP11B2 (-344T/C)多态性对北京汉族人群高血压患者缬沙坦降压疗效的影响.中国实用内科杂志,2007,27:124-6.
    34.呼邦传,初少莉,王继光,等.醛固酮合成酶基因-344T/C多态性与高血压患者血浆醛固酮及血管紧张素Ⅱ水平相关.中华医学杂志,2006,86:1144-7.
    35.Keavney B,Mayosi B,Gaukrodger N et al.Genetic variation at the locus encompassing 11-beta hydroxylase and aldosterone synthase accounts for heritability in cortisol precursor (11-deoxycortisol) urinary metabolite excretion.J Clin Endocrinol Metab,2005,90:1072-7.
    36.Freel EM,Ingram M,Wallace AM et al.Effect of variation in CYP11B1 and CYP11B2 on corticosteroid phenotype and hypothalamic-pituitary-adrenal axis activity.in hypertensive and normotensive subjects.Clin Endocrinol (Oxf),2008,68:700-6.
    37.Ganapathipillai S,Laval G,Hoffmann IS et al.CYP11B2-CYP11B1 haplotypes associated with decreased 11 beta-hydroxylase activity.J Clin Endocrinol Metab,2005, 90:1220-5.
    38.Kennon B,Ingram MC,Friel EC et al.Aldosterone synthase gene variation and adrenocortical response to sodium status,angiotensin Ⅱ and ACTH in normal male subjects.Clin Endocrinol (Oxf),2004,61:174-81.
    39.Rao A,Melby JC.Idiopathic hyperplasia of the adrenal gland behaving like an aldosterone producing adenoma.J Endocrinol Invest,1997,20:29-31.
    40.Shinbo H,Suzuki K,Sato T et al.Simultaneous bilateral laparoscopic adrenalectomy in ACTH-independent macronodular adrenal hyperplasia.Int J Urol,2001,8:315-8.
    41.Lamas C,Alfaro JJ,Lucas T et al.Is unilateral adrenalectomy an alternative treatment for ACTH-independent macronodular adrenal hyperplasia? Long-term follow-up of four cases.Eur J Endocrinol,2002,146:237-40.
    42.吴瑜璇,祝宇.特发性醛固酮增多症手术是否必要?中华内分泌代谢杂志,2005,21:475-6. rs1799998, intron 2W/C, rs4539 and rs6387, which were not significantly associated with PA , may be potentially relevant to PA. All the susceptible haplotypes included allele A, which confirmed the relationship between the rs 6410 and PA. However, there are also some limitations in our study. First, the patients with APA and IHA were recruited from the inpatients subjected to unilateral adrenalectomy, which was not completely free from some bias in selecting the study subjects. A further study in typical population is useful to reveal the precise association between the polymorphisms in CYP11B2 and CYP11B1 genes and PA. Second, we could not obtain enough information on some environmental exposure, such as smoking and drinking status, and occupational history in both case and control groups, which may bias our results. Third, larger samples from normal population and patients with APA and IHA will be needed in the further study. In summary, our results reveal highly significant association between genetic variations in CYP11B2 and CYP11B1 genes and genetic predisposition to PA. Although we cannot conclude with confidence that rs6410 variant is a causal polymorphism for PA, the significant global and haplotype specific P values support the potential role of CYP11B2 and CYP11B1 genes in the genetic etiology of PA. Additional research, especially with more polymorphisms, typical objects, more environmental exposure, and other study designs, is warranted to explore further the etiologic relevance of polymorphisms in CYP11B2 and CYP11B1 genes for APA and IHA.
    1. Funder JW, Carey RM, Fardella C et al. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab, 2008, 93:3266-81.
    2. Kawamoto T, Mitsuuchi Y, Toda K et al. Role of steroid 11 beta-hydroxylase and steroid 18-hydroxylase in the biosynthesis of glucocorticoids and mineralocorticoids in humans. Proc Natl Acad Sci U S A ,1992, 89:1458-62.
    3. Curnow KM, Tusie-Luna MT, Pascoe L et al. The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. Mol Endocrinol, 1991, 5:1513-22.
    4. Ferrari P, Bianchetti M, Frey FJ. Juvenile hypertension, the role of genetically altered steroid metabolism. Horm Res, 2001, 55:213-23.
    5. Mornet E, Dupont J, Vitek A, White PC. Characterization of two genes encoding human steroid 11 beta-hydroxylase (P-450(11) beta). J Biol Chem, 1989, 264:20961-7.
    6. Davies E, Holloway CD, Ingram MC et al. Aldosterone excretion rate and blood pressure in essential hypertension are related to polymorphic differences in the aldosterone synthase gene CYP11B2. Hypertension, 1999, 33:703-7.
    7. Lim PO, Macdonald TM, Holloway C et al. Variation at the aldosterone synthase (CYP11B2) locus contributes to hypertension in subjects with a raised aldosterone-to-renin ratio. J Clin Endocrinol Metab, 2002, 87:4398-402.
    8. Nicod J, Bruhin D, Auer L et al. A biallelic gene polymorphism of CYP11B2 predicts increased aldosterone to renin ratio in selected hypertensive patients. J Clin Endocrinol Metab, 2003, 88:2495-500.
    9. Barr M, MacKenzie SM, Friel EC et al. Polymorphic variation in the llbeta-hydroxylase gene associates with reduced 11-hydroxylase efficiency. Hypertension, 2007, 49:113-9.
    10. Imrie H, Freel M, Mayosi BM et al. Association between aldosterone production and variation in the llbeta-hydroxylase (CYP11B1) gene. J Clin Endocrinol Metab, 2006, 91:5051-6.
    11. Inglis GC, Plouin PF, Friel EC et al. Polymorphic differences from normal in the aldosterone synthase gene (CYP11B2) in patients with primary hyperaldosteronism and adrenal tumour (Conn's syndrome). Clin Endocrinol (Oxf), 2001, 54:725-30.
    12. Mulatero P, Schiavone D, Fallo F et al. CYP11B2 gene polymorphisms in idiopathic hyperaldosteronism. Hypertension, 2000, 35:694-8.
    13. Tanahashi H, Mune T, Takahashi Y et al. Association of Lys173Arg polymorphism with CYP11B2 expression in normal adrenal glands and aldosterone-producing adenomas. J Clin Endocrinol Metab, 2005, 90:6226-31.
    14. Mulatero P, Veglio F, Pilon C et al. Diagnosis of glucocorticoid-remediable aldosteronism in primary aldosteronism: aldosterone response to dexamethasone and long polymerase chain reaction for chimeric gene. J Clin Endocrinol Metab, 1998, 83:2573-5.
    15. Holland OB, Brown H, Kuhnert L et al. Further evaluation of saline infusion for the diagnosis of primary aldosteronism. Hypertension, 1984, 6:717-23.
    16. Mulatero P, Stowasser M, Loh KC et al. Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers from five continents. J Clin Endocrinol Metab, 2004, 89:1045-50.
    17. Ganapathipillai S, Laval G, Hoffmann IS et al. CYP11B2-CYP11B1 haplotypes associated with decreased 11 beta-hydroxylase activity. J Clin Endocrinol Metab, 2005, 90:1220-5.
    18. White P, Slutsker L. Haplotype analysis of CYP11B2. Endocr Res, 1995, 21: 437-42 .
    19. Drysdale CM, McGraw DW, Stack CB et al. Complex promoter and coding region beta 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci U S A ,2000, 97:10483-8.
    20. Keavney B, Mayosi B, Gaukrodger N et al. Genetic variation at the locus encompassing 11-beta hydroxylase and aldosterone synthase accounts for heritability in cortisol precursor (11-deoxycortisol) urinary metabolite excretion. J Clin Endocrinol Metab, 2005, 90:1072-7.
    21. Freel EM, Ingram M, Wallace AM et al. Effect of variation in CYP11B1 and CYP11B2 on corticosteroid phenotype and hypothalamic-pituitary-adrenal axis activity in hypertensive and normotensive subjects. Clin Endocrinol (Oxf), 2008, 68:700-6.
    22. Kennon B, Ingram MC, Friel EC et al Aldosterone synthase gene variation and adrenocortical response to sodium status, angiotensin Ⅱ and ACTH in normal male subjects. Clin Endocrinol (Oxf) 2004; 61:174-81.
    23. Tsujita Y, Iwai N, Katsuya T et al. Lack of association between genetic polymorphism of CYP11B2 and hypertension in Japanese: the Suita Study. Hypertens Res, 2001, 24:105-9.
    24. Pojoga L, Gautier S, Blanc H et al. Genetic determination of plasma aldosterone levels in essential hypertension. Am J Hypertens, 1998, 11:856-60.
    25. Yamagishi K, Tanigawa T, Cui R et al. Aldosterone synthase gene T-344C polymorphism, sodium and blood pressure in a free-living population: a
    1. Ranade K, Wu KD, Risch N et al. Genetic variation in aldosterone synthase predicts plasma glucose levels. Proc Natl Acad Sci U S A, 2001, 98:13219-24.
    2. Ferrari P, Bonny O. Forms of mineralocorticoid hypertension. Vitam Horm, 2003, 66:113-56.
    3. Beevers DG, Brown JJ, Ferriss JB et al. Renal abnormalities and vascular complications in primary hyperaldosteronism. Evidence on tertiary hyperaldosteronism. Q J Med, 1976,45:401-10.
    4. Brilla CG, Weber KT. Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J Lab Clin Med, 1992,120:893-901.
    5. Pitt B, Zannad F, Remme WJ et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med, 1999, 341:709-17.
    6. Okamoto M, Nonaka Y. Molecular biology of rat steroid 11 beta-hydroxylase [P450(11 beta)] and aldosterone synthase [P450(11 beta, aldo)]. J Steroid Biochem Mol Biol, 1992, 41:415-9.
    7. Curnow KM, Tusie-Luna MT, Pascoe L et al. The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. Mol Endocrinol, 1991, 5:1513-22.
    8. Connell JM, Fraser R, MacKenzie SM et al. The impact of polymorphisms in the gene encoding aldosterone synthase (CYP11B2) on steroid synthesis and blood pressure regulation. Mol Cell Endocrinol, 2004, 217:243-7.
    9. Mornet E, Dupont J, Vitek A, White PC. Characterization of two genes encoding human steroid 11 beta-hydroxylase (P-450(11) beta). J Biol Chem, 1989, 264:20961-7.
    10. Curnow KM, Mulatero P, Emeric-Blanchouin N et al The amino acid substitutions Ser288Gly and Val320Ala convert the cortisol producing enzyme, CYP11B1, into an aldosterone producing enzyme. Nat Struct Biol, 1997, 4:32-5.
    11. Wagner MJ, Ge Y, Siciliano M, Wells DE. A hybrid cell mapping panel for regional localization of probes to human chromosome 8. Genomics, 1991,10:114-25.
    12. Altukhov Iu P, Salmenkova EA. [DNA polymorphism in population genetics]. Genetika, 2002,38:1173-95.
    13. Fang JY, Xiao SD. Folic acid, polymorphism of methyl-group metabolism genes, and DNA methylation in relation to GI carcinogenesis. J Gastroenterol, 2003, 38:821-9.
    14. Storz JF. Using genome scans of DNA polymorphism to infer adaptive population divergence. Mol Ecol, 2005,14:671-88.
    15. White PC, Slutsker L. Haplotype analysis of CYP11B2. Endocr Res, 1995, 21:437-42.
    16. Komiya I, Yamada T, Takara M et al. Lys(173)Arg and -344T/C variants of CYP11B2 in Japanese patients with low-renin hypertension. Hypertension, 2000, 35:699-703.
    17. Imrie H, Freel M, Mayosi BM et al. Association between aldosterone production and variation in the llbeta-hydroxylase (CYP11B1) gene. J Clin Endocrinol Metab, 2006, 91:5051-6.
    18. Bassett MH, Zhang Y, Clyne C et al. Differential regulation of aldosterone synthase and 11beta-hydroxylase transcription by steroidogenic factor-1. J Mol Endocrinol, 2002,28:125-35.
    19. Brand E, Chatelain N, Mulatero P et al. Structural analysis and evaluation of the aldosterone synthase gene in hypertension. Hypertension, 1998, 32:198-204.
    20. Paillard F, Chansel D, Brand E et al. Genotype-phenotype relationships for the renin-angiotensin-aldosterone system in a normal population. Hypertension, 1999,34:423-9.
    21. Barbato A, Russo P, Siani A et al. Aldosterone synthase gene (CYP11B2) C-344T polymorphism, plasma aldosterone, renin activity and blood pressure in a multi-ethnic population. J Hypertens, 2004, 22:1895-901.
    22. Kumar NN, Benjafield AV, Lin RC et al. Haplotype analysis of aldosterone synthase gene (CYP11B2) polymorphisms shows association with essential hypertension. J Hypertens, 2003, 21:1331-7.
    23. Casiglia E, Tikhonoff V, Mazza A et al. C-344T polymorphism of the aldosterone synthase gene and blood pressure in the elderly: a population-based study. J Hypertens, 2005, 23:1991-6.
    24. Matsubara M, Sato T, Nishimura T et al. CYP11B2 polymorphisms and home blood pressure in a population-based cohort in Japanese:the Ohasama study.Hypertens Res,2004,27:1-6.
    25.Clyne CD,Zhang Y,Slutsker L et al.Angiotensin Ⅱ and potassium regulate human CYP11B2 transcription through common cis-elements.Mol Endocrinol,1997,11:638-49.
    26.Zhu H,Sagnella GA,Dong Y et al.Contrasting associations between aldosterone synthase gene polymorphisms and essential hypertension in blacks and in whites.J Hypertens,2003,21:87-95.
    27.许骥,华琦,李东宝,等.醛固酮合成酶基因CYP11B2(-344T/C)多态性对北京汉族人群高血压患者缬沙坦降压疗效的影响.中国实用内科杂志,2007,27:124-6.
    28.王蕊,王晋明,谢忆山,等.醛固酮合酶基因多态性与原发性高血压及血浆醛固酮水平的关系.临床内科杂志,2004,21:524-6.
    29.陈丹,王琳,薛雨,等.醛固酮合成酶CYP11B2基因C-344T多态性与原发性高血压相关性研究.大连医科大学学报,2006,28:446-9.
    30.牛文全,王建炳,李素洁,等.北方汉族人群醛固酮合成酶基因多态性与高血压的关系.中国医学科学院学报,2007,29:329-335.
    31.呼邦传,初少莉,王继光,等.醛固酮合成酶基因-344T/C多态性与高血压患者血浆醛固酮及血管紧张素Ⅱ水平相关.中华医学杂志,2006,86:1144-7.
    32.Barr M,MacKenzie SM,Friel EC et al.Polymorphic variation in the 11beta-hydroxylase gene associates with reduced 11-hydroxylase efficiency.Hypertension,2007,49:113-9.
    33.Keavney B,Mayosi B,Gaukrodger N et al.Genetic variation at the locus encompassing 11-beta hydroxylase and aldosterone synthase accounts for heritability in cortisol precursor (11-deoxycortisol) urinary metabolite excretion.J Clin Endocrinol Metab,2005,90:1072-7.
    34.Freel EM,Ingram M,Wallace AM et al.Effect of variation in CYP11B1 and CYP11B2 on corticosteroid phenotype and hypothalamic-pituitary-adrenal axis activity in hypertensive and normotensive subjects.Clin Endocrinol (Oxf),2008,68:700-6.
    35.Kennon B,Ingram MC,Friel EC et al.Aldosterone synthase gene variation and adrenocortical response to sodium status, angiotensin ?and ACTH in normal male subjects. Clin Endocrinol (Oxf), 2004, 61:174-81.
    36. Ganapathipillai S, Laval G, Hoffmann IS et al. CYP11B2-CYP11B1 haplotypes associated with decreased 11 beta-hydroxylase activity. J Clin Endocrinol Metab, 2005,90:1220-5.
    37. Lim PO, Macdonald TM, Holloway C et al. Variation at the aldosterone synthase (CYP11B2) locus contributes to hypertension in subjects with a raised aldosterone-to-renin ratio. J Clin Endocrinol Metab, 2002, 87:4398-402.
    38. Gu D, Ge D, He J et al. Haplotypic analyses of the aldosterone synthase gene CYP11B2 associated with stage-2 hypertension in northern Han Chinese. Clin Genet, 2004, 66:409-16.
    39. Hautanena A, Lankinen L, Kupari M et al. Associations between aldosterone synthase gene polymorphism and the adrenocortical function in males. J Intern Med, 1998, 244:11-8.
    40. Pojoga L, Gautier S, Blanc H et al. Genetic determination of plasma aldosterone levels in essential hypertension. Am J Hypertens, 1998,11:856-60.
    41. Tamaki S, Iwai N, Tsujita Y, Kinoshita M. Genetic polymorphism of CYP11B2 gene and hypertension in Japanese. Hypertension, 1999, 33:266-70.
    42. Miyamori I, Inaba S, Hatakeyama H et al. Idiopathic hyperaldosteronism: analysis of aldosterone synthase gene. Biomed Pharmacother, 2000, 54 Suppl 1:77s-79s.
    43. Tsujita Y, Iwai N, Katsuya T et al. Lack of association between genetic polymorphism of CYP11B2 and hypertension in Japanese: the Suita Study. Hypertens Res, 2001,24:105-9.
    44. Lim PO, MacDonald TM. Primary aldosteronism, diagnosed by the aldosterone to renin ratio, is a common cause of hypertension. Clin Endocrinol (Oxf), 2003, 59:427-30.
    45. Mulatero P, Stowasser M, Loh KC et al. Increased diagnosis of primary aldosteronism, including surgically correctable forms, in centers from five continents. J Clin Endocrinol Metab, 2004, 89:1045-50.
    46. Sealey JE, Gordon RD, Mantero F. Plasma renin and aldosterone measurements in low renin hypertensive states. Trends Endocrinol Metab, 2005,16:86-91.
    47. Giacchetti G, Ronconi V, Lucarelli G et al Analysis of screening and confirmatory tests in the diagnosis of primary aldosteronism: need for a standardized protocol. J Hypertens, 2006, 24:737-45.
    48. Ganguly A. Primary aldosteronism. N Engl J Med, 1998,339:1828-34.
    49. Andersen GS, Toftdahl DB, Lund JO et al. The incidence rate of phaeochromocytoma and Conn's syndrome in Denmark, 1977-1981. J Hum Hypertens, 1988, 2:187-9.
    50. Berglund G, Andersson 0, Wilhelmsen L. Prevalence of primary and secondary hypertension: studies in a random population sample. Br Med J, 1976, 6035:554-6.
    51. Sinclair AM, Isles CG, Brown I et al. Secondary hypertension in a blood pressure clinic. Arch Intern Med, 1987,147:1289-93.
    52. Streeten DH, Tomycz N, Anderson GH. Reliability of screening methods for the diagnosis of primary aldosteronism. Am J Med, 1979, 67:403-13.
    53. Fardella CE, Mosso L, Gomez-Sanchez C et al. Primary hyperaldosteronism in essential hypertensives: prevalence, biochemical profile, and molecular biology. J Clin Endocrinol Metab, 2000, 85:1863-7.
    54. Lim PO, Dow E, Brennan G et al. High prevalence of primary aldosteronism in the Tayside hypertension clinic population. J Hum Hypertens, 2000,14:311-5.
    55. Mosso L, Carvajal C, Gonzalez A et al. Primary aldosteronism and hypertensive disease. Hypertension, 2003, 42:161-5.
    56. Rossi GP, Bernini G, Caliumi C et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J Am Coll Cardiol, 2006,48:2293-300.
    57. Schwartz GL, Turner ST. Screening for primary aldosterbnism in essential hypertension: diagnostic accuracy of the ratio of plasma aldosterone concentration to plasma renin activity. Clin Chem, 2005,51:386-94.
    58. Freel EM, Connell JM. Mechanisms of hypertension: the expanding role of aldosterone. J Am Soc Nephrol, 2004,15 :1993-2001.
    59. Inglis GC, Plouin PF, Friel EC et al. Polymorphic differences from normal in the aldosterone synthase gene (CYP11B2) in patients with primary hyperaldosteronism and adrenal tumour (Conn's syndrome). Clin Endocrinol (Oxf), 2001, 54:725-30.
    60. Mulatero P, Schiavone D, Fallo F et al. CYP11B2 gene polymorphisms in idiopathic
    1 hyperaldosteronism.Hypertension,2000,35:694-8.
    61.Tanahashi H,Mune T,Takahashi Y et al.Association of Lys173Arg polymorphism with CYP11B2 expression in normal adrenal glands and aldosterone-producing adenomas.J Clin Endocrinol Metab,2005,90:6226-31.
    62.龚艳春,张华,初少莉,等原发性醛固酮增多症亚型临床及基因分型研究.上海医学,2007,30:51.
    63.Hampf M,Widimsky J,Bernhardt R.Aldosterone synthase gene in patients suffering from hyperaldosteronism.Endocr Res,1998,24:877-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700