初级传入神经元激活对周围神经元和非神经元的信号调制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分持续去极化诱导背根神经节神经元间ATP-P2Y系统依赖的钙振荡扩布
     虽然神经元之间最主要的通讯方式是化学突触,但是电突触和非突触性化学传递也占据着重要地位。可在背根神经节(dosal root ganglion, DRG)内的初级神经元之间因为卫星细胞的分隔,即缺少化学突触也无电突触,而大量的研究发现却表明节内的神经细胞间能相互影响,即刺激诱导一个神经细胞兴奋,另一个邻近的细胞也被动发生兴奋性改变,这种现象被命名为“交叉兴奋”(cross excitation),而产生这种现象的机制还只是在猜测之中。以视神经节为材料的研究又发现,节内神经细胞兴奋释放的活性物质通过它相应的受体能诱导细胞间通讯,然而对这种胞间通讯模式机制的确定,以及在其他节内神经细胞间寻找更多的支持显得非常必要。在本研究中,我们在培养的DRG神经元间发现了一个由ATP介导的非突触性化学传递模式。单个DRG神经元持续去极化激起这个细胞的胞内钙振荡性升高,持续性的钠离子内流,以及接下来细胞体的ATP释放并向周围扩散最终诱发邻近未受刺激的被动细胞内规则的钙振荡。钙振荡和钠离子内流均能被TTX抑制,但不受细胞外钙离子浓度的影响,且在无钙溶液中仍能发生,表明钠离子内流介导的细胞膜去极化以及胞内钙释放是钙振荡产生的原因。进一步研究发现,钙振荡产生的源在IP3受体引起的内质网钙库的钙释放,而不由ryanodine受体介导。采用ATP实时成像跟踪了ATP的释放和扩散,且ATP水解酶彻底瓦解钙振荡扩散,说明神经激活释放了化学物质ATP,它们在DRG神经元间担当着传递信使。我们又发现非选择性P2Y受体抑制剂苏拉明、PLC抑制剂U73122、以及IP3受体拮抗剂2-APB能抑制钙振荡传播,这就表明了介导ATP传播作用的受体途径。为了更充分地描述ATP在这一现象中的作用,外源性ATP被应用到DRG细胞培养中,发现不同浓度的ATP通过P2Y受体在DRG神经元不是引起一过性钙升高,就是诱发钙振荡,10μM—100μM的ATP激起一过性钙升高,100μM—250μM的ATP诱发钙振荡。因此,根据这些数据,我们总结持续去极化刺激引起细胞内钙振荡性释放和ATP释放,胞内钙升高是ATP释放的先决条件,接着释放的ATP通过它的代谢性受体引发了下一个细胞的钙振荡,完成它的传播作用。这是一种特殊的通讯形式,可能是DRG神经元间电兴奋性胞间传递的分子基础。
     第二部分神经细胞激活控制成纤维细胞间缝隙连接通讯
     成纤维细胞是非兴奋性细胞,它们高度表达缝隙连接蛋白并形成缝隙连接通讯进行着离子、分子的交流,除了同种细胞间形成广泛的三维结构外,成纤维细胞还与其他类型的细胞形成缝隙连接,比如内皮细胞、肥大细胞、神经细胞等。缝隙连接通讯在成纤维细胞参与的生理和病理过程中起着重要作用,例如参与发育、创伤修复、炎症等过程。在此研究中我们发现DRG神经元和真皮成纤维细胞共培养体系中,神经元活动能抑制成纤维细胞的缝隙连接通讯,它的抑制作用与NMDA谷氨酸受体兴奋以及由它们介导细胞内钙离子升高有关。在共培养的DRG神经元和成纤维细胞样品中,去极化电刺激诱导神经元兴奋后,检测成纤维细胞的染料偶联率,发现成纤维细胞的染料偶联细胞数目减少;并且未受到刺激的共培养体系中成纤维细胞染料偶联率也比单纯成纤维细胞培养的染料偶联率低,这种情况发生在共培养5-6天后;膜片钳记录发现DRG神经元自动发放动作电位和TTX敏感的钠电流;免疫化学检测发现,共培养体系中成纤维细胞最主要的连接蛋白CX43表达减少,可能与连接通讯效率降低有关。但是立即检测给予去极化电刺激的样品中成纤维细胞的主要连接蛋白CX43,发现尽管染料偶联率减少,CX43表达并不减少,考虑缝隙连接通讯效能降低可能还有主要其他机制,进一步研究发现,谷氨酸受体抑制剂MK-801能逆转神经元在缝隙连接通讯上的作用,而且NMDA受体主要介导钙离子内流,细胞内钙升高已经被认为能抑制缝隙连接通讯;接着我们发现NMDA受体和CX43共表达于成纤维细胞膜上,外源性谷氨酸应用能强有力地升高成纤维细胞内钙浓度,并且降低成纤维细胞缝隙连接通讯,这部分作用能被NMDA受体抑制剂MK-801逆转。我们还发现将共培养体系的培养基用于单纯成纤维细胞培养,也导致他们的缝隙连接通讯下降。根据这些观察我们总结去极化刺激导致的神经元激活或者神经元自发活动能释放谷氨酸,通过兴奋NMDA受体,升高细胞内钙抑制成纤维细胞的缝隙连接通讯。因此我们认为除了已经被证明的成纤维细胞对神经元的生长和发育进行调节外,神经元活动也通过其释放的递质对成纤维细胞的通讯功能进行调节。
     第三部分电针效应在活体裸鼠身上表达的实时监测
     最近几年,小动物的整体成像已经逐渐发展为一个探测发生在活体动物细胞和分子水平生命活动的强有力的研究工具。在这个研究中,我们用一套整体荧光成像系统,在体检测裸鼠体内可能有的电针效应表达。根据比较动物学研究中在小动物身上确定的几个穴位点,我们尝试在这些穴位点注射低分子量能透过缝隙链接的荧光染料5, 6-carboxyfluorescein和Lucifer yellow以及不能透过缝隙连接的大分子量荧光染料rhodamine dextran,然后进行一系列扫描跟踪荧光染料的扩散,测量它们扩散的速度和范围。结果发现电针能显著诱导低分子荧光染料循着一个方向更快地扩散,而对高分子染料作用不显著,表明电针只诱导能通过缝隙连接的低分子量染料更快的扩散,它可能打开了某一种通道;接下来发现缝隙连接通讯抑制剂acetic acid-Sodium acetate, halothane,或者octanol能阻断电针的这一作用,表明电针的效应与缝隙连接通讯有关。这个研究尝试应用新的研究技术在活体动物身上探测电针效应,并且观察到电针可以通过影响缝隙连接通讯而发挥作用。
Section 1 Propagation of Ca2+ oscillation in DRG neurons: the involvement of extracellular ATP and P2Y receptor activation
     Recently emerging evidence implicates a number of neuroactive substances and their receptors in mediating complex cell-to-cell communications in the ganglia. In the present study, we have characterized the chemical coupling mediated by extracellular ATP in cultured dorsal root ganglion (DRG) neurons by using a real time-imaging of ATP, whole cell patch clamping in conjunction with confocal calcium imaging. Sustained depolarizations of single DRG neurons evoked intracellular Ca2+ concentration ([Ca2+]i) oscillations together with TTX-sensitive persistent Na+ influx, and subsequent ATP-dependent propagation [Ca2+]i oscillations to surrounding passive neighbors. [Ca2+]i oscillations were suppressed by both the Na+ channel blocker TTX and inositol-1,4,5-trisphosphate (IP3) receptor antagonist 2-APB, but not ryanodine. The propagation of [Ca2+]i oscillations was prevented in the presence of the ATP-degrading enzyme, apyrases, and inhibited by suramin, a nonselective P2Y receptor antagonist. In parallel, depolarizing stimuli induced ATP release and diffusion, which was abolished by inhibition of PLC- IP3 pathway or pretreatment with thapsigargin to deplete internal Ca2+ stores. Moreover, exogenous application of ATP to DRG neurons elicited the Ca2+ oscillations involving PLC-IP3 pathway. Taken together, these data demonstrated that sustained membrane depolarization elicited ATP release, acting through a highly sensitive P2Y receptors /IP3-mediated signaling pathway to mediate the propagation of intercellular Ca2+ signaling, which suggest a novel signaling pathway for neuronal communication in DRG.
     Section 2 Activity-dependent neuronal control of gap-junctional communication in fibroblasts
     A typical feature of fibroblasts is their high degree of intercellular communication through gap junction channels. Abundant between fibroblasts, gap junction coupling plays important roles in fibroblasts physiology. Here we report that activity-dependent neuronal control of gap junctional communication (GJC) in the rat dermal fibroblasts in vitro is associated to NMDA glutamate receptors-mediated intracellular Ca2+ elevations. Not only excited dorsal root ganglion (DRG) neurons by using depolarizing pulses, which exhibited remarkable action potentials and inward sodium currents, tremendously reduced fibroblast GJC in Neuron/Fibroblast (N/F) cocultures, but also resting DRG neurons, which exhibited frequent spontaneous action potentials and inward sodium currents or so, exerted significant roles on fibroblast GJC and CX43 protein. Both fibroblast GJC and CX43 downregulation were prevented by the blockade of NMDA receptors and decrease of intra- and intercellular Ca2+. Immunocytochemistry showed that the NR1 subunit of the NMDA receptor was colocated at plasma membrane of fibroblasts with CX43. Moreover, glutamate applied to fibroblasts triggered NMDA receptor-dependent intracellular Ca2+ elevations and decline of GJC. These data demonstrate that NMDA receptor activity in fibroblasts contributed to the effect of DRG neurons on fibroblast coupling via downregulation of GJC. Since fibroblasts have been shown to facilitate DRG neurite growth and survival, our findings suggest that neuronal and fibroblasts networks interact actively.
     Section 3 Real-time whole-body optical imaging of electrical acupuncture responses in intact nude mice
     Whole-body optical imaging of small animals has emerged as a powerful, user friendly, and high-throughput tool for assaying molecular and cellular processes as they occur in vivo. Here we used a whole-body fluorescence imaging system for the first time in a nude mice model to explore the characteristic responses induced by electrical acupuncture (EA). Nude mice were injected with fluorescent dye at identifiable points similar to the acupoint in Traditional Chinese Medicine for animals. Serial measurements of fluorescence diffusion were performed using in vivo fluorescence macroscopic. EA applied to the acupoint injected with low molecule weight dye evoked a fluorescence channel over a long distance of the fore limb to be coincident with the course of classical meridian. Stimulation applied to the acupoint injected with high molecule weight dyes did not evoke similar fluorescence dye activities. And the activity of low molecular mass dye could be inhibited by gap junction inhibitors including acetic acid-Sodium acetate, halothane, and octanol. This result indicates that the fluorescence dye activity induced by EA is correlated with gap junction communication. Therefore, this study may illustrate objective investigation of EA responses in small animals using a real time whole-body imaging, and evaluate the functional importance on mediating or transmitting EA effectiveness of gap junctions and calcium.
引文
Amir R. and Devor M. (2000) Functional cross-excitation between afferent A- and C-neurons in dorsal root ganglia. Neuroscience. 95,189-195.
    Anderson C. M, Bergher J. P. and Swanson R. A. (2004) ATP-induced ATP release from astrocytes. J. Neurochem. 88, 246–256.
    Albrieux M., Sardet C. and Villaz M. (1997) The two intracellular Ca2+ release channels, ryanodine receptor and inositol 1,4,5-trisphosphate receptor, play different roles during fertilization in ascidians. Dev Biol. 189, 174-185.
    Baker M. D. and Bostock H. (1997) Low-threshold, persistent sodium current in rat large dorsal root ganglion neurons in culture. J Neurophysiol. 77, 1503-1513.
    Bers D. M. (1991) Excitation-Contraction Coupling and Cardiac Contractile Force (Kluwer Academic Publishers, Dordrecht.
    Burnstock G. (2000) P2X receptors in sensory neurones. Br. J. Anaesth. 84, 476–488
    Bao L., Jin SX., Zhang C., et al (2003) Activation of delta opioid receptors induces receptor insertion and neuropeptide secretion. Neuron 37, 121-133.
    Brechenmacher C., Larmet Y., Feltz P., et al (1998) Cultured rat sensory neurones express functional tachykinin receptor subtypes 1, 2 and 3. Neurosci Lett. 241, 159-62.
    Chaban V. V. and Micevych P. E. (2005) Estrogen receptor-alpha mediates estradiol attenuation of ATP-induced Ca2+ signaling in mouse dorsal root ganglion neurons. J Neurosci Res. 81, 31-37.
    Charpentier G. and Kado R. T. (1999) Induction of Na+ channel voltage sensitivity in Xenopus oocytes depends on Ca2+ mobilization. J Cell Physiol. 178, 258-266.
    Chen Y., Li G. W., Wang C., et al. (2005) Mechanisms underlying enhanced P2X receptor-mediated responses in the neuropathic pain state. Pain. 119, 38-48.
    Chen Z. and Zhuan Z. (2002) Ca2+-independent but voltage-dependent secretion in mammalian dorsal root ganglion neurons. Nat Neurosci. 5, 425– 430.
    Cockayne D. A., Dunn P. M., Zhong Y., et al (2005) P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol. 567, 621-639.
    Cotrina M. L. and Lin J. H., Alves-Rodrigues A., et al (1998) Connexins regulate calcium signaling by controlling ATP release. Proc. Natl. Acad. Sci. USA 95, 15735-15740
    Cotrina M. L., Lin J. H., Lopez-Garcia J. C., et al (2000) ATP-mediated glia signaling. J Neurosci. 20, 2835–2844.
    Devor M. and Wall P. D. (1990) Cross-excitation in dorsal root ganglia of nerve-injured and intact rats. J Neurophysiol. 64, 1733-1746.
    Schwartz E. A. (1987) Depolarization without calcium can release gamma-aminobutyric acid from a retinal neuron. Science. 238, 350– 355.
    Fanchaouy M., Serir K., Meister J. J., et al (2005) Intercellular communication: role of gap junctions in establishing the pattern of ATP-elicited Ca2+ oscillations and Ca2+-dependent currents in freshly isolated aortic smooth muscle cells. Cell Calcium. 37, 25-34.
    Fewtrell C. (1993) Ca2+ oscillations in non-excitable cells. Annu Rev Physiol. 55, 427-454.
    Fields R. D. (2006) Nerve impulses regulate myelination through purinergic signalling. Novartis Found Symp. 276:148-158.
    Gerevich Z., Borvendeg S. J., Schroder W., et at (2004) Inhibition of N-type voltage-activated calcium channels in rat dorsal root ganglion neurons by P2Y receptors is a possible mechanism of ADP-induced analgesia. J Neurosci. 24, 797-807.
    Guidotti G. (1996) ATP transport and ABC proteins. Chem Biol. 3, 703-706. Review.
    Guthrie P. B., Knappenberger J., Segal M., et al (1999) ATP released from astrocytes mediates glial calcium waves. J. Neurosci. 19, 520-528.
    Gutfreund Y., Yarom Y., and Segev I. (1995) Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. J Physiol. 483, 621-40.
    Hille B. (1994) Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci. 17, 531-536. Review.
    Huang L. Y. and Neher E. (1996) Ca2+-dependent exocytosis in the somata of dorsal root ganglion neurons. Neuron. 17, 135-45.
    Huang T. Y., Cherkas P. S., Rosenthal D. W., et al (2005) Dye coupling among satellite glial cells in mammalian dorsal root ganglia. Brain Res. 1036, 42-49.
    Hu H. Z., Li Z. W. and Si J.Q. (1997) Evidence for the existence of substance P autoreceptor in the membrane of rat dorsal root ganglion neurons. Neuroscience. 77, 535-541.
    Juan C. G., Marvizón J. A., McRoberts H. S., et al (2002) Two N-methyl-D-aspartate receptors in rat dorsal root ganglia with different subunit composition and localization. The Journal of Comparative Neurology. 446, 325– 341.
    Katz B. The release of neural transmitter substances (Thomas, Springfield, Illinois, 1969). Keizer J., Li Y. X., Stojilkovic S., et al (1995) InsP3-induced Ca2+ excitability of the endoplasmic reticulum. Mol Biol Cell. 6, 945-951.
    Kapur A., Yeckel M. and Johnston D. (2001) Hippocampal mossy fiber activity evokes Ca2+ release in CA3 pyramidal neurons via a metabotropic glutamate receptor pathway.Neuroscience. 107, 59-69.
    Kasai H. and Augustine G. J. (1990) Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature. 348, 735-738.
    Kawano S., Otsu K., Kuruma A., et al (2006) ATP autocrine/paracrine signaling induces calcium oscillations and NFAT activation in human mesenchymal stem cells. Cell Calcium. 39, 313-24.
    Kikkawa R. (2002) Increase in intracellular Ca2+ and calcitonin gene-related peptide release through metabotropic P2Y receptors in rat dorsal root ganglion neurons. Neuroscience. 111, 413–422.
    Kostyuk P. G., Veselovsky N. S. and Tsyndrenko A. Y. (1981) Ionic currents in the somatic membrane of rat dorsal root ganglion neurons-I. Sodium currents. Neuroscience. 6, 2423-2430.
    Ouyang K., Zheng H., Qin X., et al (2005) Ca2+ sparks and secretion in dorsal root ganglion neurons. Proc Natl Acad Sci. U S A 102, 12259-12264.
    Ouyang K., Wu C. and Cheng H. (2005) Ca2+ -induced Ca2+ release in sensory neurons: low gain amplification confers intrinsic stability. J Biol Chem. 280,15898-15902.
    Liang S.D., Xu C. S., Zhou T., et al (2005) Tetramethylpyrazine inhibits ATP-activated currents in rat dorsal root ganglion neurons. Brain Res. 1040, 92-97.
    Locovei S., Wang J. and Dahl G. (2006) Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium. FEBS Lett. 580, 239-244.
    Baker M. D. and Bostock H. (1997) Low-threshold, persistent sodium current in rat large dorsal root ganglion neurons in culture. J Neurophysiol. 77, 1503-1513.
    Moriyama T., Iida T., Kobayashi K., et al (2003) Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity. J Neurosci. 23, 6058-6062.
    Nakamura T., Barbara J. G., Nakamura K., et al (1999) Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials. Neuron. 24, 727-737.
    Nathanson M. H., Padfield P. J., O'Sullivan A. J., et al (1992) Mechanism of Ca2+ wave propagation in pancreatic acinar cells. J Biol Chem. 267, 18118-18121.
    Pape H. C., Pare D., Driesang R. B. (1998) Two types of intrinsic oscillations in neurons of the lateral and basolateral nuclei of the amygdala. J Neurophysiol. 79, 205-216.
    Pape H. C. and Driesang R. B. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex. J Neurophysiol. 1998 Jan;79(1):217-26.
    Piazza V., Ciubotaru C. D., Gale J. E., et al (2007) Purinergic signalling and intercellular Ca2+ wave propagation in the organ of Corti. Cell Calcium. 41, 77-86.
    Lieberman A. R. (1976) Sensory ganglia. In: The peripheral nerve (Landon, DN, eds), p. 188. London: Chapman and Hall.
    Lovinger D. M. and Weight F. F. (1988) Glutamate induces a depolarization of adult rat dorsal root ganglion neurons that is mediated predominantly by NMDA receptors. Neurosci Lett. 94, 314-320.
    Luo J., Yin G.F., Gu Y.Z., et al (2006) Characterization of three types of ATP-activated current in relation to P2X subunits in rat trigeminal ganglion neurons. Brain Res. 1115, 9-15.
    Rooney T. A., Sass E. J. and Thomas A. P. (1990) Agonist-induced cytosolic calcium oscillations originate from a specific locus in single hepatocytes. J Biol Chem. 265, 10792-10796.
    Zhang X., Aman K., Hokfelt T. (1995) Secretory pathways of neuropeptides in rat lumbar dorsal root ganglion neurons and effects of peripheral axotomY. J Comp Neurol. 352, 481-500.
    Zarei M. M., Toro B. and McCleskey E. W. (2004) Purinergic synapses formed between rat sensory neurons in primary culture. Neuroscience. 126, 195-201.
    Zhi Q. L., Wei Z. S. and Ke D. (2004) Persistent tetrodotoxin-sensitive sodium current resulting from U-to-C RNA editing of an insect sodium channel. Proc Natl Acad Sci. U S A 101, 11862–11867.
    Moriyama T., Iida T., Kobayashi K., et al (2003) Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity. J Neurosci. 23, 6058-6062.
    Shishkin V., Potapenko E., Kostyuk E., et al (2002) Role of mitochondria in intracellular calcium signaling in primary and secondary sensory neurones of rats. Cell Calcium. 32, 121-130.
    Renganathan M., Cummins T. R. and Waxman S. G. (2002) Nitric Oxide Blocks Fast, Slow, and Persistent Na+ Channels in C-Type DRG Neurons by S-Nitrosylation. J. Neurophysiol. 87, 761-775.
    Sato K., Kiyama H., Park H. T., et al (1993) AMPA, KA and NMDA receptors are expressed in the rat DRG neurones. Neuroreport. 4, 1263-1265.
    Seino D., Tokunaga A., Tachibana T., et al (2006) The role of ERK signaling and the P2X receptor on mechanical pain evoked by movement of inflamed knee joint. Pain. 123, 193-203.
    Shinder V., Amir R. and Devor M. (1998) Cross-excitation in dorsal root ganglia does not depend on close cell-to-cell apposition. Neuroreport. 9, 3997-4000.
    Shinder V. and Devor M. (1994) Structural basis of neuron-to-neuron cross-excitation in dorsal root ganglia. J Neurocytol. 23, 515-531.
    Simon N. J., Chi U. C., Per U., et al (2005) Signaling microdomains regulate inositol 1,4,5-trisphosphate-mediated intracellular calcium transients in cultured neurons. J Neurosci. 25, 2853-2864.
    Schweitzer E. (1987) Coordinated release of ATP and ACh from cholinergic synaptosomes and its inhibition by calmodulin antagonists. J Neurosci. 7, 2948-2956
    Stevens B., Ishibashi T., Chen J. F., et al (2004) an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells. Neuron Glia Biol. 1, 23-34.
    Stefan I. M., Zoltán C. and Martin F. S. (2000) Origin sites of calcium release and calciumoscillations in frog sympathetic neurons. J Neurosci. 20, 9059-9070.
    Svichar N., Shmigol A., Verkhratsky A., et al (1997) ATP induces Ca2+ release from IP3-sensitive Ca2+ stores exclusively in large DRG neurones. Neuroreport. 8, 1555-1559.
    Tominaga M., Wada M. and Masu M. (2001) Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc. Natl. Acad. Sci. USA 98, 6951–6956.
    Tsien R. W. and Tsien R.Y. (1990) Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 6, 715-60.
    Tsuda M., Koizumi S., Kita A., et al (2000) Mechanical allodynia caused by intraplantar injection of P2X receptor agonist in rats: involvement of heteromeric P2X2/3 receptor signaling in capsaicin-insensitive primary afferent neurons. J. Neurosci. 20, RC90.
    White T.D. and Leslie R. A. (1982) Depolarization-induced release of adenosine 5'-triphosphate from isolated varicosities derived from the myenteric plexus of the guinea pig small intestine. Journal of Neurosci. 2, 206-215.
    Toescu E. C., O'Neill S. C., Petersen O. H., et al (1992) Caffeine inhibits the agonist-evoked cytosolic Ca2+ signal in mouse pancreatic acinar cells by blocking inositol trisphosphate production. J Biol Chem. 267, 23467-23470.
    Tse F. W., Tse A. and Hille B. (1994) Cyclic Ca2+ changes in intracellular stores of gonadotropes during gonadotropin-releasing hormone-stimulated Ca2+ oscillations. Proc Natl Acad Sci. USA 91, 9750-9754.
    Yang Y. L., Yao K. H., Gu Y. Z., et al (2003) Three kinds of current in response to substance P in bullfrog DRG neurons. Brain Res. 981, 70-77.
    Yoshida H., Marunaka Y, and Nakahari T. (2003) [Ca2+]i oscillations induced by high [K+]o in acetylcholine-stimulated rat submandibular acinar cells: regulation by depolarization, cAMP and pertussis toxin. Exp Physiol. 88, 369-379.
    Choi Y. M., Kim S. H., Chung S., et al (2006) Regional interaction of endoplasmic reticulum Ca2+ signals between soma and dendrites through rapid luminal Ca2+ diffusion. J Neurosci. 26, 12127-12136.
    Zhang C., Xiong W., Zheng H., et al (2004) Calcium- and dynamin-independent endocytosis in dorsal root ganglion neurons. Neuron. 42, 225-236.
    Wang Z., Haydon P. G. and Yeung E. S. (2000) Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Anal. Chem. 72, 2001–2007.
    Watanabe S., Hong M., Lasser R. N., et al (2006) Modulation of calcium wave propagation in the dendrites and to the soma of rat hippocampal pyramidal neurons. J Physiol. 575, 455-468.
    Wynn G., Ma B., Ruan H. Z., et al (2004) Purinergic component of mechanosensory transduction is increased in a rat model of colitis. Am J Physiol Gastrointest Liver Physiol. 287, 647-657.
    Wu D. M., Minami M., Kawamura H., et al (2006) Electrotonic transmission within pericyte-containing retinal microvessels. Microcirculation. 2006, 13, 353-363.
    Wu Z. Z., Guan B. C., Li Z. W., et al (2004) Sustained potentiation by substance P of NMDA-activated current in rat primary sensory neurons. Brain Res. 1010, 117-126.
    Utzschneider D., Kocsis J. and Devor M. (1992) Mutual excitation among dorsal root ganglion neurons in the rat. Neurosci Lett. 146, 53-56.
    Vander S. M., Trevisani M., Vellani V., et al (2005) Anandamide acts as an intracellular messenger amplifying Ca2+ influx via TRPV1 channels. EMBO J. 24, 3026-3037.
    Vervaeke K., Hu H., Graham L. J., et al (2006) Contrasting effects of the persistent Na+ current on neuronal excitability and spike timing. Neuron. 49, 257-70.
    Adegboyega P.A., Mifflin R.C., DiMari J.F., Saada J.I., Powell D.W., 2002. Immunohistochemical study of myofibroblasts in normal colonic mucosa, hyperplastic polyps, and adenomatous colorectal polyps. Arch Pathol Lab Med. 126, 829-836.
    Au S.R., Au K., Saggers G.C., Karne N., Ehrlich H.P., 2006. Rat mast cells communicate with fibroblasts via gap junction intercellular communications. J Cell Biochem. 100, 1170-1177
    Balcar V.J., Shen J., Bao S., King N.J., 1994. Na+-dependent high affinity uptake of L-glutamate in primary cultures of human fibroblasts isolated from three different types oftissue. FEBS Lett. 339, 50-54.
    Barakat W.I., Droz B., 1990. Glutamine Synthetase is Expressed by Primary Sensory Neurons from Chick Embryos In Vitro but not In Vivo: Influence of Skeletal Muscle Extract. Eur J Neurosci. 2, 836-844.
    Baux G., Simonneau M., Tauc L., Segundo J.P., 1978. Uncoupling of electrotonic synapses by calcium.Proc Natl Acad Sci U S A. 75, 4577-4581.
    Beaudu L. C., Colomar A., Israel J.M., Coles J.A., Amedee T., 2000. Spontaneous neuronal activity in organotypic cultures of mouse dorsal root ganglion leads to upregulation of calcium channel expression on remote Schwann cells. Glia. 29, 281-287.
    Bergey G.K., Fitzgerald S.C., Schrier B.K., Nelson P.G., 1981. Neuronal maturation in mammalian cell culture is dependent on spontaneous electrical activity. Brain Res. 207, 49-58.
    Courbin P., Koenig J., Ressouches A., Beam K. G., Powell J. A., 1989. Rescue of excitation-contraction coupling in dysgenic muscle by addition of fibroblasts in vitro. Neuron. 2, 1341-1350.
    Cruise B.A., Xu P., Hall A.K., 2004. Wounds increase activin in skin and a vasoactive neuropeptide in sensory ganglia. Dev Biol. 271, 1-10.
    Dakin K., Li W.H., 2006. Local Ca2+ rise near store operated Ca2+ channels inhibits cell coupling during capacitative Ca2+ influx. HCell Commun Adhes. 13, 29-39.
    Daubrawa F., Sies H., Stahl W., 2005. Astaxanthin diminishes gap junctional intercellular communication in primary human fibroblasts. J Nutr. 135, 2507-2511.
    De Roos A. D. G., van Zoelen E. J. J., Theuvenet A. P. R., 1996. Determination of gap junctional intercellular communication by capacitance measurements. Pflügers Arch. 431, 556-563.
    Desaki J., Fujiwara T., Komuro T., 1984. A cellular reticulum of fibroblast-like cells in the rat intestine: scanning and transmission electron microscopy. Arch Histol Jpn. 47, 179-186.
    Ehrlich H.P., Diez T., 2003. Role for gap junctional intercellular communications in wound repair. Wound Repair Regen. 11, 481-489.
    Ehrlich H.P., Sun B., Saggers G.C., Kromath F., 2006. Gap junction communications influence upon fibroblast synthesis of Type I collagen and fibronectin. J Cell Biochem. 98, 735-743.
    Enomoto A., Han J.M., Hsiao C.F., Wu N., Chandler S.H., 2006. Participation of sodium currents in burst generation and control of membrane excitability in mesencephalic trigeminal neurons. J Neurosci. 26, 3412-3422.
    Furuya K., Furuya S., Yamagishi S., 1994. Intracellular calcium responses and shape conversions induced by endothelin in cultured subepithelial fibroblasts of rat duodenal villi. Pflugers Arch. 428, 97-104.
    Furuya S., Furuya K., Sokabe M., Hiroe T., Ozaki T., 2005. Characteristics of cultured subepithelial fibroblasts in the rat small intestine. II. Localization and functional analysis of endothelin receptors and cell-shape-independent gap junction permeability. Cell Tissue Res. 319, 103-119.
    George Z. M., Eugenia D., Linda B., Roberto N., 2002. Increased incidence of gap junctional coupling between spinal motoneurones following transient blockade of NMDA receptors in neonatal rats. Journal of Physiology. 544, 757-764.
    Gray P.N., May P.C., Mundy L., Elkins J., 1980. L-Glutamate toxicity in Huntington's disease fibroblasts.Biochem Biophys Res Commun. 95, 707-714.
    Guenard V., Gwynn L.A., Wood P.M., 1994. Astrocytes inhibit Schwann cell proliferation and myelination of dorsal root ganglion neurons in vitro. J Neurosci. 14, 2980-2992.
    Gu J.G., MacDermott A.B., 1997. Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature. 389,749-753.
    Guldner F.H., 1972. Characteristics of neuro-glial synapses-like contacts in eminentia mediana in the rat.Verh Anat Ges. 67, 279-283.
    Huang T.Y., Cherkas P.S., Rosenthal D.W., Hanani M., 2005. Dye coupling among satellite glial cells in mammalian dorsal root ganglia. Brain Res. 1036, 42-49.
    Hunter G. K., Pitts J. D., 1981. Non-selective junctional communication between some different mammalian cell types in primary culture. J. Cell Sci. 49, 163-175.
    Hunter G.K., Szigety S.K., 1992. Effects of proteoglycan on hydroxyapatite formation under non-steady-state and pseudo-steady-state conditions. Matrix. 12, 362-368.
    Jeftinija S., Jeftinija K., Liu F., Skilling S.R., Smullin D.H., Larson A.A., 1991. Excitatory amino acids are released from rat primary afferent neurons in vitro. Neurosci Lett. 125, 191-194.
    Jerregard H., Akerud P., Arenas E., Hildebrand C., 2000. Fibroblast-like cells from rat plantar skin and neurotrophin-transfected 3T3 fibroblasts influence neurite growth from rat sensory neurons in vitro. J Neurocytol. 29, 653-663.
    Jerregard H., 2001. Sensory neurons influence the expression of cell adhesion factors by cutaneous cells in vitro and in vivo. J Neurocytol. 30, 327-336.
    Jester J. V., Petroll W.M., Barry P. A., Cavanagh H. D., 1995. Temporal, 3-dimensional, cellular anatomy of corneal wound tissue. J. Anat. 186, 301-311.
    Joyce B., 1987. Bridging the gap. Miss RN. 49, 29-30.
    Kajander K.C., Wakisaka S., Bennett G.J., 1992. Spontaneous discharge originates in the dorsal root ganglion at the onset of a painful peripheral neuropathy in the rat. Neurosci Lett. 138, 225-228.
    Komuro T., 1990. Re-evaluation of fibroblasts and fibroblast-like cells. Anat. Embryol. 182,103-112.
    Langevin H.M., Cornbrooks C.J., Taatjes D.J., 2004. Fibroblasts form a body-wide cellular network. Histochem Cell Biol. 122, 7-15.
    Mathers D.A., Barker J.L., 1984. Spontaneous voltage and current fluctuations in tissue cultured mouse dorsal root ganglion cells. Brain Res. 293, 35-47.
    May P.C., Gray P.N., 1985. The mechanism of glutamate-induced degeneration of cultured Huntington's disease and control fibroblasts. J Neurol Sci. 70, 101-112.
    Muller T., Moller T., Neuhaus J., Kettenmann H., 1996. Electrical coupling among Bergmann glial cells and its modulation by glutamate receptor activation.Glia. 17, 274-284.
    Nathalie R., Jacques G., Christian G., 2000. Activity-dependent Neuronal Control of Gap-junctional Communication in Astrocytes. The Journal of Cell Biology. 149, 1513-1526.
    Rao G., Barnes C.A., McNaughton B.L., 1987. Occlusion of hippocampal electrical junctions by intracellular calcium injection. Brain Res. 408, 267-270.
    Roerig B., Feller M.B., 2000. Neurotransmitters and gap junctions in developing neural circuits. Brain Res Brain Res Rev. 32, 86-114.
    Rook M. B., van Ginneken A. C. G., de Jonge B., El Aoumari A., Gros D., Jongsma H. J.,1992 . Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs. Am. J. Physiol. 263, 959-977.
    Rorig B., Sutor B., 1996. Regulation of gap junction coupling in the developing neocortex. Mol Neurobiol. 12, 225-249.
    Russell L.C., Burchiel K.J., 1988. Spontaneous activity in afferent and efferent fibers after chronic axotomy: response to potassium channel blockade. Somatosens Mot. 6, 163-177.
    Rydh R. M., Kerekes N., Svensson M., Hokfelt T., 2001. Glutamate release from adult primary sensory neurons in culture is modulated by growth factors. Regul Pept. 102, 69-79.
    Stahl W.L., Ward C.B., Casper J.B., Bird T.D. 1984. Effects of L-glutamate on viabilities of cultured diploid skin fibroblasts and lymphocytes. Increased toxicity not observed in Huntington's disease. J Neurol Sci. 66, 183-191.
    Venance L., Stella N., Glowinski J., Giaume C., 1997. Mechanism involved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes. J Neurosci. 17, 1981-1992.
    Yang K., Wang G.D., Li Y.Q., Shi J.W., Zhao Z.Q., 1998. Co-existence of glutamate and substance P in electrophysiologically identified dorsal root ganglion neurons of rats Sheng Li Xue Bao. 50, 453-459.
    [1] J.M.G. Foster and B.P. Sweeney, The mechanisms of acupuncture analgesia, Br J Hosp Med. 38 (1987)308-312.
    [2] X.Z. Qian. Progress in scientific research on acupuncture, moxibustion and acupuncture anesthesia by integrating traditional Chinese and Western medicine. In Zhang XT, ed. Research on Acupuncture, Moxibustion, and Acupuncture Anesthesia. Beijing, China: Science Press, 1986, 1-18.
    [3] D. Tang, Advances of research on the mechanism of acupuncture and moxibustion, Acup Res. 4 (1987) 278-284.
    [4] P. Rubin, Therapeutic acupuncture: a selective review. South Med J. 70 (1977) 974-977.
    [5] W. Zhang , R. Xu , Z. Zhu, The influence of acupuncture on the impedance measured by four electrodes on meridians, Acup And Electro-Therapeutics Res. 24(1999) 181-188.
    [6] W. Zhang, CO2 emission from skin of meridian, Bejin Biomedical Eng.15 (1996), 221-225.
    [7] J.C.Darras, P.D. Vernejoul, P. Albareide, Nuclear medicine and acupuncture, astudy on the migration of radioactive tracers after injection at acupoints, Am.J Acupuncture. 20(1992) 245-256.
    [8] M. Reichmanis , A.A. Marino , R.O. Becker, Electrical correlates of acupuncture points, IEEE Trans, Biomod, Eng. BME, vol.22, 1975, 533 PP.
    [9] S. M. Lee, C. Choi; K.S. Soh; G. Yoon, Measurement and analysis of optical properties of acupuncturepoints and channels, Industrial Electronics, 2001. IEEE International Symposium on Vol. 1, ISIE, 2001, PP. 655– 656.
    [10] H. Lazoura, M. Colen, E. Lazoura, I. Cosic, Do acupuncture points have different absorption properties to laser light than surrounding skin? In Proc Ind IEEE Int, Conf. Bioelectromagmetism, IEEE, Melbourne, Australia, 1998, 172-173.
    [11] A.H. Li , J.M. Zhang , Y.K. Xie, Human acupuncture points mapped in rats are associated with excitable muscle/skin-nerve complexes with enriched nerve endings, Brain Res. 25 (2004) 154-159.
    [12] R. Bruzzone, T.W. White, D.L. Paul, Connections with connexins: the molecular basis of direct intercellular signaling, Eur J Biochem. 238 (1996) 1-27.
    [13] J.S, Davidson , I.M. Baumgarten, Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication, Structure-activity relationships. J Pharmacol Exp Ther. 246 (1988) 1104-1107.
    [14] Q.K. Deng, A new approach for exploring the essence of meridian, Di Yi Jun Yi Da Xue Xue Bao. 23 (2003) 409-413.
    [15] C. Shang, Singular point, organizing center and acupuncture point, Am J Chin Med. 17(1989) 119-127.
    [16] C. Shang, Electrophysiology of growth control and acupuncture, Life Sci. 68 (2001) 1333-1342.
    [17] A. Eory, E. Kuzmann, G.Y. Adam, Skin resistance mapping taking into account simultaneously influencing factors in Hungarians, Magy Pszichologiai Szeme.37 (1970) 514-529.
    [18] A. Comunetti, S. Laage, N. Schiessl, A. Kistler, Characterisation of human skin conductance at acupuncture points, Experientia. 51(1995) 328-331.
    [19] K.K. Wilgenbus, C.J. Kirkpatrick, R. Knuechel, K. Willecke, O.Traub, Expression of Cx26, Cx32 and Cx43 gap junction proteins in normal and neoplastic human tissues, Int J Cancer. 51(1992) 522-952.
    [20] M.G. Shubich, B.G. Ermoshenko, I.M. Perov, I.V. Dorofeeva, Gap junctions--major structures promoting intercellular communication, Morfologiia. 127 (2005) 65-71.
    [21] G. Richard, Connexin disorders of the skin, Clin Dermatol. 23 (2005) 23-32.
    [22] H.M.Langevin, C.J. Cornbrooks, D.J. Taatjes, Fibroblasts form a body-wide cellular network, Histochem Cell Biol. 122 (2004) 7-15.
    [23] D.A. Gerido, T.W. White, Connexin disorders of the ear, skin, and lens, Biochim Biophys Acta. 1662 (2004) 159-170.
    [24] C. Shang, Bioelectrochemical oscillations in signal transduction and acupuncture - an emerging paradigm, Am J Chin Med. 21 (1993) 91-101.
    [1] Meier C, Dermietzel R. Electrical synapses--gap junctions in the brain. Results Probl Cell Differ. 2006; 43:99-128. Review.
    [2] De Leon JR, Buttrick PM, Fishman GI. Functional analysis of the connexin43 gene promoter in vivo and in vitro. J Mol Cell Cardiol. 1994 Mar; 26(3):379-89.
    [3]Giaume C, Tabernero A, Medina JM.Metabolic trafficking through astrocytic gap junctions. Glia. 1997 Sep; 21(1):114-23.
    [4] Camillo Peracchia. Calcium effects on gap junction structure and cell coupling. Nature 271, 669 - 671
    [5] Haefliger JA , Bruzzone R , Jenkins NA , et al. Four novel members of the connexin family of gap junction proteins. Biol Chem, 1992, 267 (3) : 2 0572064
    [6] Bruzzone R, White TW, Goodenough DA. The cellular Internet: on-line with connexins. Bioessays. 1996 Sep; 18(9):709-18. Review.
    [7] Rozental R, Giaume C, Spray DC. Gap junctions in the nervous system. Brain Res Brain Res Rev. 2000 Apr; 32(1):11-5.
    [8] Willecke K,Hennemann H, Dahl E,et al.The diversity of connexin genes encoding gap-junctional proteins.Eur J Cell Biol,1991,56:1 [9 ] Christ GJ , Spray DC , Marwan ES , et al. Gap Junctions in vascular tissues. Circ Res, 1996, 79: 6312646
    [10] Sosinsky GE, Nicholson BJ.Structural organization of gap junction channels. Biochim Biophys Acta. 2005 Jun 10; 1711(2):99-125. Epub 2005 Apr 19.
    [11] Shaw RM, Fay AJ, Puthenveedu MA, von Zastrow M, Jan YN, Jan LY. Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell. 2007 Feb 9; 128(3):547-60.
    [12] Stauffer KA , Kumar NM, Gilula NB, et al. Isolation and purfication of gap junction channels. Cell Biol, 1991, 115: 1412150
    [13] Peracchia C. Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim Biophys Acta. 2004 Mar 23; 1662(1-2):61-80. Review.
    [14] Bezzi P, Volterra A. A neuron-glia signalling network in the active brain.Curr Opin Neurobiol. 2001 Jun; 11(3):387-94.
    [15] Bonnie RJ. The American Psychiatric Association's resource document on mental retardation and capital sentencing: implementing Atkins v. Virginia. J Am Acad Psychiatry Law. 2004; 32(3):304-8.
    [16] Juan CH, Campana G, Walsh V. Cortical interactions in vision and awareness: hierarchies in reverse. Prog Brain Res. 2004; 144:117-30.
    [17] Christ GJ, Brink PR. Analysis of the presence and physiological relevance of subconducting states of connexin2432derived gap junction channels in cultured human corporal vascular smooth muscle cells. Circ Res, 1999, 84 : 7972803 [18 ] Brink PR , Ramanan SV , Christ GJ . Human connexin243 gap junction channel gating: evidence for mode shifts andPor heterogeneity. Am J Physiol , 1996, 271: C3212C331
    [19] D Andrea P, Vittur F. Gap junction mediate window intercellular calcium signaling in cultured articular chondrocyte. Cell Calcium, 1996, 20(5): 3892397
    [20] Peracchia C. Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim Biophys Acta. 2004 Mar 23; 1662(1-2):61-80. [21 ] Francisco J , Hernandez B , Paulo PJ , et al. Control of intracellular movement of connexins by E2cadherin on murine skin papilloma cells. Expe Cell Res, 2001, 270 (2): 2352247
    [22] Wang Y, Rose B. An inhibition of gap junctional communication by cadherins. Cell Sci, 1997, 110 (Pt 3): 3012309
    [23]Li X, Simard JM. Multiple connexins form gap junction channels in rat basilar arterysmooth muscle cells. Circ Res, 1999, 84: 1 2772284
    [24] Qu Y, Dahl G.Function of the voltage gate of gap junction channels: selective exclusion of molecules. Proc Natl Acad Sci U S A. 2002 Jan 22; 99(2):697-702.
    [25] Qu Y, Dahl G.Accessibility of cx46 hemichannels for uncharged molecules and its modulation by voltage. Biophys J. 2004 Mar; 86(3):1502-9.
    [26] Christ GJ, Spray DC, el-Sabban M, Moore LK, Brink PR. Gap junctions in vascular tissues. Evaluating the role of intercellular communication in the modulation of vasomotor tone. Circ Res. 1996 Oct; 79(4):631-46. Review.
    [27] Leybaert L, Cabooter L, Braet K. Calcium signal communication between glial and vascular brain cells. Acta Neurol Belg. 2004 Jun; 104(2):51-6. Review.
    [28] Braet K, Cabooter L, Paemeleire K, Leybaert L. Calcium signal communication in the central nervous system. Biol Cell. 2004 Feb; 96(1):79-91. Review.
    [29] Christ GJ, Day NS, Day M, Santizo C, Zhao W, Sclafani T, Zinman J, Hsieh K, Venkateswarlu K, Valcic M, Melman A. Bladder injection of "naked" hSlo/pcDNA3 ameliorates detrusor hyperactivity in obstructed rats in vivo. Am J Physiol Regul Integr Comp Physiol. 2001 Nov; 281(5):R1699-709.
    [30] Habermann H , Ray V , HabermannW, Prins GS. Alterations in Gap Junction protein expression in human benign prostatic hyperplasix and prostate cancer. J Urol, 2001 ,166 (6) : 2 2672272
    [31]Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC.Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev. 2003 Oct; 8 3(4):1359-400.
    [32]Dhein S, Jongsma HJ。Forming the network-gap junctions in the cardiovascular system.Cardiovasc Res. 2004 May 1; 62(2):225-7.
    [33] Redebold k , Horakova E , Spray DC , et , al. Gap junctiontal channels regulate axid secretion in the mamalian gastric gland. Membr Biol, 2001, 183 (3): 1472153
    [34] Braet K, Cabooter L, Paemeleire K, Leybaert L.Calcium signal communication in the central nervous system. Biol Cell. 2004 Feb; 96(1):79-91.
    [35]Bruzzone R, Dermietzel R.Structure and function of gap junctions in the developing brain. Cell Tissue Res. 2006 Nov; 326(2):239-48.
    [36] Perez Velazquez JL, and Carlen PL. (2000). Gap junctions, synchrony and seizures. Trends Neurosci. 23:68-74.
    [37] Wilson CL, Puntis M, and Lacey MG. (2004). Overwhelmingly asynchronous firing of rat subthalamic nucleus neurones in brain slices provides little evidence for intrinsic interconnectivity. Neuroscience. 123:187-200.
    [38] Connors BW, Long MA.Electrical synapses in the mammalian brain. Annu Rev Neurosci. 2004; 27:393-418.
    [39]Hestrin S, Galarreta M.Electrical synapses define networks of neocortical GABAergic neurons. Trends Neurosci. 2005 Jun; 28(6):304-9.
    [40] Plenz D, and Kital ST. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature. 400:677-682.
    [41] Traub RD, Draguhn A, Whittington MA, Baldeweg T, Bibbig A, Buhl EH, Schmitz D. Axonal gap junctions between principal neurons: a novel source of network oscillations, and perhaps epileptogenesis. Rev Neurosci. 2002; 13(1):1-30.
    [42] Magill PJ, Bolam JP, and Bevan MD. (2001). Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience. 106:313-330.
    [43]Bergman H, Feingold A, Nini A, Raz A, Slovin H, Abeles M, and Vaadia E.. Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci. (1998) 21:32-8.
    [45] Bevan MD, Magill PJ, Terman D, Bolam JP, and Wilson CJ. (2002). Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci. 25:525-31.
    [46]Kirchhoff F, Dringen R, Giaume C.Pathways of neuron-astrocyte interactions and their possible role in neuroprotection. Eur Arch Psychiatry Clin Neurosci. 2001 Aug;251(4):159-69.
    [47] Bezzi P, Volterra A.A neuron-glia signalling network in the active brain. Curr Opin Neurobiol. 2001 Jun; 11(3):387-94.
    [48]Hormuzdi SG, Filippov MA, Mitropoulou G, Monyer H, Bruzzone R.Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. Biochim Biophys Acta. 2004 Mar 23; 1662(1-2):113-37.
    [49]Brown P, and Marsden CD. (1999). What do the basal ganglia do? Lancet. 351:1801-1804.
    [50]LeBeau FE, Traub RD, Monyer H, Whittington MA, Buhl EH.The role of electrical signaling via gap junctions in the generation of fast network oscillations. Brain Res Bull. 2003 Nov 15; 62(1):3-13.
    [51] Nadarajah B, Makarenkova H, Becker DL, Evans WH, Parnavelas JG.Basic FGF increases communication between cells of the developing neocortex. J Neurosci. 1998 Oct 1; 18(19):7881-90.
    [52]Cheng A, Tang H, Cai J, Zhu M, Zhang X, Rao M, Mattson MP. Gap junctional communication is required to maintain mouse cortical neural progenitor cells in a proliferative state. Dev Biol. 2004 Aug 1; 272(1):203-16.
    [53] Bennett MV, Zukin RS.Electrical coupling and neuronal synchronization in the Mammalian brain. Neuron. 2004 Feb 19; 41(4):495-511.
    [54] LeBeau FE, Traub RD, Monyer H, Whittington MA, Buhl EH.The role of electrical signaling via gap junctions in the generation of fast network oscillations. Brain Res Bull. 2003 Nov 15;62(1):3-13。
    [55] Rizzoli S, Sharma G, Vijayaraghavan S.Calcium rise in cultured neurons from medial septum elicits calcium waves in surrounding glial cells. Brain Res. 2002 Dec 13;957(2):287-97.
    [56] Fauquier T, Guerineau NC, McKinney RA, Bauer K, Mollard P. Folliculostellate cell network: a route for long-distance communication in the anterior pituitary. Proc Natl Acad Sci U S A. 2001 Jul 17; 98(15):8891-6. Epub 2001 Jul 03.
    [57] LeBeau FE, Traub RD, Monyer H, Whittington MA, Buhl EH.The role of electrical signaling via gap junctions in the generation of fast network oscillations. Brain Res Bull. 2003 Nov 15; 62(1):3-13.
    [58]Ribary U, Ioannides AA, Singh KD, Hasson R, Bolton JP, Lado F, Mogilner A, and Llinas R. Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc Natl Acad Sci USA 88: 11037-11041, 1991
    [59] Sanes JN, and Donoghue JP. Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proc Natl Acad Sci USA 90: 4470-4474, 1993
    [60]Fell J, Klaver P, Lehnertz K, Grunwald T, Schaller C, Elger CE, and Fernandez G. Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nat Neurosci 4: 1259-1264, 2001
    [61]Whittington MA, Traub RD.Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends Neurosci. 2003 Dec; 26(12):676-82.
    [62]Rouach N, Koulakoff A, Giaume C.Neurons set the tone of gap junctional communication in astrocytic networks. Neurochem Int. 2004 Jul-Aug; 45(2-3):265-72.
    [63]Nishizaki T.ATP- and adenosine-mediated signaling in the central nervous system: adenosine stimulates glutamate release from astrocytes via A2a adenosine receptors. J Pharmacol Sci. 2004 Feb; 94(2):100-2.
    [64]Oliani SM, Girol AP, Smith RL.Gap junctions between mast cells and fibroblasts in the developing avian eye. Acta Anat (Basel). 1995; 154(4):267-71.
    [65] Arumugam H, Liu X, Colombo PJ, Corriveau RA, Belousov AB.NMDA receptors regulate developmental gap junction uncoupling via CREB signaling. Nat Neurosci. 2005 Dec; 8(12):1633-4.
    [65] Braet K, Mabilde C, Cabooter L, Rapp G, Leybaert L. Electroporation loading and photoactivation of caged InsP3: tools to investigate the relation between cellular ATP release in response to intracellular InsP3 elevation.J Neurosci Methods. 2004 Jan 15; 132(1):81-9.
    [66] Braet K, Vandamme W, Martin PE, Evans WH, Leybaert L. Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26. Cell Calcium. 2003 Jan; 33(1):37-48.
    [67] Van Hoorde L, Braet K, Mareel M.The N-cadherin/catenin complex in colon fibroblasts and myofibroblasts. Cell Adhes Commun. 1999;7(2):139-50.
    [68] Zhang W, Segura BJ, Lin TR, Hu Y, Mulholland MW.Intercellular calcium waves in cultured enteric glia from neonatal guinea pig. Glia. 2003 May; 42(3):252-62.
    [69]Bennett MV, Contreras JE, Bukauskas FF, Saez JC.New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci. 2003 Nov; 26(11):610-7.
    [70]Parpura V, Scemes E, Spray DC.Mechanisms of glutamate release from astrocytes: gap junction "hemichannels", purinergic receptors and exocytotic release. Neurochem Int. 2004 Jul-Aug; 45(2-3):259-64.
    [72] Katsuragi T, Migita K. The mechanism of ATP release as an autocrine/paracrine molecule. Nippon Yakurigaku Zasshi. 2004 Jun; 123(6):382-8.
    [73]Young RC, Schumann R, Zhang P.The signaling mechanisms of long distance intercellular calcium waves (far waves) in cultured human uterine myocytes. J Muscle Res Cell Motil. 2002; 23(4):279-84.
    [74]Braet K, Paemeleire K, D'Herde K, Sanderson MJ, Leybaert L. Astrocyte-endothelial cell calcium signals conveyed by two signalling pathways. Eur J Neurosci. 2001 Jan; 13(1):79-91.
    [75] Jan AY, Amin S, Ratajczak P, Richard G, Sybert VP. Genetic heterogeneity of KID syndrome: identification of a Cx30 gene (GJB6) mutation in a patient with KID syndrome and congenital atrichia. J Invest Dermatol. 2004 May; 122(5):1108-13.
    [76] Giaume C, Froger N, Koulakoff A. Gap junction-mediated intercellular communication in astrocytes and neuroprotection. Ann Fr Anesth Reanim. 2005 Jun; 24(6):695-6.
    [77] Tabernero A, Medina JM, Giaume C.Glucose metabolism and proliferation in glia: role of astrocytic gap junctions. J Neurochem. 2006 Nov; 99(4):1049-61. Epub 2006 Aug 8.
    [78] Newman EA, Zahs KR. Modulation of neuronal activity by glial cells in the retina.J Neurosci. 1998 Jun 1; 18(11):4022-8
    [79] Kang SJ, Kim EK, Kim HB. Expression and distribution of extracellular matrices during corneal wound healing after keratomileusis in rabbits.Ophthalmologica. 1999; 213(1):20-4.
    [80] Braet K, Paemeleire K, D'Herde K, Sanderson MJ, Leybaert L. Astrocyte-endothelial cell calcium signals conveyed by two signalling pathways. Eur J Neurosci. 2001 Jan; 13(1):79-91.
    [81] Simard M, Beaudry M, Drapeau S, Nadeau F, Charbonneau C. The quality of sibling relation who have experienced family transitions and those who have not. Can J Commun Ment Health. 2002; (4 Suppl):131-51.
    [82]Marie Simard, Gregory Arcuino, Takahiro Takano, Qing Song Liu, and Maiken Nedergaard Signaling at the gliovascular interface.The Journal of Neuroscience, October 8, 2003, 23(27):9254-9262.
    [83]Paemeleire K, Leybaert L.ATP-dependent astrocyte-endothelial calcium signaling following mechanical damage to a single astrocyte in astrocyte-endothelial co-cultures. J Neurotrauma. 2000 Apr; 17(4):345-58.
    [84] Zhang W, DeMattia JA, Song H, Couldwell WT.Communication between malignant glioma cells and vascular endothelial cells through gap junctions. J Neurosurg. 2003 Apr; 98(4):846-53.
    [85] Rabionet R, Lopez-Bigas N, Arbones ML, Estivill X.Connexin mutations in hearing loss, dermatological and neurological disorders. Trends Mol Med. 2002 May; 8(5):205-12.
    [86] Blomstrand F, Venance L, Siren AL, Ezan P, Hanse E, Glowinski J, Ehrenreich H, Giaume C.Endothelins regulate astrocyte gap junctions in rat hippocampal slices.Eur J Neurosci. 2004 Feb; 19(4):1005-15.
    [87]Altevogt BM, Paul DL.Four classes of intercellular channels between glial cells in the CNS. J Neurosci. 2004 May 5; 24(18):4313-23.
    [88] Benarroch EE.Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc. 2005 Oct;80(10):1326-38.
    [89] Onn SP, and Grace AA. (1995). Repeated treatment with haloperidol and clozapine exerts differential effects on dye coupling between neurons in subregions of striatum and nucleus accumbens. Journal of Neuroscience. 15:7024-7036.
    [90] Onn SP, and Grace AA. (1999). Alterations in electrophysiological activity and dye coupling of striatal spiny and aspiny neurons in dopamine-denervated rat striatum recorded in vivo. Synapse. 33:1-15.
    [91] Maurer M, Kobsar I, Berghoff M, Schmid CD, Carenini S, Martini R.Role of immune cells in animal models for inherited neuropathies: facts and visions. J Anat. 2002 Apr; 200(4):405-14.
    [92]Sanchez-Alvarez R, Tabernero A, Medina JM.Endothelin-1 stimulates the translocation and upregulation of both glucose transporter and hexokinase in astrocytes: relationship with gap junctional communication. J Neurochem. 2004 May; 89(3):703-14.
    [93] Hasselblatt M, Bunte M, Dringen R, Tabernero A, Medina JM, Giaume C, Siren AL, Ehrenreich H.Effect of endothelin-1 on astrocytic protein content.Glia. 2003 Jun; 42(4):390-7.
    [94] Leybaert L, Cabooter L, Braet K.Calcium signal communication between glial and vascular brain cells. Acta Neurol Belg. 2004 Jun; 104(2):51-6.
    [95] Reimers D, Prieto R, Gimenez-Gallego G, Cuevas P, Barrio LC.Acidic fibroblast growth factor inhibits junctional communication of Schwann cells in culture. Neurol Res. 2000 Oct; 22(7):685-91.
    [96]Vandamme W, Braet K, Cabooter L, Leybaert L.Tumour necrosis factor alpha inhibits purinergic calcium signalling in blood-brain barrier endothelial cells.J Neurochem. 2004 Jan; 88(2):411-21.
    [97]Nihei OK, Campos de Carvalho AC, Spray DC, Savino W, Alves LA.A novel form of cellular communication among thymic epithelial cells: intercellular calcium wave propagation. Am J Physiol Cell Physiol. 2003 Nov; 285(5):C1304-13. Epub 2003 Jul 23.
    [98]Oviedo-Orta E, Evans WH.Gap junctions and connexins: potential contributors to the immunological synapse. J Leukoc Biol. 2002 Oct; 72(4):636-42.
    [99]Griffith TM, Chaytor AT, Edwards DH.The obligatory link: role of gap junctional communication in endothelium-dependent smooth muscle hyperpolarization. Pharmacol Res. 2004 Jun; 49(6):551-64.
    [100] Furuya S, Furuya K, Sokabe M, Hiroe T, Ozaki T.Characteristics of cultured subepithelial fibroblasts in the rat small intestine. II. Localization and functional analysis of endothelin receptors and cell-shape-independent gap junction permeability. Cell Tissue Res. 2004 Oct 19
    [101]Meme W, Ezan P, Venance L, Glowinski J, Giaume C.ATP-induced inhibition of gap junctional communication is enhanced by interleukin-1 beta treatment in cultured astrocytes. Neuroscience. 2004; 126(1):95-104.
    [102]Oliani SM, Girol AP, Smith RL.Gap junctions between mast cells and fibroblasts in the developing avian eye. Acta Anat (Basel). 1995; 154(4):267-71.
    [103] Emesto Oviedo-orta, W.Howard Evans. Gap junction and connexin-mediated communication in the immune system. Biochimia et Biophysica Acta; 1662(2004)102-112.
    [104] Zahler S, Hoffmann A, Gloe T, Pohl U.Gap-junctional coupling between neutrophils and endothelial cells: a novel modulator of transendothelial migration. J Leukoc Biol. 2003 Jan; 73(1):118-26.
    [105] Shirasawa N, Mabuchi Y, Sakuma E, Horiuchi O, Yashiro T, Kikuchi M, Hashimoto Y, Tsuruo Y, Herbert DC, Soji T.Intercellular communication within the rat anterior pituitary gland: X. Immunohistocytochemistry of S-100 and connexin 43 of folliculo-stellate cells in the rat anterior pituitary gland. Anat Rec. 2004 May; 278A(1):462-73.
    [106] Morand I, Fonlupt P, Guerrier A, Trouillas J, Calle A, Remy C, Rousset B, Munari-Silem Y.Cell-to-cell communication in the anterior pituitary: evidence for gap junction-mediated exchanges between endocrine cells and folliculostellate cells. Endocrinology. 1996 Aug; 137(8):3356-67.
    [107] Guerineau NC, Bonnefont X, Stoeckel L, Mollard P.Synchronized spontaneous Ca2+ transients in acute anterior pituitary slices. J Biol Chem. 1998 Apr 24; 273(17):10389-95.
    [108] Mayerhofer A, Fritz S.Ovarian acetylcholine and muscarinic receptors: hints of a novel intrinsic ovarian regulatory system. Microsc Res Tech. 2002 Dec 15;59(6):503-8.
    [109] Fritz S, Kunz L, Dimitrijevic N, Grunert R, Heiss C, Mayerhofer A.Muscarinic receptors in human luteinized granulosa cells: activation blocks gap junctions and induces the transcription factor early growth response factor-1. J Clin Endocrinol Metab. 2002 Mar;87(3):1362-7.
    [110] Dissen GA, Romero C, Paredes A, Ojeda SR.Neurotrophic control of ovarian development. Microsc Res Tech. 2002 Dec 15; 59(6):509-15.
    [111] Senbon S, Hirao Y, Miyano T.Interactions between the oocyte and surrounding somatic cells in follicular development: lessons from in vitro culture.J Reprod Dev. 2003 Aug;49(4):259-69.
    [112] Beyer EC. Gap Junction. Int Rev Cytol, 1993, 137C:1
    [113]Severs NJ.Pathophysiology of gap junctions in heart disease.J Cardiovasc Electrophysiol, 1994, 5:462
    [114] Kanter HL,Saffitz JE,Beyer EC.Cardiac myocytes express mutiple gap juntional proteins.Circ Res,1992,70:438
    [115] Davis LM,Kanter HL,Beyer EC,et al.Distinct gap junction protein phenotypes in cardiac tissues with disparate conduction properties.J Am Coll Cardiol,1994,24:1 124
    [116] Dolber PC,Beyer EC,Junker JL,et al.Distribution of gap junctions in dog and rat ventricle studied with a double-label technique.J Mol Cell Cardiol,1992,24:1 443
    [117] Thomas SA,Schuessler RB,Berul CI,et al.Disparate effects of deficient expression of connexin43 on atrial and ventricular conduction.Circulation,1998,97:686
    [118] Gourdie RG,Severs NJ,Green CR,et al.The Spateal distribution and relative abundance of gap junctional connexin 40 and connexin 43 correlate to functional properties of the cardiac atrioventricular conduction system.J Cell Sci,1993,105:985
    [119] Green CR, Severs NJ.Distribution and role of gap junctions in normal myocardium and human ischemic heart disease.Histochemistry, 1993, 99:105
    [120] Peters NS,Coromilas J,Severs NJ,et al.Disturbed Cx43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia.Circulation,1997,95:988
    [121]Peters NS,Green CR,Poole-Wilson PA,et al.Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischaemic human hearts.Cir culation,1993,88:86
    [122]Quan W, Rudy Y.Unidirectional block and reentry of cardiac excitation:a model study.Circ Res,1990,66:367
    [123] Akiyama T,Pawitan Y,Greenberg H,et al.Increased risk of death and cardiac arrest from encainide and flecainide in patients after non-q-wave acute myocadial infarction in the cardiac arrhythmia suppression trial.Am J Cardiol,1991,68:1551
    [124] Bastide B,Neyses L,Ganten D,et al.Gap junction protein connexin40 is preferentially expressed in vascular endothelium and conductive bundles of rat myocardium and is increased under hypertensive conditions.Circ Rcs,1993,73:1 138
    [125] Campos DC, Tanowitz IIB, Wittner M,et al.Cap junction distribution is altered between cardiac myocytes infected with trypanosoma cruzi.Circ Res,1992,70:733
    [126] Kaprielian RR,Gunning M,Dupont E,et al.Down regulation of immunodetectble connexin43 and decreased gap junction size in pathogenesis of chronic hibernation in the human left ventricle.Circulation,1998,97:651
    [127] Spach MS, Dolber PC.Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle: evidence for electrical uncoupling of side-to-side fiber connection with increasing age.Circ Res,1986,58:356
    [128] Manoach M,Tribulova N,Busccmi PJ,et al.Effcct of age in determining the propnsity to atrial fibrillation.PACE,1997,20(5,pt2):1 485
    [129] Bruzzone R , Haefliger JA , Gimlich RL , et al. Connexin240 , acomponent of gap Junction in vascular endothelium , is restricted in its ability to interact with other connexins. Mol Biol Cell, 1993, 4 (1): 7220
    [130]Cowan DB, Lye SJ, Langille BL. Regulation of vascular connexin243 gene expression by mechanical loads. Circ Res, 1998, 82: 7862793
    [131] Blackburn JP, Peters NS, Yeh HI, et al. Upregulation of connexin243 gap junction during early stages of human coronarya the arterioscler. Arte Thro Vase Biol, 1995, 15 (8) : 1 2192228
    [132] Mensink A , Van DE , Burg EH , et al. Modulation of intercellular communication between smooth muscle cells by growth factors and cytokines. Eur J Phar, 1996, 310 (1): 73281
    [133] Yamamoto H , Fukuta H , Nalahira Y, et al. Blockade by 18βglycyrrhetinicacid of intercellular electrical coupling in guinea2pig arterioles. J Phy, 1998, 511: 5012508
    [134]Sandow SL , Hill CE. Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium derived hyperpolarizing factor2mediated responses. Circ Res, 2000, 86: 3412346
    [135]Little TL , Xia J , Duling BR. Dye tracers define differential endothelial and smooth muscle coupling patterns within the arteriolar wall. Circ Res, 1995, 76: 4982504
    [136] Navab M, Ross LA , Hama S , et al. Interactions of human aortic wall cells in coculture. Athe Rev, 1991, 23: 1532160
    [137] Polacek D , Lal R , Volin MV , et al. Gap junction communication between vascular cells : induction of Cx43 messenger RNA in macrophage from cells of atherosclerosis leisions. Am J Path, 1993, 142 (2): 5932606
    [138]Mpprbu C, Patel M. Dual functions for connexins: Cx43 regulates growth inde pendently of gap junction formation. Exp Cell Res, 2001, 27(2): 2382248

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700