宽带掺铒光纤放大器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为WDM系统的核心器件,掺铒光纤放大器(EDFA)的性能优劣直接影响了系统的传输带宽和距离。本论文围绕掺铒光纤放大器的关键技术所取得的主要研究成果如下:
    一、C波段和L波段EDFA的理论分析和优化设计及其实验基于铒离子能级速率方程和光传输方程,对掺铒光纤放大器的稳态放大特性进行了详细地理论分析。针对不同功能的C波段和L波段放大器,分别编写了相应的优化设计程序。根据数值模拟结果,分别完成了具有良好增益平坦度的C波段高增益(>31.5dB)、低噪声(<4.76dB)预放级放大器和L波段高增益(>38.84dB)、低噪声(<5.29dB)预放级放大器实验。
    二、C+L波段宽带EDFA的实现1.采用并联结构EDFA组合方案,实现了C+L波段的宽带放大,获得30dB以上57nm的3dB增益带宽。其中C波段25nm(1530nm~1555nm),L波段32nm(1570nm~1602nm)。2.国内首次进行了基于新型铋基掺铒光纤的宽带放大器和宽带荧光光源实验研究。在不同功率的信号输入情况下,该铋基掺铒光纤放大器都实现了1540nm~1610nm范围内的宽带放大。在基于此铋基掺铒光纤的超荧光光源实验中,我们利用双向泵浦、双通放大结构,得到了谱宽88nm、功率14.3dBm的宽带超荧光输出。
    三、EDFA增益平坦技术的理论研究和实现基于光纤环形镜的滤波原理分析,提出利用级联结构光纤环形镜实现EDFA增益平坦滤波的方案,并进行了相关实验研究。实验结果显示,使用级联FLM取得了明显的平坦效果,其1535nm~1557nm波长范围内的增益不平坦度由±5dB减小到±1dB。
    四、EDFA动态增益箝制技术的理论研究与实验1.使用数值模拟的方法对全光增益箝制EDFA的稳态特性和瞬态特性进行了全面地理论分析。研究了瞬态过程中系统参量(泵浦功率、环路损耗、上下载速度、上下载信道功率、箝制激光振荡波长等)对剩余信道驰豫振荡特性的影响。2.首次提出了使用光纤环形镜实现双波长增益箝制的方案,并得以成功的实现。实验结果显示:放大器处于增益箝制状态时,其输出增益波动最小可达0.1dB。
As the key device of WDM system, the behavior of erbium-dopedfiber amplifier(EDFA) will directly influence the transmissionbandwidth and distance of the system. In this dissertation some pivotaltechniques of EDFA were investigate and experimentally studied withthe productions as follows:
    1. Theoretical analysis and optimization of C band and L band EDFAand experimentsBased on the rate-equations and propagation equations, the stable stateoutput property of EDFA was fully studied using self-made computerprograms. With these programs EDFA of different functions weredesigned and optimized. High gain low noise figure C band and L bandpreamplifier have been realized in our experiments with the G>31.5dB,NF <4.76dB and G>38.84dB,NF<5.29dB respectively.
    2.Experiment on the C+L band broadband EDFA1) With the C and L band EDFA combined in parallel connection scheme,broadband gain above 30dB were achieved with the 3dB gain bandwidthof 57nm which including 25nm(1530nm~1555nm)in C band and32nm(1570nm~1602nm) in L band.2)We give the first report on the experimental studies of bismuth-basederbium-doped fiber amplifier and broadband super-fluorescentsource(SFS) . This new type EDFA proved its ability of broadbandamplification in 1540nm~1610nm range under different inputconditions . And the bidirectional-pump, double-pass structure SFSbased on this novel type erbium-doped fiber demonstrated the 88nmline-width with the output power of 14.3dBm.
    3. Study on gain flatten techniques and experimentsBased on the investigation of the fiber loop mirror(FLM), ancascade-FLM filter was proposed and realized to flatten the gain of Cband EDFA. With this filter the gain fluctuation was reduced to ±1dB
    from ±5dB in the range of 1535nm~1557nm .4.Theoretical analysis of optical auto gain clamping(OAGC) EDFA andexperiments1) Theoretical investigated the stable and transient property ofOAGC-EDFA using computer simulation. The influence to the residualchannels induced by the variation of pump power, loop loss, add/droppower, clamping wavelength were fully considered.2) We proposed the scheme for the first time to use the FLM in thefeedback loop as filter to realized the dual-clamping EDFA. The 0.1dBgain ripple of the dual-wavelength-clamping EDFA proved the validityof this scheme.
引文
[1] 王加莹,长途超大容量 DWDM 光通信技术及发展,光通信技术,2003(,3):4~8
    [2] T. Yamamoto, E. Yoshida, and K.R. Tamura, Single channel 640 Gbit/s TDM transmission over 100 km, ECOC, 1999:II38-39
    [3] M. Nakazawa, T. Yamamoto, and K. Tamura, 1.28 Tbit/s-70 km OTDM transmission using third-and fourth-orser simultaneous dispersion compensation with a phase modulator, ECOC, 2000:PD2.6.
    [4] 顾畹仪,波分复用系统的发展和应用,电信科学,2001,(3): 24~27
    [5] 孟传良, 当代超大容量光纤通信技术, 贵州工业大学学报(自然科学版), 2001, 30 (3): 54~56
    [6] K.Fukuchi, T.Kasamatsu, M.Morie et al., 10.92 Tbit/s (273×40 Gbit/s) triple-band/ultra-dense WDM optical-repeatered transmission experiment, OFC, 2001: PD24
    [7] S.Bigo, Y.Frignac, G.Charlet et al., 10.2 Tbit/s (256×42.7 Gbit/s PDM/WDM) transmission over 100 km Tera-LightTM fiber with 1.28 bit/s/Hz spectral efficiency, OFC, 2001:PD25
    [8] 光纤通信新产品,2003, (3): 85, 94~95
    [9] Chen L, Banbin F, Leblanc M et al., S-band amplifiers and tunable lasers with Thulium-doped Fluoride fiber, ECOC,2002:Mo.D.2.2.4
    [10] M. Kakui, M. Takagi, S. Endo, et al., S-band optical amplification employing silica-based phosphorous/alumina-codoped EDF, OFC, 2004:FB3
    [11] D. L. Guen, S. Lobo, F. Merlaud et al., 25 GHz spacing DWDM soliton transmission over 2000 km of SMF with 25 dB/span, ECOC, 2001:244~245
    [12] G. Vareille, O. Ait Sab, G. Bassier et al., 1.5 Terabit/s submarine 4000 km system validation over a deloped line with industrial margins using 25 GHz channel spacing and NRZ format over NZDSF, OFC, 2002:WP5
    [13] F. Di Pasquale, 25-GHz spacing all-raman transmission of 192 WDM channel at 10.66Gb/s over 30×22dB of TW-RS fiber, OFC,2003:WE2
    [14] G. Vareille, O. Ait Sab, F. Pitel et al., Terabit transoceanic system assessment with industrial margin using 25 GHz channel spacing and NRZ format, OFC, 2002, :WP6
    [15] M. Teshima, M. Fujiwara, J. Kani et al., Optical carrier supply module applicable to over 100 super-dense WDM systems of 1000 channels, ECOC, 2001 :Mo.L.3.7
    [16] N. Takachio, H. Suzuki, M. Fujiwara et al., 12.5-GHz-spaced super-dense WDM ring network handling 256 wavelengths with tapped-type OADMs, OFC,2002, :WW2
    [17] R. Ludwig, U. Feiste, C. Schmidt et al., Enabling transmission at 160 Gbit/s, OFC, 2002:TuA1
    [18] E. Lach, M. Schmidt, K. Schuh et al., Advanced 160 Gbit/s OTDM system based on wavelength transparent 4×40 Gbit/s ETDM transmitters and receivers, OFC, 2002, :TuA2
    [19] Lothar M?ller, Yikai Su, Roland Ryf, et al., Narrow bandwidth filtering of coherent and OTDMgenerated 160 Gb/s data signals,OFC, 2004:ThN2
    [20] 王海潼,孟杰,对光纤通信现状与未来的思考,现代电子技术,2003,(16):5~7
    [21] 伍杜宝,许 理,王孝明,全光通信及其关键技术,真空电子技术,2003(3):7~11
    [22] 赵梓森,2002-2003 年光纤通信的进展,CHINA 通信网
    [23] A.Guauck, 40Gb/s RZ-differential phase shift keyed transmission, OFC, 2003, :ThE1
    [24] A. Hirano, Y. Miyamoto, S. Kuwahara, Performances of CSRZ-DPSK and RZ-DPSK in 43-Gbit/s/ch DWDM G.652 Single-Mode-Fiber Transmission, OFC, 2003:ThE3
    [25] B. Zhu, L. E. Nelson, S. Stulz, et al., 6.4 Tb/s(160×42.7Gb/s)transmission with 0.8bit/s/Hz spectral efficiency over 32100km of fiber using CSRZ-DPSK format, OFC, 2003:PD19
    [26] Keiji Tanaka, Itsuro Morita, and Noboru Edagawa, Study on Optimum Pre-Filtering Condition for 42.7 Gbit/s CS-RZ DPSK Signal, OFC, 2004:TuF2
    [27] R. Dischler, A. Klekamp, J. Lazaro, et al., Experimental comparison of non linear threshold and optimum pre dispersion of 43 Gb/s ASK and DPSK formats,OFC, 2004, :TuF4
    [28] Kazuto Noguchi, Hiromasa Tanobe, and Morito Matsuoka, The first field trial of a wavelength routing WDM full-mesh network system (AWG-STAR) in a metropolitan/local area,OFC, 2003:ThAA5
    [29] K. Ohara, A. Tagami, H. Tanaka, et al, Traffic Analysis of Ethernet-PON in FTTH Trial Service, OFC, 2003:ThAA2
    [30] H. Kawanishi, T. Suzuki, K. Nakamura, 1.3 μm EAM-integrated DFB Lasers for 40 Gb/s Very-Short-Reach Application ,OFC, 2003:TuP4
    [31] K. Prosyk, R. Moore, I. Betty, Low Loss, Low Chirp, Low Voltage, Polarization Independent 40Gb/s Bulk Electro-Absorption Modulator Module, OFC, 2003:TuP3
    [32] R. Lewén, S. Irmscher, U. Westergren, et al., Traveling-Wave electrode Electroabsorption Modulators toward 100 Gb/s, OFC, 2004:FL1
    [33] L. Chrostowski, C. Chang, C. Chang-Hasnain, Uncooled injection-locked 1.55μm tunable VCSEL as DWDM transmitter, OFC,2003:FO2
    [34] A.Sirbu, A. Mereuta, A. Mircea, et al., VCSELs emitting in the 1550 nm waveband with 0.6 mW single mode output in 20-80 oC temperature range, OFC, 2004:ThD7
    [35] M. Duelk, J. Gripp, J. Simsarian, et al., Fast packet routing in a 2.5 Tb/s optical switch fabric with 40 Gb/s duobinary signals at 0.8 b/s/Hz spectral efficiency, OFC, 2003:PD8
    [36] T. Yoshimura, M. Ojima, Y. Arai, et al., Architecture of 1024x1024 Three-Dimensional Micro Optical Switching Systems with Self-Organized Lightwave Network, OFC, 2003:MF42
    [37] Valerio Viscardi and Gianpaolo Barozzi, Asymmetric Reconfigurable OADMs for Metro-DWDM networks,OFC, 2004:TuH3
    [38] K. Mukasa, K. Imamura, T. Yagi, New Type of Positive Medial Dispersion Fiber (P-MDF150) with Dispersion as 10ps/nm/km and Aeff about 150μm2, OFC, 2003:TuB1
    [39] K. Tajima, J. Zhou, K. Nakajima, et al., Ultra low loss and long photonic crystal fiber, OFC, 2003:PD1
    [40] Mangan, et al., OFC, 2004:PDP24
    [41] 中国光纤在线,http://www.c-fol.net, RHK 眼里的 OFC2004, 2004-03-11
    [42] OFC04—光通信复苏的希望,光纤通讯新产品,2004,(3):21~34
    [43] 中国光纤在线,http://www.c-fol.net,关于推动中国 FTTP/FTTH 发展的呼吁2003-07-21
    [44] W.I.Way, A.C.Von Lehman,M.J.Andrejeo et al., Noise figure of a gain-saturated erbium-doped fiber amplifier pumped at 980nm, IEEE/LEOS Topical Meeting Optical Amplifiers, 1990:TuB3
    [45] H.Masuda, A.Takada, High gain two stage amplification with Erbium-doped fiber amplifier, Electronics Letters, 1990, 26(10):661~662
    [46] M. Nakazawa, Y. Kimura, and K. Suzuki, An ultra-efficient erbium-doped fiber amplifier of 10.2dB/mw at 0.98μm pumping and 5.1dB/mw at 1.48μm pumping, Optical Amplifiers and Their Applications, 1990 :PDP1
    [47] Sakamoto T, Aozasa S, Shimizy M, Recent Progress on S-band fiber amplifiers, ECOC, 2002:Mo.D.2.2.1
    [48] L.N.Ng, E.R.Taylor, N.P.Sessions et.al Thulium-doped Tellurit fiber for S-band amplification, ECOC 2002, Mo.D.2.2.3
    [49] H.Masuda and S.Kawai, Ultra wide-band amplification with a total gain bandwidth of 132nm of two gain-bands around 1.5μm , ECOC, 1999:wed3.2
    [50] Bolshtyansky, M.;DeMarco, J.;Wysocki, P., Flat, adjustable hybrid optical amplifier for 1610 nm-1640 nm band;OFC, 2002 :461 -461
    [51] Massicott J., Armitage J.R., Wyatt R., et al., High gain, broadband, 1.6μm Er3+-doped silica fiber amplifier, Electronics Letters, 1990, 20 (26): 1645~1646
    [52] Massicott J., Wyatt R., Ainslie B.J., Low noise operation of Er3+ doped silica fiber amplifier around 1.6μm, Electronics Letters, 1992, 28 (20): 1924~1925
    [53] S. Tammela, M. Hotoleanu, P. Kiiveri, et al. , Very Short Er-Doped Silica Glass Fiber for L-band Amplifiers, OFC, 2003:WK3
    [54] Flood Felton A., L-band Erbium-doped fiber amplifiers, OFC, 2000:WG1-2
    [55] Hansen K.P., Nielsen M.D. and Bjarldev A., Design optimisation of erbium-doped fibres for use in L-band amplifiers, Electronics Letters, 2000, 36(20): 1685~1686
    [56] Flood F.A. and Wang C.C., Impact of 980nm pump detuning in L-band erbium-doped fiber amplifiers, OAA,1999: DW3-1
    [57] Muro R. Di, Kean P.N., Wilson S.J., and Mun J., Dependence of L-band amplifier efficiency on pumpwavelength and amplifier design, OFC, 2000:WG7
    [58] Lee J., Ryu U., Park N., Improvement of 1.57-1.61μm band amplification efficiency recycling wasted backward ASE through the unpumped EDF section, OFC, 1999:WA3
    [59] Buxens A., Poulsen H.N., Clausen A.T. and Jeppesen P., Gain flattened L-band EDFA based on upgraded C-band EDFA using forward ASE pumping in an EDF section. Electron. Letters, 2000, 36 (9): 821-823
    [60] Yanbin Zhang,Xiaoming Liu, Jiangde Peng, et al., Wavelength and power dependence of injected C-band laser on pump conversion efficiency of L-band EDFA, IEEE Photonics Technology Letters, 2002, 14(3):290~292
    [61] Qinghe Mao, John W. Y. Lit, Amplification enhancement of L-band erbium-doped fiber amplifiers by reflection scheme, Optics Communications, 2002, 210(1~3):61~69
    [62] Flood F. A. Gain saturation behavior in L-band EDFAs, IEEE Photonics Technology Letters, 2000, 12(9): 1156~1158
    [63] Nakagawa J., Isshiki K., Shimizu K., and Motoshima K. 1580-nm band erbium-doped fiber amplifier employing novel temperature compensation technique,OFC, 2000:WG3-2
    [64] Shih Hsu, Tsair-Chun Liang and Yung-Kuang Chen, Optical design of optically gain-clamped L-band erbium-doped fiber amplifier, Optics Communications, 2001, 196(1~6):149~157
    [65] S. W. Harun, S. K. Low, P. Poopalan, et al., Gain calmping in L-band erbium-doped fiber amplifier using a fiber Bragg grating, IEEE Photonics Technology Letters, 2002, 14(3):293~295
    [66] Wang J.S., Vogel E.M., and Snitzer E. Tellurite glass: a new candidate for fiber devices, Opt. Mat., 1994, 3:187~203
    [67] Mori A., Ohishi Y. and Sudo S., Erbium-doped tellurite glass fiber laser and amplifier. Electronics Letters, 1997, 33(10): 863~864
    [68] Ohishi Y., Mori A., Yamada M., Ono H., Nishida Y., Oikawa K. Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-μm broadband amplification, Optical Letters, 1998, 23 (4): 274~276
    [69]Yamada M, Mori A, KobayashiKet al.. Gain flattened tellurite based EDFA with a flat amplification bandwidth of 76nm, IEEE Photonics Technology Letters, 1998,10(9):1244~1246
    [70] Mori A., Sakamoto T., Kobayashi K. et al., A 50nm broadband tellurite-based EDFA with a 0.6dB gain excursion and a 25.3dB gain for 1.58μm-band WDM signals, ECOC, 1999, 1: 268~269
    [71] Kani 7 I, Suzuld H, Teshima M et al.. Triple wavelength band WDM transmission technologies, OFC, 2002:TuR5
    [72] Tanabe S, Sugimoto N, Ito S, et al., Broad-band 1.5μm emission of Er3+ ions in bismuth-based oxide glasses for potential WDM amplifier, Journal of Luminescence,2000, 87:670~672
    [73] Kuroiwa Y, Sugimoto N, Ochiai K, et al., Fusion spliceable and high eficient Bi203 based EDF for short length and broadband application pumped at 1480nm, OFC, 2001:TuI5-1
    [74] S. Ohara, N. Sugimoto, K. Ochiai ,et al., Extra-broadband and highly efficient short length BiO-based EDF, OFC, 2003: FB8
    [75] Komukai T, Yamamoto T, Sugawa T et al., 1.47μm band Tm3+ doped fluoride fiber amplifier using a 1.064 upconversion pumping scheme, Electronics Letters, 1993, 29(1):110~112
    [76] Komukai T, Yamamoto T, Sugawa T et al., Efficient upconversion pumping at 1.064pm o# Tm3'-doped fluoride fiber laser operating around 1.47μm, Electronics Letters, 1992, 28(9):830~832
    [77] T. Kasamatsu, Y. Yano, and T. Ono, Laser-diode pumping (1.4 and 1.56μm) of gain-shifted thulium-doped fiber amplifier, Electronics Letters, 2000, 36(19):1607~1609
    [78] T. Kasamatsu, Y. Yano, and T. Ono, Gain-shifted dual-wavelength-pumped Thulium-doped fiber amplifier for WDM signals in the 1.48-1.51μm wavelength region, IEEE Photonics Technology Letters, 2001, 13(1):31~33
    [79] T. Sakamoto, S. Aozasa, T. Kanamori, et al., High gain and low noise TDFA and 1500nm band employing novel high concentration doping technique, OFC, 2000:PD4
    [80] S. Aozasa, T. Sakamoto, T. Kanamori, et al., Gain-shifted thulium-doped fiber amplifiers employing novel high concentration doping technique ,Electronics Letters, 2000, 36(5):418~419
    [81] Shen S, Naftaly M, Walson S J et al.,Thulium-doped tellurite glasses for S-band amplification, OFC, 2001:TuQ6-1
    [82] D. Bayart, P. Baniel, A. Bergonzo, et al., Broadband optical fiber amplification over 17.7THz range, Electronics Letters, 2000, 36(18):1569~1571
    [83] Cao Yang, Design and simulation of gain-flattened ultra wideband fiber amplifiers covering S-, C-, and L-band, DAI-B 64/10, 2004:5112
    [84] 贾东方,余震虹等译,非线性光纤光学原理及应用,电子工业出版社,北京:2002 年 12 月
    [85] A. Mori, M. Shimizu, H. Masuda, Ultra-Wideband Tellurite-Based Fiber Raman Amplifiers, OFC, 2003:ThB2
    [1] Akira Hirano,Optical amplifiers and their standardization in ITU-T&IEC,NTT Network Innovation Labs, NTT Corporation
    [2] C.G.Atkins, J.F.Massicott, J.R.Armitage, High-gain broad spectural bandwidth EDFA pumped near 1.5μm , Electronics Letters , 1989, 25(14) :910~911
    [3] J.F.Massicott, J.R.Armitage, R.W.yatt et al., High gain broadband 1.6μm Er3+ doped silica fiber amplifier, Electronics Letters , 1990 , 26 (20):1645~1646
    [4] Felton A. Flood,L-band Erbium-doped fiber amplifiers, OFC,2000 :WG1
    [5]谭莉,王衍勇,李世忱等, L 波段 EDFA 研究及其进展.激光与光电子学进展, 2003,40(1):40~46
    [6] Y.Sun, J.L.Zyskind, A.K.Srivastava, Average inversion level,modeling and physics of EDFA, IEEE Journal of Selected Topics in Quantum Electronics, 1997,3(4): 991~1007
    [7] 刘小明,唐平生,崔景翠等, 波分复用系统中掺铒光纤放大器增益特性的实验研究,电子学报,1999,27(5):103-105
    [8] 崔景翠,刘小明,袁伟等, WDM 系统中 EDFA 饱和增益谱特性的实验研究,1998,A25(12): 1117~1121
    [9] C.G.Atkins, J.F.massicott et al., High-gain broad spectral bandwidth Er-doped fiber amplifier pumped near 1.5μm, Electronics Letters, 1989,25(14):910
    [10] H.Ono, M.Yamada et al., Comparison of amplification characteristics of 1.58μm and 1.55μm band EDFAs, Electronics Letters, 1998,34( 15 ):1509
    [11] T.Yamashita, H.Sawada et al., High efficiency amplification of EDFA using a pump wavelength of the 1.53μm region, ECOC, 2000:117
    [12] B.H.Choi et al., High-gain coefficient long-wavelengh-band Er-doped fiber ampifier using 1.53μm band pump, IEEE Photonics Technology Letters, 2001,13 (2):109
    [13] J.F.Massicott, R.Wyatt et al., Efficient high power high gain Er-doped silica fiber amplifier, Electronics Letters, 1990, 26 (14):1038
    [14] R.Di Muro, N.E.Jolley, J.Mun, Measurement of the quantum efficiency of long wavelength EDFA's with and without an idler signal, ECOC, 1998:419
    [15] M.A.Mahdi, F.R.Mahamd et al., Long-wavelength EDFA gain enhancement through 1550nm band signal injection, Optical Communication, 2000,176 :125
    [16] J.F.Massicott, R.Wyatt et al., Low noise operation of Er-doped silica fiber amplifier around 1.6μm, Electronics Letters ,1992,28(20):1924
    [17] R.Paschotta, J.Nilsson et al., Ytterbium-doped fiber amplifiers, IEEE Journal of Quantum Electronics, 1997,33 (7 ):1049
    [18]J.Nilsson, S.Y.Yun et al., Long-wavelength Er-doped fiber amplifier gain enhanced by ASE end-feflectors, IEEE Photonics Technology Letter, 1998,10(11):1551
    [19] J.Lee, U.C.Ryu et al., Enhancement of power conversion efficiency for an L-band EDFA with a secondary pumping effect in the unpumped EDF section, IEEE Photonics Technology Letters, 1999,11(1):42
    [20] M.A.Mahdi, H.Ahmad , Gain enhanced L-band Er-doped fiber amplifier utlizing unwanted backward ASE, IEEE Photonics Technology Letters, 2001,13(10):1067
    [21] A.Yeniay, R.Gao, Single stage high power L-band EDFA with multiple C-band seeds, OFC 2002, ThJ2
    [22]M.Yamada et al., Broadband and gain-flattened amplifier composed of 1.55μm-band and a 1.58μm-band Er-doped fiber amplifier in a parallel configuration, Electronics Letters, 1997,33 (8):710
    [23] M.Yamada et al., Gain –flattened broadband Er-doped silica amplifier for WDM applications, Electronics Letters, 1998,34(18):1747
    [24] M.Yamada, H.Ono, Y.Ohishi, Low-noise,broadband Er3+-doped silica fiber amplifiers ,Electronics Letters, 1998, 34(15):1490~1491
    [25] R.Di Muro, D.Lowe, S.wilson , Broad band amplification using a novel amplifier topology, IEEE Photonics Technology Letters, 2001, 13(10):1073
    [26]R.Sugimoto, T.Aizawa, et al., High-power double-band EDFA with simple configuration, ECOC,1999 ,1 :276
    [27] S.Hwang, K.W.Song et al, Broad band Er-doped fiber amplifier with double-pass configuration, IEEE Photonics Technology Letters, 2001,13 (12):1289
    [28] S.Hwang, K.W.Song et al. , Comparatiove high power conversion efficiency of C-plus L-band EDFA, Electronics Letters, 2001,37 (25):1539
    [29] Y.Sun, J.W.Sulhoff, A,K.Srivastava et al., 80nm ultra-wideband erbium-doped silica fiber amplifier, Electronics Letters ,1997,33(23):1965~1967
    [30] Y.Sun, J.W.Sulhoff, A.K.Srivastava et al., A gain-flattened ultra-wide-band EDFA for high capacity WDM optical communication system, ECOC,1998 :53~54
    [31]A.R.Pratt, K.Fujii, Y.Ozeki, Gain control in L-band EDFAs by monitoring backward traveling C-band ASE, IEEE Photonics Technology Letters, 2000,12(8):983
    [32]Bumki Min, Hosung Yoon et al., Coupled sturcture for wide-band EDFA with gain and noise figure improvements from C to L-band ASE injection, IEEE Photonics Technology Letters, 2000,12(5):480
    [33]Y.Xie, Z.Pan, A.E.Willner et al., Spectrally-efficient L-C band EDFA having a seamless interband channel region using sampled FBGs, IEEE Photonics Technology Letters, 2001,13(5): 436~438
    [34]Y.Skasaka, I.Morita, Ho M C et al., Characteristics of optical fibers for discrete Raman amplifiers, ECOC,1999:1058
    [35]Yoshihiro Emori, Ultrabroadband Fiber Raman amplifiers, ECOC, 2002, S3.02
    [36]H.Masuda, S.Kawai, K.Aida, Ultra-wideband hybrid amplifier comprising distributed Raman amplifier and erbium-doped fiber amplifier, Electronics Letters, 1998,34(13):1342~1344
    [37]S.Kawai, H.Masuda, K.I.Suzuki et al., Ultrawide 75-nm 3-dB gain-band optical amplifier utilizing erbium-doped fluoride fiber and Raman fiber, OFC,1998 :32~33
    [38]Y.Takeda, N.Shimada, C.Liaw, Hybrid amplifier configuration of C-band EDFA and distributed Raman amplifier with temperature insensitive gain profile,ECOC,2002
    [39]S.A.E Lewis, S.V.Chernikov, J.R.Taylor et al., Triple wavelength pumped silica-fiber Raman amplifiers with 114nm bandwidth, Electronics Letters,1999, 35(20):1761~1762
    [40]Y.Emori, Y.Akasaka and S.Namiki, Broadband lossless DCF using Raman amplification pumped by multichannel WDM laser diodes, Electronics Letters, 1998,34 (22):2145~2146
    [41]Y.Emori, K.Tanaka, S.Namiki, 100nm bandwidth flat-gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel WDM laser diode unit, Electronics Letters, 1999,35 (16):1355~1356
    [42]S.A.E.Lewis, S.V.Chernikov, J.R.Taylor, Fiber Raman amplifier technology, ECOC, 2002, Tu.R.4.1.1
    [43]A.Mori, H.Masuda, M.Shimizu, Ultra-wide band tellurite-based fiber Raman amplifiers, ECOC, 2002: S3.01
    [44]Y.Akasaka, I. Morita et al., Characteristics of optical fibers for discrete Raman amplifiers, ECOC, 1999:1058
    [45]A.J.G.Ellison, D.E.Goforth, B.N.Samson et al., Extending the L-band to 1620nm using MCS fiber, OFC, 2001,TuA2
    [46] M. R. Antonio, L. Soderholm and A. J. G. Ellison,Local Environments of Erbium and Lutetium in Sodium Silicate Glasses, Journal of Alloys and Compounds , 1997, 250:536-540
    [48] S.Tanaka, K.Imai, T.Yazaki et al., Ultra-wideband L-band EDFA using Phosphorus Co-doped silica fiber, OFC, 2002, ThJ3
    [49] C.A.Millar, M.C.Brierley, P.W.France , Optical amplification in an Erbium-doped Fluorozirconate fiber between 1480nm and 1600nm, ECOC, 1988 :66~69
    [50]A.Mori, Y.Ohishi, S.Sudo, Erbium-doped Tellurite glass fiber laser and amplifier, Electronics Letters 1997,33(10):863~864
    [51]A.Mori, T.Sakamoto,K.Shikano et al., Gain flattened Er doped tellurite fiber amplifier for WDM signal in the 1581~1616nm wavelength region, Electronic letter 2000, 36(7):621~622
    [52] H.Ono, T.Sakamoto, A.Mori et al., An Erbium-doped Tellurite fiber amplifier for WDM systems with dispersion-shifted fibers, IEEE Photonics Technology Letters, 2002, 14(8):1070~1072
    [53]P.C.Becker, N.A.Olsson, J.R.Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology, Boston, AP Professional, 1999:186~197
    [54]S.Tanabe, N.Sugimoto, S.Ito et al., Broad-band 1.5μm emission of Er3+ ions in Bismuth-based oxide glasses for potential WDM amplifier, Journal of Luminescence 2000, 87:670~672
    [55]S.Tanabe, T.Hanada, optical transitions of rare earth ions for amplifiers: how the local structure works in glass, Journal of Non-Crystal Solids, 1996, 196 :101
    [56]S.Ohara, N.Sugimoto, K.Ochiai et al., Extra-broadband and highly Efficent short length Bi2O3-based EDF, OFC, 2003:FB8
    [57]B.O.Guan, H.Y.Tam, N.sugimoto et al., Ultrawide-band La-codoped Bi2O3-based EDFA for L-Band DWDM systems , IEEE Photonics Technology Letters, 2003, 15(11):1525~1527
    [58]L.Qian, D.Fortusini, S.D.Benjamin et al., Gain-flattened extended L-band(1570~1620nm) high power ,low noise erbium-doped fiber amplifiers, OFC, 2002 :ThJ4
    [59] S.Tammela, P.Kiiveri, A.Salomaa et al., Direct namoparticle deposition process for manufacturing very short high gain Er-doped silica glass fibers ,ECOC,2002, Tu.E.9.4.2
    [60] S.Tammela, M.Hotoleanu, K.Janka et al., Potential of nanoparticle technologies for next generation erbium-doped fibers ,OFC,2004:FB5
    [61] T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, Upconversion pumped Thulium-doped fluoride fiber amplifier and laser operating at 1.47μm, IEEE Journal of Quantum Electronics, 1995,31(11) :1880~1889
    [62] T.Sakamoto, M.Yamada, M.Shimize et al., Thulium-doped fluoride amplifiers for 1.4μm and 1.6μm operation, OAA, 1996 :ThC3
    [63] T.Sakamoto et al.,High gain and low noise TDFA and 1500nm band employing novel high concentration doping technique, OFC, 2000: PD4
    [64] Fabin Roy, Recent advances in thulium-doped fiber amplifiers, OFC, 2002 :ThZ1
    [65] W.J.Lee, C.H.Lee, P.Kim et al., Study on the gain excursion and tile compensation for 1.4 and 1.5μm dual wavelength pumped TDFA, IEEE Photonics Technology Letters, 2002, 14(6):786~788
    [66] T.Komukai, T.Yamamoto, T.Sugawa et al.,1.47μm band Tm3+ doped fluoride fiber amplifier using a 1.064μm upconversion pumping scheme , Electronics Letters, 1993,29(1):110~112
    [67] F. Roy, D.Bayart, P.Baniel et al., Novel pumping schemes for thulium doped fiber amplifier, OFC, 2000: WA6
    [68] S.Aozasa, H.Masuda, H.Ono et al., 1480-1510nm-band Tm doped fiber amplifer(TDFA) with a high power conversion efficiency of 42%, OFC, 2001: PD1
    [69]T.Kasamatsu, Y.Yano, T.Ono, Laser diode pumping (1.4 and 1.56μm) of gain-shifted thulium-doped fiber amplifier, Electronics Letters, 2000,36(19): 1607~1609
    [70] F.Roy, F.Leplingard, L.Lorcy et al., 48% power conversion efficiency in a single-pump gain shifted thulium-doped fiber amplifier, OFC, 2001:PD2
    [71] J.Kani, M.Jinno, Wideband and flat-gain optical amplification from 1460 to 1510nm by serial combination of a thulium-doped fluoride fiber amplifier and fiber Raman amplifier, Electronics Letters, 1999, 35(12):1004~1006
    [72] M.Kakui, M.Takagi, S.Endo et al., S-band optical amplification employing silica-based phosphorous/alumina-codoped EDF, OFC, 2004: FB3
    [73] Y.Akasaka, K.K.Y.Wong, M.C.Ho et al., Novel S-band amplification and wavelength conversion technique using dual nonlinear phenomena, OFC, 2001: WDD31
    [74] D.Bayart, P.Baniel, A.Bergonzo et al., Broadband optical fiber amplification over 17.7THz range, Electronics Letters, 2000, 36(18):1569~1571
    [1] P.F.Wysocki, R.E.Tench, M.Andrejco et al., Options for gain-flattened EDFA, OFC, 1997:WF2
    [2] S.Yoshida, S.Kuwano, K.Iwashita, Gain-flattened EDFA with high Al concentration for multistage repeatered WDM transmission systems, Electronics Letters, 1995, 31 (20):1765~1767
    [3] D.Bayart, B.Clesca, L.Hamon et al., Experimental investigation of the gain flatness characteristics for 1.55μm EDFFA, IEEE Photonics Technology Letters, 1994,6(5):613~615
    [4] B.Clesca, D.Ronarch, D.Bayart et al., Gain flatness comparison between EDFFA and EDSFA with wavelength-multiplexed signals, IEEE Photonics Technology Letters, 1994,6(4):509~512
    [5] M.Yamada, H.Ono, T.Kanamori et al., A low-noise and gain-flattened amplifier composed of a silica-based and a fluoride-based Er3+-doped fiber amplifier in a cascade configuration, IEEE Photonics Technology Letters, 1996 ,8(5):620-622
    [6] M.Yamada, T.Kanamori, Y.Terunuma et al., Fluoride-based EDFA with inherently flat gain spectrum, IEEE Photonics Technology Letters, 1996,8(7):882~884
    [7] S.Y.Park,H.K.Kim,C.S.Park et al., Doped fiber length and pump power of gain-flattened EDFAs, Electronics Letters, 1996,32(23):2161~2162
    [8] H.Ono, M.Yamada, Y.Ohishi, Gain-flattened Er3+-doped fiber amplifier for a WDM signal in the 1.57-1.60μm wavelength region, IEEE Photonics Technology Letters, 1997,9(5):596~598
    [9] A.Buxens, H.N.Poulsen, A.T.Clausen et al.,Gain flattened L-band EDFA based on upgraded C-band EDFA using forward ASE pumping in an EDF section, Electronics Letters, 2000,36(9): 821~823
    [10] S.T.Hwang, S.Y.Yoon, H.S.Shin et al., Gain tilt control of long wavelength EDFA, ECOC, 2000:183~184
    [11] S.Yamashita,M.Nishihara, L-band EDFA incorporating an inline fiber grating laser, IEEE Journal of Selected Topics in Quantum Electronics, 2001,7(1) :44~48
    [12] S.Tammela, P.Kiiveri, A.Salomaa et al., Direct namoparticle deposition process for manufacturing very short high gain Er-doped silica glass fibers ,ECOC,2002, Tu.E.9.4.2
    [13] S.Tammela, M.Hotoleanu, K.Janka et al., Potential of nanoparticle technologies for next generation erbium-doped fibers ,OFC,2004,FB5
    [14] L.Eskildsen, E.Goldstein, V.da Silva et al., Optical power equalization for multiwavelength fiber-amplifier cascades using periodic inhomogeneous broadening, IEEE Photonics Technology Letters, 1993,5(10):1188~1190
    [15] E.L.Goldstein, L.Eskildsen, C.Lin et al., Multiwavelength propagation in lightwave systems with strongly inverted fiber amplifiers, IEEE Photonics Technology Letters, 1994,6(2):266~269
    [16] R.Kashyap, R.Wyatt, R.J.Campbell, Wide band gain flattened EDFA using a photosensitive fiber blazed grating, Electronics Letters, 1993, 29(2):154~156
    [17] A.M.Vengsarkar, P.J.Lemaire, J.B.Judkins et al., LPG as band -rejection filters, Journal of Lightwave technology, 1996,14(1):58~65
    [18] P.F.Wysocki, J.B.Judkins, PR.P.Espindola et al., Broad-band EDFA flattened beyond 40nm using LPG filte, IEEE Photonics Technology Letters, 1997, 9 (10):1343~1345
    [19] Y.Sun, J.B.Judkins, A.K.Srivastava et al., Transmission of 32-WDM 10-Gb/s channels over 640 km using broad-band gain-flattened EDSFA, IEEE Photonics Technology Letters, 1997,9 (12):1652~1654
    [20] S.K.Liaw, Y.K.Chen, Passive gain0equalized wide-band EDFA using samarium-doped fiber, IEEE Photonics Technology Letters, 1996,8(7) :879~881
    [21] J.D.Shin, H.Y.Hwang, C.S.Kang, Gain flattened EDFA using a dielectric interference filter, APCC/OECC, 1999,2:1348~1349
    [22] H.K.Kim, M.J.Kim, Y.G.Lee et al., Tunable gain flattening filter utilizing low finesse F-P etalon, CLEO Pacific Rim, 1996:WD5
    [23] K.Inoue, T.Kominato, H.Toba, Tunable gain equalization using a M-Z optical filter in multistage fiber amplifiers , IEEE Photonics Technology Letters, 1991,3(8):718~720
    [24] C.R.Doerr, P.Schiffer, L.W.Stulz, et al., Compact integrated dynamic wavelength equalizer, OFC, 1999:PD30
    [25] M.Zirngibl, C.H.Joyner, B.Glance, Digitallytunablechanneldroppingfilter equalizer based on waveguide grating router and optical amplifier integration , IEEE Photonics Technology Letters, 1994,6(4):513~515
    [26] S.F.Su,R. Olshansky, D.A.Smith et al ., Flattening of EDFA gain spectrum using an acousto-optic tunable filter, Electronics Letters, 1993,29(5): 477~478
    [27] A.E.Willner, D.A.Smith, Acousto-optic modulators flatten amplifier gain, Laser Focus World, June 1996
    [28] K.M.Kissa, R.W.Ade, M.E.Winslow et al., Temperature stable operation of a passband-flattened acousto-optic tunable filter, OFC,1996: ThL1
    [29] H.S.Kim, S.H.Yun, I.K.Kwang et al., All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile, Optical letters, 1997 ,22(19):1476~1478
    [30] S.H.Huang, X.Y.Zou, A.E.Willner et al., Experimental demonstration of dynamic network equalization of three 2.5-Gb/s WDM-network channels over 1000km using acoustooptic tunable filters, IEEE Photonics Technology Letters, 1996,8 (9):1243~1245
    [31] B.Y.Kim, J.N.Blake, H.E.Engan et al., All-fiber acousto-optic frequency shifter, Optical letters, 1986, 16(6):389~391
    [32] H.S.Kim, S.H.Yun, H.K.Kim et al., Actively gian-flattened EDFA over 35nm by using all fiber acoustooptic tunable filters, IEEE Photonics Technology Letters, 1998,10(6):790~792
    [33] S.F.Su, R.Olshansky, G.Joyce et al., Gain equalization in multiwavelegth lightwave systems using acoustooptic tunable filters, IEEE Photonics Technology Letters, 1992,4(3):269~271
    [34] H.S.Chung, H.B.Choi, M.S.Lee et al., Demonstration of 52nm gain bandwidth over 2400km with gain-equalized low-noise wide-band EDFA's, IEEE Photonics Technology Letters, 2000 ,12(3):329~331
    [35] M.Fukutoku, K.Oda, H.Toba, Optical beat-induced crosstalk of an acousto-optic tunable filter for WDM network application, Journal of Lightwave technology, 1995,13(11):2224~2235
    [36] F.Tian, H.Herrmann, Interchannel interference in multiwavelength operation of integrated acousto-optical filter and switches, Journal of Lightwave technology, 1995,13(6):1146~1154
    [37] Zhang Hao, Liu Yange, Yu Ling et al., Novel all-fiber variable optical attenuator based on high birefringence fiber loop mirror, Porc.SPIE 5279~5289
    [38] 陈少华,基于 GSM 数字移动网的光纤光栅传感网络系统,博士学位论文,南开大学,2004 年
    [39] D.B.Mortimore, Fiber loop reflectors, Journal of Lightwave technology, 1988,6(7):1217~1224
    [40] X.P.Dong, Shenping Li, K.S.Chiang et al., Multiwavelength erbium-doped fiber laser based on a high-birefringence fiber loop mirror, Electronics Letters, 2000,6(19):1609~1610
    [41] 邱仁和, 原荣, 伍浩成等, 用光纤环路镜实现 WDM 系统中的 EDFA 增益均衡, 光通信技术, 2000, 23(1):54~57
    [42] 蒙红云, 赵春柳, 董孝义等, 基于光纤环形镜的掺铒光纤放大器增益平坦化, 中国激光, 2002, A29(9)805~807
    [43] T.Aizawa, T.Sakai et al., Active gain-slope compensation of EDFA using Thulium-doped fiber as saturable absorber, IEICE TRANS. ELECTRON, 2001,E84-C(5):p605~609
    [44] T.Kitabayashi, T.Sakai, A.Wada et al., Novel gain-slope free EDFA for L band using Thulium-doped fiber, IEICE TRANS. ELECTRON, 2002,E85-C(4):940~943
    [45] J.H.Lee,N.Park, Reduction of temperature-dependent multichannel gain distortion using a hybrid Er-doped fiber cascade, IEEE Photonics Technology Letters, 1998,10(8):1168~1170
    [46] Y.Mimura, K.Mizuno, S.Namiki et al., Gain-flattening filters with autonomous temperature stabilization of EDFA gain, Furukawa Review, 2001,20:21~25
    [47] A.M.Vengsarkar, J.R.Pedrazzani, J.B.Judkins et al., Long-period fibergrating based gain equalizers, Optical letters, 1996 ,21(5):336~338
    [1] P.C.Becker, N.A.Olsson, J.R.Simpson , Erbium-Doped Fiber Amplifiers: Fundamentals and Technology, Boston, AP Professional, 1999:201~235
    [2]T.Okoshi, K.Kikuchi, Coherent Optical Fiber communication, KTK Scientific,Tokyo,1988
    [3]P.Gallion ,J.L.Vey, F.Jeremie, Classical optical corpuscular theory of semiconductor laser intensity-squeezed light generation, Optical Quantum Electronics, 1997, 29:65
    [4] N.A.Olsson, Lightwave systems with optical amplifiers, Journal of Lightwave Technology,1989: 1071~1082
    [5] Y.Yamamoto, T.Mukai, Fundamental of optical amplifiers, Optical Quantum Electronics, 1989, QE-21:S1-S14
    [6]D.M.Baney, P.Gallion, R.S.Tucker, Theory and measurement techniques for the noise figure of optical amplifiers, Optical Fiber Technology, 2000, 6:122~154
    [1] M.Nakazawa, Y.Kimura, K.Suzuki, High gain Erbium fiber amplifier pumped by 800nn band, Electronics Letters, 1990,26(8): 548~550
    [2] J.C.Livas, S.R.Chinn, E.S.Kintzer et al., High power erbium-doped fiber amplifier pumped at 980nm, CLEO,1995,15: 521~522
    [3] D.E.McCumber, Theory of phonon-terminated optical masers, Physics Review A, 1964,134:299~306.
    [4] P.C.Becker, N.A.Olsson, J.R.Simpson , Erbium-Doped Fiber Amplifiers: Fundamentals and Technology, Boston, AP Professional, 1999:140~144
    [5] M.J.F.Digonnet, C.J.Gaeta, Theoretical analysis of optical fiber laser amplifiers and oscillators, Applied Optics,1985,24:333~342
    [6] D.Gloge, Weakly guiding fibers, Applied Optics,1971,10(10): 2252~2258
    [7] B. Pedersen, A. Bjarklev, J. Hedegaard et al., The Design of Erbium-Doped Fiber Amplifiers, J. Lightwave Technol.,1991, 9(9):1105~1112
    [8] C.R.Giles, E.Desurvire , Modeling Erbium doped fiber amplifier, J. Lightwave Technol. , 1991 ,9(2):271~283
    [9] 庞勇,蒋佩璇,徐大雄, 掺铒光纤吸收截面和辐射截面的简单估算方法,光学学报, 1995,15(12):1721~1725
    [10] S.Yamashita, T.Okoshi., Performance improvement and optimization of fiber amplifier with a midway isolator. IEEE Photonics Technology Letters, 1992, 4 (11):1276~1278
    [11] O.Lumholt, J.H.Povlsen, K.Schusler et al., Quantum limited noise figure operation of high gain EDFA. Journal of Lightwave Technology, 1993 , 11(8):1344~1352
    [12] 张岩滨, 彭江得, 刘小明, 本征平坦增益带宽>33nm 的高增益、低噪声 L 波段铒光纤放大器, 中国激光,2002, A29(11),:987~990
    [13] 马晓明, 两段级联掺铒光纤放大器的优化研究,光子学报,2003,32(6):688~691
    [1] Tang Ping-sheng, Liu Xiao-ming, Liu Dan,et al., Experimental study of two-stage Erbium-doped fiber amplifier with hybrid pumping, Acta Optica Sinica(光学学报), 1997,17(4): 472~475 (in Chinese)
    [2] Yin Xin-da, Huang Xuan-zhe, Zhang Xue-yong, et al., Research on Er-doped fiber pre-amplifier, Study on Optical Communications( 光 通 信 研 究 ),1998, 89:42~45 (in Chinese)
    [3] D.M.Baney, P.Gallion, R.S.Tucker, Theory and measurement techniques for the noise figure of optical amplifiers, Optical Fiber Technology, 2000, 6(1):122~154
    [4] S.Yamashita, T.Okoshi, Performance improvement and optimization of fiber amplifier with a midway isolator, IEEE Photonics Technology Letters, 1992, 4 (11):1276~1278
    [5] O.Lumholt, J.H.Povlsen, K.Schusler et al., Quantum limited noise figure operation of high gain EDFA, Journal of Lightwave Technology, 1993 , 11(8):1344~1352
    [6] C.G.Atkins, J.F.Massicott, J.R.Armitage, High-gain broad spectural bandwidth EDFA pumped near 1.5μm, Electronics Letters , 1989, 25(14) :910~911
    [7] J.F.Massicott, J.R.Armitage, R.W.yatt et al., High gain broadband 1.6μm Er3+ doped silica fiber amplifier, Electronics Letters , 1990 , 26 (20):1645~1646
    [8] B.H.Choi, H.H.Park, M.Chu et al., High-gain coefficient long-wavelength-band EDFA using 1530nm band pump, IEEE Photonics Technology Letter, 2001,13 (2):109~111
    [1] 杨建虎,戴世勋,温磊 等,掺铒铋酸盐玻璃的光谱性质研究,光子学报,2002,31(11):1382~1386
    [2] Jianhu Yang, Shixun Dai, Lei Wen et al., Mixed heavy metal effect on emission properties of Er-doped borosilicate glasses, Chinese Optics Letters, 2003,1(5):294~295
    [3]P.C.Becker, N.A.Olsson, J.R.Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology, Boston: AP Professional, 1999:193~197
    [4]N.Sugimoto, Y.kuroiwa, S.Ito, Broadband 1.5μm emission of Er3+ ions in Bismuth-based oxide glasses for WDM amplifier, LEOS ,1999,2:ThS2
    [5] B.O.Guan, H.Y.Tam, N.sugimoto et al. Ultrawide-band La-codoped Bi2O3-based EDFA for L-Band DWDM systems, IEEE Photonics Technology Letters, 2003, 15(11):1525~1527
    [6] H.Chen, F.Babin, M.Leblanc et al. ,Widely Tunable S-band fiber-ring laser and broadband ASE source with Thulium-doped Fluoride fibers, J.lightwave tech., 2003, 21 (7):1629~1634
    [7]P.R.Morkel K.P.Jedrzejewski, E.R.Taylor , High gain superfluorescent Nd-doped single-mode fiber source, IEEE Photonics Technology Letters, 1992, 4(7): 706~708
    [8]C.W.Hodgson A.M.Vengsarkar, Spectrally shaped high-power amplified spontaneous emission sources incorporating long-period gratings, OFC, 1996:29~30
    [9]C.D.Su L.A.Wang “Effect of adding a long period grating in a double-pass backward Er-doped superfluorescent fiber source” J.lightwave tech., 1999,17(10) :1896~1899
    [10] K.Liu, M.Digonnet, K.Fesler et al., Broadband diode-pumped fiber laser, Electronics Letters, 1988, 24(14):838~840
    [11] K.Haroud E.Rochat R.Dandliker , A broad-band superfluorescent fiber laser using single-mode doped silica fiber combinations, IEEE Journal of Quantum Electroncs, 2000, 36(2): 151~153
    [12] P.F.Wysocki, M.J.F.Digonnet, B.Y.Kim et al., Haracteristics of erbium-doped superfluorescent fiber source for interferometric sensor applications, Journal of Lightwave Technology, 1994, 12:550~567
    [13] Eric A.Swanson, Stephen R. Chinn, Craig W. Hodgson et al., Spectrally shaped rare-earth-doped fiber ASE sources for use in optical coherence tomography, CLEO, 1996:211
    [14] C.D.Su, Lon A. Wang, Multiwavelength fiber source based on double-pass superfluorescent fiber sources, Journal of Lightwave Technology, 2000,18(5):708~710
    [15] D.K.Jung, C.H.Lee, WDM passive optical network based on spectrum slicing techniques” IEEE Photonics Technology Letters, 1998, 10(9):1334~1336
    [16] J.S. Lee, Y.C.Chung, C.S.Shim, Bandwidth optimization of a spectrum-sliced fiber amplifier light source using an angle-tuned Fabry-Peror filter and a double stage-structure, IEEE Photonics Technology Letters, 1994, 6(10):1197~1199
    [17] M.E.Bray, R.T.Elliott , K.P.Jones , Comparison of erbium amplifier measurement using a high power ASE source or using an ITU grid, OFC, 2001, 3: WI2-1~WI2-3
    [18] H.C.Su Lon A. Wang , A highly efficient polarized superfluorescent fiber source for fiber-optic gyroscope applications, IEEE Photonics Technology Letters, I 2003, 15 (10):p1357~1359
    [19] S.C.Tsai, T.C.Tsai, P.C.Law et al., High pumping-efficiency L-band Er-doped fiber ASE source using double-pass bi-directional-pumping configuration, IEEE Photonics Technology Letters, 2003, 15(2):197~199
    [20] Douglas C. Hall, William K. Burns, Robert P. Moeller, High-Stability Er3+-Doped Superfluorescent Fiber Sources, Journal of Lightwave Technologytech , 1995, 13(7):1452~1454
    [21] P.Z.Zatta, D.C.Hall, Ultra-high-stability two-stage superfluorescent fiber source for fiber optic gyroscopes, Electronics Letters, 2002, 38(9):406~409
    [22]D.G.Falquier, M.J.F.Digonnet, H.J.Shaw, A depolarized Er-doped superfluorescent fiber source with improved long-term polarization stability, IEEE Photonics Technology Letters, 2001, 13 (1):25~27
    [23] D.G .Falquier, M.J.F.Digonnet, H.J.Shaw, A polarization-stable Er-doped superfluorescent fiber source including a Faraday rotator mirror, IEEE Photonics Technology Letters, 2000, 12 (11):1465~1467
    [24] D.Guillaumond, J.P.Meunier, Comparison of two flattening techniques on a double-pass Er-doped superflorescent fiber source for fiber-optic Gyroscope, IEEE Journal on selected topics in quantum electronics, 2001, 7(1):17~19
    [25] P.F.Wysocki, M.J.F.Digonnet, B.Y.Kim et al., Wavelength stability of a high-output broadband Er-doped SFS pump near 980nm, Optical Letters, 1991,16:961~963
    [26] L.A.Wang, C.D.Chen, Stable and broadband Er-doped SFS using double-pass backward configuration, Electronics Letters, 1996, 32(19):1815~1817
    [27] S.C.Tsai, C.M.Lee, S.Hsu et al., Characteristic comparison of sigle-pumped L-band Er-doped fiber ASE source, Optical Quantum Electronics, 2002, 34(11) :1111~1117
    [28] H.M.Moon , B.S.Choi , K.H.Lee et al., High-power broadband source with feedback of backward ASE by a circulator, CLEO, 2000:546~547
    [29] D.D.Sampson, W.T.Holloway, 100mw spectrally-uniform broadband ASE source for spectrum-sliced WDM systems, Electronics Letters, 1994, 30(19): 1611~1612
    [30] M..Zirngibl, C.R.Doerr, L.W.Stulz, Study of spectral slicing for local access applications, IEEE Photonics Technology Letters, 1996, 8:721~723
    [31] P.F.Wysocki, M.J.F.Digonnet, B.Y.Kim et al., Characteristics of Er-doped superfluorescent fiber sources for interometric sensor applications, Journal of Lightwave technology, 1994, 12(3):550~567
    [32] D.C.Hall, W.K.Burns, Wavelength stability optimization in Er-doped superfluorescent fiber sources, Electronics Letters, 1994, 30 (8):653~654
    [33] L.A.Wang, C.D.Chen, Characteristics comparison of Er-doped double-pass SFS pumped near 980, IEEE Photonics Technology Letters, 1997, (4):446~448
    [34] C.G.Atkins, J.F.massicott et al., High-gain broad spectral bandwidth Er-doped fiber amplifier pumped near 1.5μm, Electronics Letters, 1989, 25(14):910
    [35] H.Ono,M.Yamada et al., Comparison of amplification characteristics of 1.58μm and 1.55μm band EDFAs, Electronics Letters,1998, 34(15):1509
    [36]S.Tanabe, T.Hanada, Journal of Non-Crystal Solids, 1996, 196(2):101~106
    [37] Y.Kuroiwa,N.Sugimoto,K.Ochiai et al., Bi2O3 Based Erbium doped fiber for candidates of the broadband and compact amplifiers, http://www.AGC.com.jp
    [38]L.Qian, D.Fortusini, S.D.Benjamin et al., Gain-flattened extended L-band(1570~1620nm) high power ,low noise erbium-doped fiber amplifiers, OFC, 2002:ThJ4
    [39]B.O.Guan, H.Y.Tam, S.Y.Liu et al., Ultrawide-band La-codoped Bi203-based EDFA for L-band DWDM systems, IEEE Photonics Technology Letters, 2003, 15 (11) :1525~1527
    [40] R.A.Bergh, B.Culshaw, C.C.Cutler et al., Source statistics and the Kerr effect in FOG, Optical Letters, 1982, 7(11):563
    [41]W.K.Burns, C.L.Chen, R.P.Moeller, FOG with broadband source, Journal of Lightwave Technologytech, 1983, LT-1 (1):98
    [42] W.K.Burns, R.P.Moeller, Polarizer requirements for FOG with high-birefringence fiber and broadband sources, Journal of Lightwave Technologytech, 1984, LT-2 (4):430
    [43] K.Liu, M.Digonnet, K.Fesler et al., Superfluorescent single mode Nd:fiber source at 1060nm, OFC, 1988, 88
    [44] I.N.Duling, R.P.Moeller, W.K.Burns et al., Output characteristics of diode pumped fiber ASE source, IEEE J QE, 1991, 27:995
    [45] P.R.Morkel, E.M.Taylor, J.E.Townsend et al., Wavelength stability of ND-doped fiber fluorescent sources, Electronics Letters, 1990, 26: 873~875
    [46] E.Desurvire, J.R.Simpson, Amplification of spontaneous emission in erbium doped single-mode fibers, Journal of Lightwave Technologytech, 1989, 7:835~845
    [47] P.F.Wysocki, M.J.F.Digonnet, B.Y.Kim et al., Broadband fiber sources for FOG, SPIE, 1991:1585
    [48] P.F.Wysocki, M.J.F.Digonnet, B.Y.Kim et al., Characteristics of Er-doped SFS for interferometric sensor applications, Journal of Lightwave Technologytech, 1994, 12 (3):550~567
    [49] P.F.Wysocki, J.B.Judkins, R.P Espindola et al., Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter, IEEE Photonics Technology Letters, 1997, 9(10):1343~1345
    [50]P.F Wysocki.;M.J.F. Digonnet,;B.Y. Kim, Spectral characteristics of high-power 1.5 μm broad-band superluminescent fiber sources, IEEE Photonics Technology Letters, 1990, 2(3):178~180
    [51]R.Kashyap, R.Wyatt, P.F.Mckee et al., Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratings, Electronics Letters, 1993, 29:1025~ 1026
    [52] A.M.Vengsarkar , P.J.Lemaire, J.B.Judkins et al., Long period fiber gratings as band rejection filters, Journal of Lightwave Technology, 1996, 14(1):838~840
    [53] Kashyap R., Wyatt R., Campbell R.J., Wideband gain flattened EDFA using a photosensitive fiber blazed grating, Electronics Letters, 1993,29(2):154~156
    [54] C.D.Su, L.A.Wang, Linewidth brodening of Er-doped SFS using long period grating, Electronics Letters, 1999, 35(4):331~332
    [55] L.Goldberg, R.P.Moeller, M.K.Burns et al., High-power 1.5μm SFS for fiber optical gyroscopes, OFC, 1997:28
    [56] Morkei.P.R., Laming.R.I., Payne D.N., Noise characteristics of high power doped SFS, Electronics Letters, 1990, 26(2):96~98
    [57] H.J.Patrick, A.D.Kersey, W.K.Burns et al., Er-doped SFS with long period fiber grating wavelength stabilization, Electronics Letters, 1997, 33 (24):2061~2063
    [58] J.H.Lee , Passive Er-doped fiber seed photon generator for high-power Er-doped fiber fluorescent sources with an 80nm bandwidth, Optical Letters, 1999, 24(5):229~231
    [59] R.P.Espindola, G.Ales,J.Park et al., 80nm spectrally flattened high power ASE source, Electronics Letters, 2000, 36(15):1263~1264
    [60]O.G.Okhotnikov, J.M.Sousa, High power SFS with stable single-transverse-mode output using a multimode Er-doped fiber, Electronics Letters, 1997, 33(20): 1727~1728
    [61] 钱景仁 程旭 朱冰, 掺铒光纤超荧光宽带光源的实验研究, 中国激光 1998, 25(11):989~992
    [62] W.C.Huang, P.K.A.Wai, H.Y.Tam et al., One-stage erbium ASE source with 80nm bandwidth and low ripples, Electronics Letters, 2002, 38 (17):956~957
    [1] A.K.Srivastava, Y.Sun, J.L.Zyskind et al., EDFA transient response to channel loss in WDM transmission system, IEEE Photonics Technology Letters, 1997,9:386~388
    [2] J.L.Zyskind, Y.Sun, A.K.Srivastava et al., Fast po23 transients in optically amplified multiwavelength optical networks, OFC, 1996:PD31
    [3] M.Tachibana, R.I.Laming, P.R.Morkel, Erbium-doped fiber amplifier with flattened gain spectrum, IEEE Photonics Technology Letters, 1991,3(2):118~120
    [4] A.E.Willner, S.M.Hwang, Transmission of many WDM channels through a cascade of EDFA's in long-distance links and ring networks, Journal of Lightwave Technology ,1995,13(5):802~816
    [5] A.D.Ellis, R.M.Percival, A.Lord,Automatic agin contral in cascaded EDFA systems, 1991, 27(3):193~195
    [6] D.Bayart, B.Clesca, L.Hamon et al., 1.55μm fluoride-based EDFA with gain flatness control for multiwavelength applications, 1994, 30(17):1407~1409
    [7]K.W.Na, J.T.Choi, W.J.Lee et al., A cost-effective gain control using pump modulation for EDFA, IEEE Photonics Technology Letters, 2000, 12(4):383~385
    [8] J.H.Jang, J.H.Jung, W.J.Lee et al., Implementation of automatic gain controlled bi-directional EDFA in WDM networks, CLEO, 1999:ThH4
    [9] H.Yoon , S.Bae, S.J.Ahn et al., Reference level free multichannel gain equali21tion and transient gain suppression of EDFA with differential ASE po23 monitoring, IEEE Photonics Technology Letters, 1999, 11(3):316~318
    [10]H.J.Lee, J.H.Bang, J.S.Ko et al., Dynamic gain control of booster amplifier using an optical supervisory channel po23 adjustment in WDM transmission systems, ATM (ICATM 2001) and High Speed Intelligent Internet Symposium, 2001:278~281
    [11]E.Desurvire, M.Zirngibl, H.M.Presby et al., Dynamic gain compensation in saturated EDFA , IEEE Photonics Technology Letters, 1991, 3(5):453~455
    [12]K.motoshima, K.Shimizu, K.Takano et al., EDFA with dynamic gain compensation for multi-wavelength transmission systems, OFC, 1994:ThC4
    [13]Y.H.Xiao, X.M.Liu, D.Liu et al., A novel compensating light injection configuration for gain-clamped EDFA's , IEEE Photonics Technology Letters, 2000, 12(7):789~791
    [14]F.Shehadeh, R.S.Vodhanel, C.Gibbons et al., Comparison of gain control techniques to stabilize EDFAs for WDM networks ,OFC, 1996:WM8
    [15]A.Yu, M.J.O'Mahony, Design and modeling of laser-controlled EDFA , IEEE Journal of Selected Topics in Quantum Electronics , 1997,3(4):1013~1018
    [16]M.Artglia, A.paganno, B.Sordo, Gain-shifted EDFA with all-optcal automatic gain control, ECOC, 1998:293-294
    [17]K.Inoue Gain-clamped fiber amplifier with a loop mirror configuration , IEEE Photonics Technology Letters, 1999, 11 (5):533~535
    [18]Y-Q.Liu, M.F.Krol, Transient gain control in EDFA's by dual-cavity optical automatic gain control , IEEE Photonics Technology Letters, 1999, 11(11):1381~1383 [19] E.Delavaque, T.Georges, J.F.Bayon et al., Gain control in EDFA by lasing at 1480nm with written on fiber ends, Electronics Letters, 1993, 29(12):1112~1114
    [20]J.F.Massicott, S.D.Willson, R.Wyatt et al., 1480nm pumped EDFA with all optical automatic gain control , Electronics Letters, 1994, 30(12):962~964
    [21]J.Massicott, C.Lebre, R.Wyatt et al., Low noise,all-optical gain controlled EDFA using asymmetric control laser cavity design, Electronics Letters,1996,32(9):816~817
    [22]A.Yu, M.J.O'Mahony, Properties of gain controlled EDFA by lasing, Electronics Letters, 1995, 31 (16):1348~1349
    [23]A.A.M.Saleh, R.M.Jopson, J.D.Evankow et al., Modeling of gain in EDFA, IEEE Photonics Technology Letters,1990,2(10):714~717
    [24]M.Zirngibl, Gain control in EDFA by an all-optical feedback loop, Electronics Letters, 1991,27(7):560~561
    [25] E.Desurvire, Erbium-doped fiber amplifiers, New York,Wiley,1994,128~134
    [26]S.R.CHINN, Simplified modeling of transients in gain-clamped EDFA ,Journal of Lightwave Technology ,1998, 16(6):1095~1100
    [27]D.H.Richards, J.L.Jackel, M.A.Ali , A theoretical investigation of dynamic all-optical automatic gain control in multichannel EDFA's and EDFA cascades,IEEE Journal of Selected Topics in Quantum Electronics,1997,3(4):1027~1036
    [28]G.Luo, J.L.Zyskind, Y.Sun et al., Relaxation osciliations and sepectral hole burning in laser automatic gain control of EDFAs, OFC, 1997: WF4
    [29]G.Luo, J.L.Zyskind, J.A.Nagel et al., Experimental and theoretical analysis of relaxation-oscillations and spectral hole burning effects in all-optical gain-clamped EDFA's for WDM networks, Journal of Lightwave Technology, 1998 ,16(4):527-533
    [30]G.Luo, J.L.Zyskind, Y.Sun et al., Performance degradation of all-optical gain-clamped EDFA's due to relaxation-oscillations and spectral-hole burning in amplified WDM networks, IEEE Photonics Technology Letters,1997,9(10): 1346~1348
    [1] M.Zirngibl, Gain control in EDFA by an all-optical feedback loop, Electronics Letters, 1991,27(7):560~561
    [2]S.Y.Kim, J.Chung, B.Lee, Dynamic performance of the all-optical gain-controlled EDFA cascade in multiwavelength optical networks, Electronics Letters, 1997, 33(17):1475~1477
    [3] H.Dai, J.Y.Pan, C.Lin,All-optical gain control of in-line EDFA for hybrid analog/digital WDMsystems,OFC, 1997,9 (6):737~739
    [4] M.Artglia, A.paganno, Gain-shifted EDFA with all-optcal automatic gain control B.Sordo, ECOC, 1998:293~294
    [5]Y.Q.Liu, M.F.Krol, Transient gain control in EDFA's by dual-cavity optical automatic gain control, IEEE Photonics Technology Letter, 1999, 11(11):1381~1383
    [6]周炳琨,高以智,陈倜嵘,陈家骅 ,激光原理,北京:国防工业出版社,2002,18~19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700