无机叠氮化合物的实验和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然人们已知“永动机”只是在人类科学史上试图获得永久能源的梦,但人们追求用少的材料以获得最大动力能源的努力一直未停止过。以N_4,N_6等为代表的聚氮化合物由于分解时释放出巨大能量,同时给出N_2,不带有金属元素并产生很少的大气污染物,故被视为环境友好的高能量密度材料(HEDM)。但是由于这一类化合物具有很高的能量而极不稳定,所以无论从制备还是表征的角度来说都具有很高的挑战性。
     本论文的主要研究内容是富氮类高能量密度物质的制备以及紫外光电子能谱表征,同时采用量子化学方法对它们的结构和性质进行预测。在广泛的文献调研和充分的实验准备基础上,采用我们实验室多年来探索的真空异相表面反应手段,合成和表征了一系列重要的无机共价叠氮化合物。
     论文第一章对紫外光电子能谱基本原理、实验方法和紫外光电子能谱仪器的改进情况进行了介绍;总结了电子结构理论、电子态的确定方法以及电离能计算的相关理论;简要综述了富氮类高能量密度物质的实验研究进展情况。
     第二章首次采用三溴化硼(BBr_3)和叠氮银(AgN_3)的真空异相反应制各了高纯度的三叠氮化硼(B(N_3)_3),并首次得到了该化合物的紫外光电子能谱和离子态信息;该化合物不仅是一种潜在的高能量密度物质,
Nitrogen is unique among the chemical elements. In contrast to the other elements, its homonuclear single-bond energies are significantlyless than one-third of their triple- or one-half of their double-bond energies. As results, polynitrogen or nitrogen-rich compounds such as N_4 and N_6 release huge amounts of energy when they decompose to diatomic nitrogen. Coupled with the benign nature of nitrogen gas as a reaction product, these characteristics would make nitrogen-rich compounds attractive candidates as environmentally-friendly high energy density materials (HEDM). Unfortunately, owing to the highly endothermic heats of formation, their syntheses and isolation, and structural characterization present great challenges.
    The purpose of this study is to investigate the generation, detection and electronic structure of HEDM. Based on the photoelectron spectroscopy which was built specifically to detect transient species and techniques in generating metastable compounds, several important inorganic covalent azido-compounds were generated and characterized.
    The principle and experiment section of Photoelectron Spectroscopy
引文
[1] Baker A D, Brundle C R. Electron Spectroscopy: Theory, Technique and Applications, London, Academic Press, Inc, 1977, 120-194.
    [2] Turner D W, Baker A D, Baker C, Brundle C R. Molecular Photoelectron Spectroscopy, A Handbook of He 584 A Spectra, London, Inter science, 1970, 1-212.
    [3] Eland J H D. Photoelectron Spectroscopy, New York, Wiley-Halsted, 1974, 1-466.
    [4] Rabalais J W. Principles of Ultraviolet Photoelectron Spectroscopy, New York, Wiley-Interscience, 1977, 92-96.
    [5] Dyke J M, Jonathan N, Morris A. Vacuum Ultraviolet Photoelectron Spectroscopy of Transient Species, in: Electron Spectroscopy: Theory, Technique and Applications, Vol 3, London, Academic Press, 1979, 411-480.
    [6] 潘承璜,赵良仲.电子能谱基础,北京,科学出版社,1981.
    [7] 王殿勋,徐广智.紫外光电子能谱学,化学通报,1992,10,11-15.
    [8] 赵恒奇,王殿勋、徐广智.双室紫外光电子能谱仪,分析仪器,1991,4,31-35.
    [9] Koopmans T. Ordering of Wave Functions and Eigenvalues to the Individual Electrons of an Atom, Physica, 1933, 1,104-113.
    [10] Cox T A, Orchard F A. On Band Intensities in the Photoelectron Spectra of Open-Shell Molecules, Chem. Phys. Lett., 1970, 7, 273-275.
    [11] Richards W G.Third Age of Quantum Chemistry, Nature, 1979, 278, 507-507.
    [12] Schaefer H E Methylene: A Paradigm for Computational Chemistry, Science, 1986, 231, 1100-1107.
    [13] Schaefer H E The Electronic Structure of Atoms and Molecules A Survey of Rigorous Quantum Mechanical Results, Chimia, 1989, 43, 1-5.
    [14] Schaefer H E The Reachable Dream: Some Steps Toward the Realization of Molecular Quantum Mechanics by Computer, J. Mol. Struct. (Theochem), 1997, 398, 199-209.[15] Pople J A, Seeger R, Krishnan R. Variational Configuration Interaction Methods and Comparison with Perturbation Theory, Int. J. Quant. Chem. Symp., 1977, 11, 149-156.
    [16] Head-Gordon M, Head-Gordon T. Analytic MP2 Frequencies Without Fifth Order Storage: Theory and Application to Bifurcated Hydrogen Bonds in the Water Hexamer, Chem. Phys. Lett., 1994, 220, 122-130.
    [17] Hegarty D, Robb M A. Multi-Root Configuration interaction Calculations, Mol. Phys., 1979, 38, 1795-1806.
    [18] Parr R G, Yang W. Density-functional theory of atoms and-molecules, Oxford, Oxford University Press, 1989, 1852-1911.
    [19] Pople J A, Krishnan R, Schlegel H B, Binkley J S. Electron Correlation Theories and Their Application to the Study of Simple Reaction Potential Surfaces, Int. J. Quant. Chem., 1978, XIV, 545-560.
    [20] Curtiss L A, Raghavachari K, Tracks G W, Pople J A. Gaussian-2 Theory for Molecular Energies of First-and Second-Row Compounds, J. Chem. Phys., 1991, 94, 7221-7226.
    [21] Petersson G A, Bennett A, Tensfeldt T G. Al-Laham M A, Shirley W A, Mantzaris J. A Complete Basis Set Model Chemistry I. The Total Energies of Closed-Shell Atoms and Hydrides of the First-Row Atoms, J. Chem. Phys., 1988, 89, 2193-2205.
    [22] Grotendorst J. Effective Core Potentials in Modem Methods and Algorithms of Quantum Chemistry, Julich, John von Neumann Institute for Computing, NIC Series, Vol.1, 2000, 479-480.
    [23] Koopmans T. Ordering of Wave Functions and Eigenvalues to the Individual Electrons of an Atom, Physica, 1933,1, 104-113.
    [24] 唐敖庆.量子化学,北京,科学出版社,1982.
    [25] Ortiz J V. Electron binding energies of anionic alkali metal atoms from partial fourth order electron propagator theory calculations, J. Chem. Phys., 1988, 89, 6348-6352.[26] Calais J L, Kryachko E. Conceptual Perspectives in Quantum Chemistry, Kluwer Academic, 1997, 465-469.
    [27] 周世光,吴文健.高能量密度材料,化工纵横,1997,11,3-6.
    [28] 美国国防部关键技术计划,北京,航空航天部航天科技情报研究所,1990.
    [29] 余永忠。合成超级高能量密度材料途径的探索,中国工程科学,1999,1,91-94.
    [30] 王文俊.含能材料技术的进展与展望,固体火箭技术,2003,26,42-48.
    [31] Greenwood N N, Earnshaw A. Chemistry of the Elements, Pergamon, Oxford, 1984, 622-645.
    [32] Ritter S. Polynitrogen, Chem. Eng. News., 2004, 82, 10-10.
    [33] Curtius T. Formation of Isocyanates by Thermal Decomposition of Acyl Azides, Ber, 1890, 23, 3023-3024.
    [34] Glukhovtsev M N, Jiao H J, Schleyer P von R. Besides N_2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms? Inorg. Chem., 1996, 35, 7124-7133.
    [35] Bartlett R J, Fau S, Tobita M, Wilson K, Perera A. Structure and Stability of Polynitrogen Molecules and Their Spectroscopic Characteristics, Quantum Theory Project, University of Florida, 2001.
    [36] Christe K O, Wilson W W, Sheehy J A, Boatz J A. N_5~+: A Novel Homoleptic Polynitrogen Ion as a High Energy Density Material, Angew. Chem. Int. Ed., 1999, 38, 2004-2009.
    [37] Vij A, Wilson W W, Vij V, Tham F S, Sheehy J A, Christe K O. Polynitrogen Chemistry Synthesis, Characterization, and Crystal Structure of Surprisingly Stable Fluoroantimonate Salts of N_5, J. Am. Chem. Soc., 2001, 123, 6308-6313.
    [38] Wilson W W, Vij A, Vij V, Bernhardt E, Christe K O. Polynitrogen Chemistry: Preparation and Characterization of (N_5)_2SnF_6, N_5SnF_5, and N_5B(CF_3)_4, Chem. Eur. J., 2003, 9, 2840-2844.
    [39] Haiges R, Schneider S, Schroer T, Christe K O. High-Energy-Density Materials:??Synthesis and Characterization of N_5~+[P(N_3)6] ~-, N_5~+[B(N_3)_4] ~-, N_5~+[HF_2] ~-nHF, N_5~+[BF4], N_5~+[PFr], and N_5~+[SO_3F] ~-, Angew. Chem. Int. Ed., 2004, 43, 4919-4924.
    [40] Cacace F, Petris de G, Troiani A. Experimental Detection of Tertranitrogen, Science, 2002, 295, 480-481.
    [41] Vij A, Pavlovich J G, Wilson W W, Vij V, Christe K O. Experimental Detection of the Pentaazacyclopentadienide (Pentazolate) Anion, cyclo-N_5~-, Angew. Chem. Int. Ed., 2002, 41, 3051-3054.
    [42] Benin V, Kaszynski P, Radziszewski J G. Arylpentazoles Revisited: Experimental and Theoretical Studies of 4-Hydroxyphenylpentazole and 4-Oxophenylpentazole Anion, J. Org. Chem., 2002, 67, 1354-1358.
    [43] 黄荣彬,刘朝阳,黄丰,林逢辰,郑兰荪.氮原子簇离子的质谱发现,化学通报,1995,3,39-44.
    [44] Lucien H W. The Preparation and Properties of Nitrosyl Azide, J. Am. Chem. Soc., 1958, 80, 4458-4460.
    [45] Schultz A, Tomieporth-Oetting I C, Klap6tke T M. Nitrosyl Azide, N_4O, an Intrinsically Unstable Oxide of Nitrogen, Angew. Chem. Int. Ed., 1993, 32, 1610-1612.
    [46] Stinson S. New Nitrogen Oxide, Chem. Eng. News, 1993, 71, 51.
    [47] Doyle M P, Maciejko J J, Busman S C. Reaction Between Azide and Nitronium Ions Formation and Decomposition of Nitryl Azide, J. Am. Chem. Soc., 1973, 95, 952-953.
    [48] Klaprtke T M, Schulz A, Tornieporth-Oetting I C. Studies of the Reaction Behavior of Nitryl Com. poumds towards Azides: Evidence for.Tetranitrogen Digxide, N_4O_2, Chem. Bet., 1994, 127, 2181-2185.
    [49] Zeng X Q, Sun Q, Liu F Y, Ai X C, Zhang J P, Ge M F, Wang D X. Experimental and Theoretical Studies on the Formation of Nitryl Azide N_4O_2, In Preparation.
    [50] McMahan A K, LeSar R. Pressure Dissociation of Solid Nitrogen under 1 Mbar, Phys. Rev. Lett., 1985, 54, 1929-1932.[51] Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R. Single-bonded Cubic Form of Nitrogen, Nature Materials, 2004,3,558-563.
    
    [52] Scriven E F V, Turnbull K. Azides: Their Preparation and Synthetic Uses, Chem. Rev., 1988, 88,297-368.
    
    [53] Evans B L, Yoffe A D, Gray P. Physics and Chemistry of the Inorganic Azides, Chem. Rev., 1959,59,515-568.
    
    [54] Curtius T, Radenhausen, R. Anion of Tri-Nitrogen, J. Prakt. Chem., 1891, 2, 207-208.
    
    [55] Dennis L M, Isham H. Hydronitric Acid, J. Am. Chem. Soc., 1907, 29, 216-223
    
    [56] Ishihara R, Sugiura O, Matsumura M. Low-temperature Chemical Vapor Deposition of Boron-nitride Films Using Hydrogen Azide, Appl. Phys. Lett., 1992, 60, 3244-3246.
    
    [57] Hobbs K R, Coombe R D, A Low Energy Method For the Deposition of Boron Nitride Thin Film, J. Appl. Phys., 2000, 87, 4586-4590.
    
    [58] Wiberg E, Michaud H., Z. Naturforsch, 1954, 96, 497-498.
    
    [59] Mulinax R L, Okin G S, Coombe R D. Gas Phase Synthesis, Structure, and Dissociation of Boron Triazide, J. Phys. Chem., 1995, 99, 6294-6302.
    
    [60] Liu Fengyi, Zeng Xiaoqing, Zhang Jianping, Meng Lingpeng, Zheng Shijun, Ge Maofa, Wang Dianxun, Daniel K W Mok, Chau Foo-tim. A Simple Method to Generate Pure B(N_3)_3, Chem Phys Lett., in press.
    
    [61] Fraenk W, Habereder T, Hammerl A, Klapotke T M, Krumm B, Mayer P, Noth H, Warchhold M. High Energetic Tetraazidoborate Anion and Boron Triazide Adducts, Inorg. Chem., 2001, 40, 1334-1340.
    
    [62] Ritter S, Chock Full of Nitrogen, Chem. Eng. News, 2004, 28,44-44.
    [63] Curtius T. Deidenreich, Ber., 1894, 27, 2684-2685.
    [64] Curtius, T. Deidenreich, J. Prakt. Chem., 1895,52, 454.
    
    [65] Marsh F D, Dermes M E. Cyanogen Azide, J. Am. Chem. Soc, 1964, 86, 4506-4507.[66] Muller U, Dehnicke K. Triazidomethylium Hexachloroantimonate, [C(N_3)_3] ~+[SbCl_6] ~-, Angew. Chem. Int. Ed., 1966, 5, 841-842.
    [67] Pertrie M A, Sheehy J A, Boatz J A, Rasul G, Prakash S G K, Olah G A, Christe K O. Novel High-Energy Density Materials Synthesis and Characterization of Tfiazidocarbenium Dinitramide, -Perchlorate, and-Tetrafluoroborate, J. Am. Chem. Soc., 1997, 119, 8802-8808.
    [68] Liu Fengyi, Zeng, Xiaoqing, Sun Qiao, Meng Lingpeng, Zheng Shijun, Ai Xicheng, Zhang Jianping, Ge Maofa, Wang Dianxun. Reaction of (COCl)_2 with AgN_3: Evidence for the Formation of Oxalyl Diazide, O_2C_2(N_3)_2, Bulletin of Chemical Society of Japan, 2005, 78, 1246-1250.
    [69] Maier G, Naumann M, Reisenauer H P, Eckwert J. Diisocyanate, Angew. Chem. Int. Ed.,I996, 35, 1696-1698.
    [70] Buder W, Schmidt A. Phosphorazide und deren Schwingungsspektren, Z. Anorg. Allg. Chem., 1975, 415, 263-267.
    [71] Schmidt, A. Dialkylphosphinraureazide, Chem. Ber., 1970, 103, 3923-3926.
    [72] Volgnandt P, Schmidt A. Natrium-und Tetraalkylammonium-hexaazidophosphate Darstellung und Schwingungsspektren Berichtigung zur Arbeit: Phosphorazide und deren Schwingungsspektren, Z. Anorg. Allg. Chem., 1976, 425, 189-192.
    [73] Roesky H W. Preparation of Hexaazidophosphates, Angew. Chem. Int. Ed., 1967, 6, 637-638.
    [74] Haiges R, Vij A, Boatz J A, Schneider S, Schroer T, Gerken M, Christe K O. First Structural Characterization of Binary As~Ⅲ and Sb~Ⅲ Azides, Chem. Eur. J., 2004, 10, 508-517.
    [75] Kiap6tke T M, Geissler P, Preparation and Characterization of the First Binary As-Azide Species: As(N_3)_3 and[As(N_3)_4] [AsF_6], J. Chem. Soc., Dalton Trans., 1995, 3365-3366.
    [76] Geissler P, Klap6tke T M, Kroth H. ~(14)N NMR Spectra of Covalent Halogen and Arsenic Azides: XN3 (X=Cl, Br, I), (CH_3)_nAS(N_3)_(3-n) (n=0, 1, 2) and[As(N_3)_4] ~+,??Spectrochim. Acta. A, 1995, 51, 1075-1083.
    [77] Klapotke T M, Schulz A, McNamara J. Preparation, Characterization and ab initio Computation of the First Binary Antimony Azide, Sb(N3)3, J. Chem. Soe., Dalton Trans., 1996, 2985-2987.
    [78] Karaghiosoff K, Klapotke T M, Krumm B, N6th H, Schutt T, Suter M. Experimental and Theoretical Characterization of Cationic, Neutral, and Anionic Binary Arsenic and Antimony Azide Species, Inorg. Chem., 2002, 41, 170-179.
    [79] Haiges R, Boatz J A, Vij A, Vij V, Gerken M, Schneider S, Schroer T, Yousufuddin M, Christe K O. Polyazide Chemistry: Preparation and Characterization of As(N_3)_5, Sb(N_3)_5, and[P(C_6H_5)_4] [Sb(N_3)_6], Angew. Chem. Int. Ed., 2004, 43, 6676-6680.
    [80] Klap6tke T M, N6th H, Schutt T, Warchhold M. Tetraphenylphosphonium Hexaazidoarsenate(v): The First Structurally Characterized Binary As~v-Azide Species, Angew. Chem. Int. Ed., 2000, 39, 2018-2019.
    [81] Knapp C, Passmore J. On the Way to "Solid Nitrogen" at Normal Temperature and Pressure? Binary Azides of Heavier Group 15 and 16 Elements, Angew. Chem. Int. Ed., 2004, 43, 4834-4836.
    [82] Curtius T, Schmidt., Ber, 1922, 66, 1571.
    [83] Zeng Xiaoqing, Liu.Fengyi, Sun Qiao, Ge Maofa, Zhang Jianping, Ai Xicheng, Meng Lingpeng, Zheng Shijun, Wang Dianxun. Reaction of AgN3 with SOCl_2: Evidence for the Formation of Thionyl Azide, SO(N_3)_2, Inorg. Chem., 2004, 43, 4799-4801.
    [84] Klapotke T M, Krumm M, Mayer P, Piotrowski H, Polborn K, Schwab I. The First Selenonium Azides and a Selenonium Selenocyanate, Zo Anorg. Allg. Chem., 2002, 628, 1831-1834.
    [85] Klapotke T M, Krumm B, Polborn K. Isolation of a Stable Covalent Selenium Azide RSeN_3, J. Am. Chem. Sot., 2004, 126, 710-711.
    [86] Johnson J P, MacLean G K, Passmore J, White P S. White P S. The Hemi-Adduct of Bis(diethyldithio-carbamato-S,S')Tellurium, Can. J. Chem, 1989,67,1687-1692.
    
    [87] Haiges R J, Boatz A, Vij A, Gerken M, Schneider S, Schroer T, Christe K O. Polyazide Chemistry: Preparation and Characterization of Te(N_3)_4 and[P(C_6H_5)4]2[Te(N3)6] and Evidence for[N(CH_3)_4][Te(N_3)_5], Angew. Chem. Int. Ed, 2003,42,5847-5851.
    
    [88] Raschig F. Chioroazoimide, Ber, 1908,41,4194-4195.
    
    [89] Spencer. The Action of Bromine on Sodium and Silver Azides, J. Chem. Soc, 1925,127, 216-217.
    
    [90] Hantzsch A. Bromide Azide, Ber, 1900,33, 522-522.
    
    [91] Christen D, Mack H G, Schatte G, Willner H, Structure of Triazadienyl Fluoride, FN3, By Microwave, Infrared, and Ab Initio Methods, J. Am. Chem. Soc, 1988,110, 707-712.
    
    [92] Peters N J S, Allen L C, Firestone R A. Fluorine Azide and Fluorine Nitrate: Structure and Bonding, Inorg. Chem, 1988, 27,755-758.
    
    [93] Cook R L, Gerry M C L. Microwave Spectrum and Structure of Chlorine Azide, J. Chem. Phys, 1970, 53, 2525-2528.
    
    [94] Munz H O, Bodenseh H K, Ferner M. New Gas Phase Reaction to Iodine Azide, IN_3: Microwave Spectrum and Structure, J. Mol. Struct, 2004, 695-696.
    
    [95] Che Huijuan, Bi Huimin, Zeng Yanli, Meng Lingpeng, Zheng Shijun, Chau Foo-tim, Wang Dianxun. Vacuum Preparation and Ionization Energies of FN_3 and IN_3, CHEMPHYSCHEM, 2003, 300-303.
    
    [1] Wiberg E, Michaud H. Pentafluorophenyl and phenyl substituted azidoborates, Z. Naturforsch., 1954, 96, 497-499.
    [2] Mulinax R. L, Okin G. S, Coombe R. D. Gas Phase Synthesis, Structure, and Dissociation of Boron Triazide, J. Phys. Chem., 1995, 99, 6294-6300.
    [3] Pouch J J, Alterovitz S A. Synthesis and Properties of Boron Nitride, Trans Tech, Aedermannsdorf, Switzerland, 1990, 336-347.
    [4] Wentorf Jr R H. Preparation of n-Type Cubic Boron Nitride, J. Chem. Phys., 1962, 36, 1990-1993.
    [5] Saitoh H, Yarbrough W A. Growth of Cubic Boron Nitride on Diamond Particles by Microwave Plasma Enhanced Chemical Vapor Deposition, Appl. Phys. Lett., 1991, 58, 2482-2488.
    [6] Kester D J, Messier R. Phase Control of Cubic Boron Nitride Thin Films, Appl. Phys. Lett., 1992, 72, 504-506.
    [7] Ishihara R, Sugiura O, Matsumura, M. Low-Temperature Chemical Vapor Deposition of Boron-Nitride Films using Hydrogen Azide, Appl. Phys. Lett., 1992, 60, 3244-3246.
    [8] Qian F, Nagabushnam V, Singh R K. Pulsed Laser Deposition of BN Thin Films, Appl. Phys. Lett., 1993, 63, 317-319.
    [9] Al-Jihad I A, Liu B, Linnen C J, Gilbert J Vo Generation of NNBN via Photolysis of B(N_3)_3 in Low-Temperature Argon Matrices: IR Spectra and ab Initio Calculations J. Phys. Chem., 1998, 102, 6220-6226.[10] Travers M J, Gilbert J V. UV Absorption Spectra of Intermediates Generated via Photolysis of B(N_3)_3, BC1(N_3)_2, and Ba_2(N_3) in Low-Temperature Argon Matrices, J. Phys. Chem. A, 2000,104,3780-3785.
    
    [11] Hobbs K R, Coombe R D. A Low Energy Method for the Deposition of BN Thin Films, J. Appl. Phys., 2000,87,4586-4589.
    
    [12] Wentorf R H. Cubic Form of Boron Nitride, J. Chem. Phys., 1957,26,956-958.
    
    [13] Konyashin I, Loeffler J, Bill J, Aldinger F. A Novel Approach to Deposition of Cubic Boron Nitride Coatings, Thin Solid Films, 1997, 308,101-106.
    
    [14] Rohr C, Boo J H, Ho W. The Growth of Hexagonal Boron Nitride Thin Films on Silicon Using Single Source Precursor, Thin Solid Films, 1998,322, 9-13.
    
    [15] Zeng X Q, Sun Q, Liu F Y, Ai X C, Zhang J P, Ge M F, Wang D X. Experimental and Theoretical Studies on the Formation of Nitryl Azide N_4O_2, In Preparation.
    
    [16] Zeng X Q, Liu F Y, Sun Q, Ge M F, Zhang J P, Ai X C, Meng L P, Zheng S J, Wang D X. Reaction of AgN_3 with SOCl_2: Evidence for the Formation of Thionyl Azide, SO(N_3)_2, Inorg. Chem., 2004, 43, 4799-4800.
    
    [17] Tornieporth-Oetting I C, Buze P, Schleyer R von P, Klapotke T M. Azidoiodoiodine(1+)- Hexafluoroantimonate: The First Binary Nitrogen-Iodine Cations, Angew. Chem. Int. Ed. 1992, 31,1338-1340.
    
    [18] Zhu X J, Ge M F, Wang J, Sun Z, Wang D X. First Experimental Observation of Different Ionic States of Methylthio CH_3S and CH_3O Radical, Angew. Chem. Int. Ed., 2000,112,1940-1942.
    
    [19] Sun Z, Wang J, Zhu X J, Ge M F, Wang D X. First Experimental Observation on Different Ionic States of the tert-Butoxyl [(CH_3)_3CO] Radical, Chem. Eur. J., 2001,14,2995-2996.
    
    [20] Wang J, Sun Z, Zhu X J, Yang X J, Ge M F, Wang D X. CH_3N Diradical: Experimental and Theoretical Determinations of the Ionization Energies, Angew. Chem. Int. Ed., 2001,40,3055-3057.
    
    [21] Bassett P J, Lloyd D R. An Improved Auger Electron Spectrometer using
    Concentric Hemispheres, J. Chem. Soc, 1971, (A), 1551-1566.
    
    [22] Scott A P, Radom L. Harmonic Vibrational Frequencies: an Evaluation of Hartree Fock, M0ller-Plesset, Quadratic Configuration Interaction, Density unctional Theory and Semiempirical Scale Factors, J. Phys. Chem., 1996,100, 16502-16538.
    
    [23] Ortiz J V. A Nondiagonal, Renormalized Extension of Partial Third Order Quasiparticle Theory: Comparisons for Closed-Shell Ionization Energies, J. Chem. Phys., 1998,108,1008-1014.
    
    [24] Lee T H, Colton R J, White M G, Rabalais J W. Electronic Structure of Hydrazoic Acid and the Azide Ion from X-Ray and Ultraviolet Electron Spectroscopy, J. Am. Chem. Soc., 1975, 97, 4845-4851.
    
    [25] Frost D C, MacDonald C B, McDowell C A, Westwood N P C. The HeI Photoelectron Spectra of the Halogen Azides, XN_3(X=Cl and Br) and the Halogen Isocyanates, XNCO(X=C1, Br and I), Chem. Phys., 1980,47,111-125.
    
    [26] Guerini S, Piquini P. Structural, Electronic, and Vibrational Properties of BxNy (x + y = 6) Clusters, Int. J. Quant. Chem., 2003, 95, 329-335.
    
    [27] Andrews L, Hassanzadeh P, Burkholder T R, Martin J M L. Reactions of Pulsed Laser Produced Boron and Nitrogen Atoms in a Condensing Argon Stream, J. Chem. Phys., 1993,98, 922-931.
    
    [28] Martin J M L, Lee T J, Scuseria P R, Taylor P R. Ab initio Multireference Study of the BN Molecule, J. Chem. Phys., 1992, 97, 6549-6566.
    
    [29] Zeng Y L, Sun Q, Meng L P, Zheng S J, Wang D X. Theoretical calculational studies on the mechanism of thermal dissociations for RN_3 (R=CH_3, CH_3CH_2, (CH_3)_2CH, (CH_3)_3C), Chem. Phys. Lett., 2004, 390, 362-369.
    
    [30] Zeng Y L, Meng L P, Zheng S J, Wang D X. B3LYP calculations of the potential energy surfaces of the thermal dissociations and the triplet ground state of pyrolysis products XN(x ~3∑~-) for halogen azides XN3 (X: F, Cl, Br, I), Chem. Phys. Lett., 2003, 378, 128-134.
    
    [1] Curtius T, Radenhausen, R. Anion of Tfi-Nitrogen, J. Prakt. Chem., 1891, 2, 207-208.
    [2] Nguyen M T, Flammang R. The Thionitrosyl Free Radical, Chem. Bet., 1996, 129, 1373-1377.
    [3] Scriven E V F, Tumbull K. Azides: Their Preparation and Synthetic Uses, Chem. Rev., 1988, 88, 298-368.
    [4] L'abbe, G. Decomposition and Addition Reactions of Organic Azides, Chem. Rev., 1969, 69, 345-363.
    [5] Schultz A, Tornieporth-Oetting I C, Klapotke T M. Nitrosyl Azide, N_4O, an Intrinsically Unstable Oxide of Nitrogen, Angew. Chem. Int. Ed., 1993, 32, 1610-1612
    [6] Doyle M P, Maciejko J J, Busman S C. Reaction Between Azide and Nitronium Ions Formation and Decomposition of Nitryl Azide, J. Am. Chem. Soc., 1973, 95, 952-953..
    [7] Klapotke T M, Schulz A, Tornieporth-Oetting I C. Studies of the Reaction Behavior of Nitryl Compoumds towards Azides: Evidence for Tetranitrogen Dioxide, N_4O_2, Chem. Ber., 1994, 127, 2181-2185
    [8] Curtius T. Deidenreich, Ber., 1894, 27, 2684-2685.
    [9] Marsh F D, Dermes M E. Cyanogen Azide, J. Am. Chem. Soc., 1964, 86, 4506-4507.
    [10] Muller U, Dehnicke K. Triazidomethylium Hexachloroantimonate, [C(N_3)_3] ~+[SbCl_6] ~-, Angew. Chem. Int. Ed., 1966, 5, 841-842.
    [11] Maier'G, Naumann M, Reisenauer H P, Eckwert J. Diisocyanate, Angew. Chem. Int. Ed., 1996, 35, 1696-1698.
    [12] Zhu X J, Ge M F, Wang J, Sun Z, Wang D X. First Experimental Observation of Different Ionic States of Methylthio CH3S and CH30 Radical, Angew. Chem. Int. Ed., 2000,112, 1940-1942
    [13] Sun Z, Wang J, Zhu X J, Ge M F, Wang D X. First Experimental Observation??on Different Ionic States of the tert-Butoxyl [(CH_3)_3CO] Radical, Chem. Eur. J., 2001,14,2995-2996.
    
    [14] Wang J, Sun Z, Zhu X J, Yang X J, Ge M F, Wang D X. CH_3N Diradical: Experimental and Theoretical Determinations of the Ionization Energies, Angew. Chem. Int. Ed., 2001,40, 3055-3057.
    
    [15] Che H J, Bi H M, Zeng Y L, Meng L P, Zheng S J, Wang D X. Vacuum Preparation and Ionization Energies of FN_3 and IN_3, ChemPhysChem, 2003, 4, 300-303.
    
    [16] Zeng X Q, Liu F Y, Sun Q, Ge M F, Zhang J P, Ai X C, Meng L P, Zheng S J, Wang D X. Reaction of AgN_3 with SOCl_2: Evidence for the Formation of Thionyl Azide, SO(N_3)_2, Inorg. Chem., 2004,43,4799-4801.
    
    [17] Tornieporth-Oetting I C, Buze P, Schleyer R von P, Klapotke T M. Azidoiodoiodine(1+)- Hexafiuoroantimonate: The First Binary Nitrogen-Iodine Cations, Angew. Chem. Int. Ed. 1992, 31,1338-1340.
    
    [18] Wang D X, Jiang P, Qian X M, Hong G Y. A Study of Hel Photoelectron Spectroscopy on the Electronic Structure of the Nitrate Free Radical NO_3, J. Chem. Phys., 1997,106, 3003-3308.
    
    [19] Kimura K, Katsumata S, Achiba Y, Yamazaki T, Iwata S. Handbook of Hel Photoelectron Spectra of Fundamental Organic Compounds, Tokyo, Japan Scientific Soc. Press, 1981,161-162.
    
    [20] Macoas E M S, Fausto R, Pettersson M, Khriachtchev L, Rasanen M. Conformational Analysis and Near Infrared Induced Rotamerization of Malonic Acid in an Argon Matrix, J. Phys. Chem. A, 2000,104, 6956-6961.
    
    [21] Higgins J, Zhou X F, Liu R F, Huang T T-S. Theoretical Study of Thermal Decomposition Mechanism of Oxalic Acid, J. Phys. Chem. A, 1997, 101, 2702-2710.
    
    [22] Bock C W, Redington R L. Conformers and Intramolecular Hydrogen Bonding of the Oxalic Acid, J. Chem. Phys., 1986, 85, 5391-5399.
    
    [23] Chien S H, Lau KC, Li W K. Energetics and Structures of the Carbonyl Chloride Radical, Oxalyl Chloride, and Their Cations, J. Phys. Chem. A, 1999,103,
    7918-7922.
    [24] Gutierrez-Oliva S, Toro-Labbe A. Torsional Problem of Oxalyl Chloride: a Challenge for Theoretical Methods, Chem. Phys. Lett., 2004, 383, 435-440.
    [25] Meeks J L, Mafia H J, Bfint P, McGlynn S P. Photoelectron Band Assigments in Monocarbonyls and Alpha.Dicarbonyls, Chem. Rev., 1975, 75, 603-610.
    [26] Hashmall J A, Heilbronner E. Interaction Between the Orbitals of Lone Pair Electrons in Dicarbonyl Compounds, Angew. Chem., Int. Ed., 1970, 9, 305-311.
    [27] Sweigart D A, Turner D W. Lone Pair Orbitals and Their Interactions Studied by Photoelectron Spectroscopy Ⅰ. Carboxylic Acids and Their Derivatives, J. Am. Chem. Soc., 1971, 94, 5592-5598.
    [28] Rabalais, J. W., Principles of Ultraviolet Photoelectron Spectroscopy, New York, Wiley-Interscience, 1977, 632-632.[1] Christe K O, Wilson W W, Sheehy J A, Boatz J A. N_5~+: A Novel Homoleptic Polynitrogen Ion as a High Energy Density Material, Angew. Chem. Int. Edo, 1999, 38, 2004-2009.
    [2] Knapp C, Passmore J. On the Way to "Solid Nitrogen" at Normal Temperature and Pressure? Binary Azides of Heavier Group 15 and 16 Elements, Angew. Chem. Int. Ed., 2004, 43, 4834-4836.
    [3] Klap6tke T M, Schulz A, McNamara J. Preparation, Characterization and ab initio Computation of the First Binary Antimony Azide, Sb(N3)3, J. Chem. Soc., Dalton Trans., 1996, 2985-2987.
    [4] Haiges R, Vij A, Boatz J A, Schneider S, Schroer T, Gerken M, Christe K O. First Structural Characterization of Binary As~Ⅲ and Sb~Ⅲ Azides, Chem. Eur. J., 2004, 10, 508-517.
    [5] Fraenk W, Habereder T, Hammed A, Klap6tke T M, Krumm B, Mayer P, Noth H, Warchhold M. High Energetic Tetraazidoborate Anion and Boron Triazide Adducts,??Inorg. Chem., 2001,40,1334-1340.
    
    [6] Meyer G, Naumann D, Wesemann L. Inorganic Chemistry Highlights, Weinheim, Wiley-VCH, 2002,56-81.
    
    [7] Klapotke T M, Krumm M, Mayer P, Piotrowski H, Polborn K, Schwab I. The First Selenonium Azides and a Selenonium Selenocyanate, Z. Anorg. Allg. Chem., 2002, 628,1831-1834.
    
    [8] Klapotke T M, Krumm B, Polborn K. Isolation of a Stable Covalent Selenium Azide RSeN_3, J. Am. Chem. Soc, 2004,126, 710-711.
    
    [9] Haiges R J, Boatz A, Vij A, Gerken M, Schneider S, Schroer T, Christe K O. Polyazide Chemistry: Preparation and Characterization of Te(N_3)_4 and [P(C_6H_5)_4]_2[Te(N_3)_6] and Evidence for[N(CH_3)_4][Te(N_3)_5], Angew. Chem. Int. Ed., 2003, 42, 5847-5851.
    
    [10] Zeng Xiaoqing, Liu Fengyi, Sun Qiao, Ge Maofa, Zhang Jianping, Ai Xicheng, Meng Lingpeng, Zheng Shijun, Wang Dianxun. Reaction of AgN_3 with SOCl_2: Evidence for the Formation of Thionyl Azide, SO(N_3)_2, Inorg. Chem., 2004, 43, 4799-4801.
    
    [11] Klapotke T M, Krumm M, Mayer P, Piotrowski H, Polborn K, Schwab I. The First Selenonium Azides and a Selenonium Selenocyanate, Z. Anorg. Allg. Chem., 2002, 628,1831-1834.
    
    [12] Klapotke T M, Krumm B, Polborn K. Isolation of a Stable Covalent Selenium Azide RSeN_3, J. Am. Chem. Soc, 2004,126, 710-711.
    
    [13] Johnson J P, MacLean G K, Passmore J, White P S. The Hemi-Adduct of Bis(diethyldithio- carbamato-S,S')Tellurium, Can. J. Chem, 1989, 67,1687-1692.
    
    [14] Haiges R J, Boatz A, Vij A, Gerken M, Schneider S, Schroer T, Christe K O. Polyazide Chemistry: Preparation and Characterization of Te(N_3)_4 and[P(C_6H_5)_4]_2[Te(N_3)_6] and Evidence for[N(CH_3)_4][Te(N_3)_5], Angew. Chem. Int. Ed., 2003,42, 5847-5851.
    
    [15] Zeng Xiaoqing, Liu Fengyi, Sun Qiao, Ge Maofa, Zhang Jianping, Ai Xicheng, Meng Lingpeng, Zheng Shijun, Wang Dianxun. Reaction of AgN_3 with SOCl_2:
    Evidence for the Formation of Thionyl Azide, SO(N3)2, Inorg. Chem., 2004, 43, 4799-4801.
    [16] Tornieporth-Oetting I C, Buze P, Schleyer R yon P, Klapotke T M. Azidoiodoiodine(1+)-Hexafluoroantimonate: The First Binary Nitrogen-Iodine Cations, Angew. Chem. Int. Ed. 1992, 31, 1338-1340.
    [17] Wang D X, Jiang P, Qian X M, Hong G Y. A Study of HeI Photoelectron Spectroscopy on the Electronic Structure of the Nitrate Free Radical NO_3, J. Chem. Phys., 1997, 106, 3003-3308.
    [18] Chadwick D, Frost D C, Herring F G, Katrib A, McDowell C A, McLean R A N. Photoelectron Spectra of Sulfuryl and Thionyl Halides, Can. J. Chem., 1973, 51, 1893-1896.
    [19] Biegler-Konig, E, Schonbohm, J., Derdau, R., Bayles, D., Bader, R. W. F., AIM 2000, Bielefeld, Germany, 2000.[1] Birkenbach L, Kellermann K. Pesudo-Halide, Ber. Dtsch. Chem. Ges., 1925, 58B, 786-795.
    [2] Klapotke T M, Tomieporth-Oetting I C, Nichtmetallchemie, Weinheim, VCH, Germany, 1994, 390-408.
    [3] Patai S, Rappoport Z. The Chemistry of Halides, Pseudohalides and Azides, New York, Wiley, 1983, Chapter 24, 1254-1360.
    [4] Klapotke T M, Janiak. C, Meyer H J. Modem Inorganic Chemistry, Berlin, Walter de Gruyter, 1998, 405-417.
    [5] Holleman F, Wiberg N, Wiberg E. Lehrbuch der anorganischen Chemie, 101st ed., Berlin, Waiter de Gruyter,1995, 2773-2791.
    [6] Crawford M J, Klapotke T M, Mayer P, Vogt M. CS_2N_3-Containing Pseudohalide Species: An Experimental and Theoretical Study, Inorg. Chem., 2004, 43, 1370-1378.
    [7] Li Y M, Qiao Z M, Sun Q, Zhao J C, Li H Y, Wang D X. Preparations of Pure ISeCN, ISCN, and INCO, Inorg. Chem., 2003, 42, 8446-8448.
    [8] Che Huijuan, Bi Huimin, Zeng Yanli, Meng Lingpeng, Zheng Shijun, Chau Foo-tim, Wang Dianxun. Vacuum Preparation and Ionization Energies of FN_3 and IN3, CHEMPHYSCHEM, 2003, 300-303.
    [9] Zeng Xiaoqing, Liu Fengyi, Sun Qiao, Ge Maofa, Zhang Jianping, Ai Xicheng, Meng Lingpeng, Zheng Shijun, Wang Dianxun. Reaction of AgN_3 with SOCl_2: Evidence for the Formation of Thionyl Azide, SO(N_3)_2, Inorg. Chem., 2004, 43,??4799-4801.
    [10] Delaude L, Laszlo P. Versatility of Zeolites as Catalysts for Ring or Side-Chain Aromatic Chlorinations by Sulfuryl Chloride, J. Org. Chem., 1990, 55, 5260-5269.
    [11] Uthman A P, Demlein P J, Allston T D, Withiam M C, McClements M J, Takacs G A. Photoabsorption Spectra of Gaseous Methyl Bromide,. Ethylene Dibromide, Nitrosyl Bromide, Thionyl Chloride, and Sulfuryl Chloride, J. Phys. Chem., 1978, 82, 2252-2257.
    [12] Krow G R, Lester W S, Lin G L, Fang Y H. Chlorosulfonyl Isocyanate Reactions with N-(Alkoxycarbonyl)-2-azabicyclo[2.2.0] hex-5-enes. Regiospecific Two-Atom Insertion Pathways, J. Org. Chem., 2003, 68, 1626-1629.
    [13] Angle S R, El-Said N A, Stereoselective Synthesis of Tetrahydrofurans via Formal [3+2] -Cycloaddition of Aldehydes and Allylsilanes. Formal Total Synthesis of the Muscarine Alkaloids (-)-Allomuscarine and (+)-Epimuscarine, J. Am. Chem. Soc., 2002, 124, 3608-3613.
    [14] Masse C E, Panek J S. Diastereoselective Reactions of Chiral Allyl and Allenyl Silanes with Activated C:X .pi.-Bonds, Chem. Rev., 1995, 95, 1293-1316.
    [15] Shozda R J, Vernon J A, Derivatives of Azidosulfonic Acid. Halides,Amides, and Salts, J. Org. Chem., 1967, 32, 2876-2880.
    [16] Chadwick D, Frost D C, Herring F G, Katrib A, McDowell C A, McLean R A N. Photoelectron Spectra of Sulfuryl and Thionyl Halides, Can. J. Chem., 1973, 51, 1893-1896.
    [17] Durig J R, Zhou L, Gounev T K, Guirgis G A. Vibrational Spectra, Conformational Stability and Ab initio Calculations of Chlorosulfonyl Isocyanate, Spectrochimica. Acta. Part A. 1997, 53, 1581-1593.
    [18] Haist R, Mack H G, Vedova C O D, Cutin E H, Oberhammer H. Structures and Conformational Properties of Tfifluoromethylsulfonyl Isocyanate, CF_3SO_2NCO, and Trifluoromethylsulfonyl Azide, CF_3SO_2N_3, J. Mol. Struct., 1998, 445, 197.
    [19] Zhu X J, Ge M F, Wang J, Sun Z, Wang D X. First Experimental Observation of Different Ionic States of Methylthio CH3S and CH_3O Radical, Angew. Chem. Int.Ed., 2000,112,1940-1942
    
    [20] Sun Z, Wang J, Zhu X J, Ge M F, Wang D X. First Experimental Observation on Different Ionic States of the tert-Butoxyl [(CH923)923CO-] Radical, Chem. Eur. J., 2001, 14,2995-2996.
    
    [21] Wang J, Sun Z, Zhu X J, Yang X J, Ge M F, Wang D X. CH923N Diradical: Experimental and Theoretical Determinations of the Iomzation Energies, Angew. Chem. Int. Ed., 2001,40, 3055-3057.
    
    [22] Zheng S J, Cai X H, Meng L P. GTA-91 Program, QCPE Bull, 1995,15, 25.
    
    [23] Kimura K, Katsumata S, Achiba Y, Yamazaki T, Iwata S. Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules, Halsted Press, New York, 1981,46-47.
    
    [24] Brunvoll J, Hargittai I. Electron-diffraction Investigation of the Molecular Structure of Sulphonyl Chloride Isocyanate, J. Chem. Soc. Dalton. Trans., 1978, 299-302.
    
    [25] Wiberg K B, Bader R F, Lan C D H., The calculation of molecular volumes and the use of volume analysis in the investigation of structured media and of solid-state organic reactivity, J. Am. Chem. Soc., 1983,105, 5220-5225.
    [1] Baiter M. Neurobiology: New Clues to Brain Dopamine Control, Cocaine Addiction, Science, 1996, 271, 909.
    [2] Kuika J T, Baulieu J L, Hiltunen J, Pharmacokinetics and Dosimetry of Iodine-123 Labelled PE2I in Humans, a Radioligand for Dopamine Transporter Imaging, Eur J. Nucl. Med., 1998, 25, 531-534.
    [3] 张春艳,贾红梅,贾芳,刘伯里.QSAR Study of the Benztropine Analogs for the Dopamine Transponer,核化学与放射化学,2002,24,232-235.
    [4] Sangoeta R, Jiajing C, Newman A H. J. Pharmacology and Experimental Therapeatics, 2003.
    [5] Newman A H, Allen A C, Izenwasser S. Novel 3a-(diphenylmethoxy)tropane analogs: potent dopamine uptake inhibitors without cocaine-like behavioural profiles, J. Med. Chem., 1994, 37, 2258.
    [6] Newman A H, Kline R H, Allen A A, lzenwasser S, George C, Katz J L. Novel 4'-substituted and 4',4"-disubstituted-3-alpha-(diphenylmethoxy)tropane analogs??as potent and selective dopamine uptake inhibitors, J. Med. Chem., 1995, 38, 3933-3940.
    [7] Kline R H, Izenwasser S, Katz J L, Joseph D B, Bowen W D, Newman A H. 3'-Chloro-3 α-(diphenylmethoxy)tropane But Not 4'-Chloro-3 α-(diphenylmethoxy)tropane Produces a Cocaine-like Behavioral Profile, J. Med. Chem., 1997, 40, 851-857.
    [8] Zou M F, Kopajtic T, Katz J L, Wirtz S, Justice J B, Newman A H. Novel Tropane-Based Irreversible Ligands for the Dopamine Transporter, J. Med. Chem., 2001, 44, 4453-4461.
    [9] Newman A H, lzenwasser S, Robarge M J, Kline R H. CoMFA Study of Novel Phenyl Ring-Substituted 3 α-(Diphenylmethoxy)tropane Analogues at the Dopamine Transporter J. Med. Chem., 1999, 42, 3502-3509.
    [10] 贾红梅,张春艳,孟昭兴,刘伯里.Benztropine类多巴胺转运蛋白配体的QSAR研究,北京师范大学学报(自然科学版),2001,37,74-78。
    [11] Kushwaha P S, Mishra P C. J. Mol. Struct.(Theochem), Molecular electrostatic potential maps of the anti-cancer drugs daunomycin and adriamycin: an ab initio theoretical study, 2003, 636, 149.
    [12] Bader R F W, Carroll M T, Cheeseman J R. Properties of atoms in molecules: atomic volumes, J. Am. Chem. Soc., 1987, 109, 7968.[1] Skotheim T A, Elsenbaumer R L, Reynolds J R. Handbook of Conducting Polymers, New York, Dekker, 1998, 1-211.
    [2] Sariciftci N S, Primary Photoexcitations in Conjugated Polymers: Molecular Exciton versus Semiconductor Band Model, London, World Scientific, 1997.
    [3] Gamier F, Hajlaoui R, Yassar A, Srivastata P, All-Polymer Field-Effect Transistor Realized by Printing Techniques, Science, 1994, 265, 1684-1692.
    [4] Uchiyama K, Akimichi H, Hotta S, Hoge N, Sakaki H. Electrical, Optical, and Magnetic Properties of Organic Solid-State Materials, Mater. Res. Soc. Symp. Proc., 1994, 328, 389-402.
    [5] Barbarella G, Favaretto L, Sotgui, G, Zambianchi M, Arbizzani C, Bongini A, Mastragostino M. Controlling the Electronic Properties of Polythiophene through the Insertion of Nonaromatic Thienyl S,S-dioxide Units, Chem. Mater., 1999, 11, 2533-2541.
    [6] Barbarella G, Favaretto L, Sotgiu G, Zambianchi M, Antolini L, Pudova O, Bongini A. Oligothiophene S,S-Dioxides. Synthesis and Electronic Properties in Relation to the Parent Oligothiophenes, J. Org. Chem., 1998, 63, 5497-5506.
    [7] Li Y, Vamvounis G, Holdcroft S. Tuning Optical Properties and Enhancing Solid-State Emission of Poly(thiophene)s by Molecular Control: A Postfunctionalization Approach, Macromolecules, 2002, 35, 6900-6906.[8] Malik S, Nandi A K. Thermodynamic and Structural Investigation of Thermoreversible Poly(3-dodecyl thiophene) Gels in the Three Isomers of Xylene, J. Phys. Chem. B., 2004,108,597-604.
    
    [9] Gazotti W A, Casalbore-Miceli G, Geri A, Berlin A, Paoli de M-A. All plastic and flexible electrochromic device based on elastomeric blends, Adv. Mater., 1998, 10, 1522-1525.
    
    [10] Samdal S, Samuelsen E J, Volden H V. Structural studies of poly(dimethyl-tetrathiophene, an intermediate between poly(thiophene) and poly(3-methylthiophene), Synth. Met., 1993,59,259-266.
    
    [11] Doretto L, Laks B. Electronic structure of poly-tri-heterocycle... based on furan and thiophene: The role of the synlinks, J. Chem. Phys., 2002,117,5437.
    
    [12] Foresman J B, Head-Gordon M, Pople J A, Frisch M J. Toward a systematic molecular orbital theory for excited states, J. Phys. Chem., 1992,96,135-149.
    
    [13] Lipkowitz K B, Boyd D B. Reviews of Computational Chemistry, New York, VCH Publishing, 1991-2058.
    
    [14] Casida M E, Jamorski C, Casida K C, Salahub D R. Molecular excitation cnergies to high-lying bound states from time-dependent density-functional response theory, J. Chem. Phys., 1998,108,4439-4449.
    
    [15] Gorelsky S I. SWizard program, Revision 4.12, http://www.sg-chem.net/.
    
    [16] Horne J C, Blanchard G J, LeGoff E. Rotational Isomerization Barriers of Thiophene Oligomers in the Ground and First Excited Electronic States. A 1H NMR and Fluorescence Lifetime Investigation, J. Am. Chem. Soc., 1995,117,9551-9558.
    
    [17] Pan J F, Chua S J, Huang W. Conformational analysis (ab initio HF/3-21G*) and optical properties of poly(thiophene-phenylene-thiophene), Chem. Phys. Lett., 2002,363,18-24.
    
    [1] Mullen K, Egner G. Electronic Materials: The Oligomer Approach, Weinheim, Wiley-VCH, 1998, 105-108.
    [2] McCullough R D, Solution-Processable Polycyclopentadithiophenes, Adv. Mater., 1998, 10, 93.
    [3] Groenendaal L, Meijer E W, Vekemans J A J M, Nitrogen-Containing Oligomers. In Electronic Materials: The Oligomer Approach, Weinheim, Wiley-VCH, 1998, 235-240.
    [4] Glenis S, Benz M, LeGoff E, Schindler J L, Kannewurf C R, Kanatzidis M G. Polyfuran: a new synthetic approach and electronic properties, J. Am. Chem. Soc., 1993, 115, 12519-12525.
    [5] Seixas de Melo J, Elisei F, Gartner C, Aloisi G G, Becker R S. Comprehensive Investigation of the Photophysical Behavior of Oligopolyfurans, J. Phys. Chem. A, 2000, 104, 6907-6911.
    [6] Kauffmann T, Lexy H. Die neue Verbindung 4 ist ausgehend von 2-Iodfuran, Chem. Bet., 1981, 114, 3667-3673.
    [7] Skotheim T A, Elsenbaumer R L, Reynolds J R. Handbook of Conducting Polymers, New York, Dekker, 1998, 150-170.
    [8] Sariciftci N S., Primary Photoexcitations in Conjugated Polymers:-Molecular Exciton versus Semiconductor Band Model, London, World Scientific, 1997, 531-555.
    [9] Zotti G, Schiavon G, Comisso N, Berlin A, Pagani G.Electrochemical synthesis and characterization of polyconjugated polyfuran, Synth. Met., 1990, 36, 337-351.[10] Glenis S, Benz M, LeGoff E, Schindler J L, Kannewurf C R, Kanatzidis M G Polyfuran: a new synthetic approach and electronic properties, J. Am. Chem. Soc., 1993,115,12519-12525.
    
    [11] Seixas de Melo J, Silva L M, Arnaut L G, Becker R S. Singlet and triplet energies of α -oligothiophenes: A spectroscopic, theoretical, and photoacoustic study: Extrapolation to polythiophene, J. Chem. Phys., 1999, 111, 5427-5433.
    
    [12] Geoffrey R H, Mark A R, Tobin J M. Accurate Prediction of Band Gaps in Neutral Heterocyclic Conjugated Polymers, J. Phys. Chem. A, 2002, 106, 10596-10605.
    
    [13] Ma J, Li S H, Jiang Y S. A Time-Dependent DFT Study on Band Gaps and Effective Conjugation Lengths of Polyacetylene, Polyphenylene, Polypentafuvene, Polycyclopentadiene, Polypyrrole, Polyfuran, Polysilole, Polyphosphole, and Polythiophene, Macromolecules, 2002, 35,1109-1115.
    
    [14] Ivanov I, Gherman B F, Yaron D. Comparison of the INDO Band Structures of Polyacetylene, Polythiophene, Polyfuran, and Polypyrrole, Synth. Met., 2001, 116, 111-114.
    
    [15] Balbas A, Gonzalez T M J, Tortajada J. Influence of the electron correlation on computed properties of furan oligomers, J. Mol. Struct. (Theochem), 2001, 572, 141-150.
    
    [16] Salzner U, Lagowski J B, Pickup P G, Poirier R A. Comparison of geometries and electronic structures of polyacetylene, polyborole, polycyclopentadiene, polypyrrole, polyfuran, polysilole, polyphosphole, polythiophene, polyselenophene and polytellurophene, Synth. Met., 1998,96,177-189.
    
    [17] Gorelsky, S. I., SWizard program, Revision 4.14, http://www.sg chem.net/.
    
    [1] Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. C_(60):??Buckminsterfullerene, Nature, 1985,318,162.
    
    [2] Kratschmer W, Lamb L D, Fostiropoulos K, Huffman D R. Solid C: A New Form of Carbon, Nature, 1990, 347,354-358.
    
    [3] Scuseria G E. Ab Initio Calculations of Fullerenes, Science, 1996,271, 942.
    
    [4] Kietzmann H, Rochow R, Gantefor G, Eberhardt W, Vietze K, Seifert G P, Fowler W. The electronic structure of small fullerens: evidence for a high stability of C32, Phys. Rev. Lett., 1998,81,5378-5379.
    
    [5] Martin J M L C_(28) : the smallest stable fullerene?, Chem. Phys. Lett., 1996, 255, 1-6.
    
    [6] Jensen F, Koch H. C_(24) : Ring or fullerene?, J. Chem. Phys., 1998,108,3213.
    
    [7] Kent P R C, Towler M D, Needs R J, Rajagopal G Carbon clusters near the crossover to fullerene stability, Phys. Rev. B, 2000, 62,15394-15397.
    
    [8] Taylor P R, Bylaska E, Weare J H, Kawai R. New results from coupled-cluster calculations, Chem. Phys. Lett., 1995, 235,558-567.
    
    [9] Mordkovich V Z, Umnov A G, Inoshita T, Endo M. Correspondence, Carbon, 1999, 37,1855-1858.
    
    [10] Mordkovich V Z. Muti-shell fullerene from laser heat of carbon black, Chem. Mater., 2000,12, 2813-2819.
    
    [11] Mordkovich V Z, Takeuchi Y, Multishell fullerenes by laser vaporization of composite carbon-metal targets, Chem. Phys. Lett., 2002, 355,133-138.
    
    [12] Heath J R, O'Brien S C, Zhang Q, Liu Y, Curl R F, Kroto H W, Tittel F K, Snalley R. E. Lanthanum complexes of spheroidal carbon shells, J. Am. Chem. Soc, 1985, 107, 7779-7780.
    
    [13] Tegelmann R, Krawez N, Lin S H, Hertel I V, Campbell E E. in Fullerenes and Fullerene Nanostructures, Nature (London), 1996,382,407-409.
    
    [14] Wang L S, Cheshnovsky O, Smalley R E, Carpenter J P, Hwo S J. Electronic structure of KC in the gas phase, J. Chem. Phys., 1992, 96, 4028-4033.
    
    [15] Palpant B, Negishi Y, Sanekata M, Miyajima K, Nagao S, Judai K, Rayner D M,??Simard B, Hackett P A, Nakajima A, Kaya K. Electronic and Geometric Properties of Exohedral Sodium-and Gold-Fullurenes, J. Chem, Phys., 2001, 114, 8459-8466.
    [16] Prinzbach H, Weiler A, Landenberger P, Wahl E, Worth J, Scott L, Gelmont M, Olevano D, BV I. Gas-phase production and photoelectron spectroscopy of thesmallest fullerene, C_(20), Nature, 2000, 407, 60.
    [17] Cioslowski J. Electronic structure calculations on fullerenes and their derivatives, New York, Oxford University Press. 1995, 357-400.
    [18] Turker L. A bucky onion from C_(20) and C_(60)-an AM1 treatment, J. Mol. Struct.(Theochem), 2001, 545,207-214.
    [19] Ren X Y,-Liu Z Y, Zhu M Q, Zheng K L, DFT studies on endohedral fullerene C@C60: C centers the C60 cage, J. Mol. Struct. (Theochem), 2004, 710, 175-178.
    [20] Murray J S, Sen K D. Molecular Electrostatic Potentials: Concepts and Applications, Elsevier, Amsterdam, 1996, 210-322.
    [21] Liu F Y, Liu B L, Meng Z X, Zheng S J. Conformational and electrostatic potential study of the benztropine analogs at the dopamine transporter, J. Mol. Struct. (Theochem), 2004, 712, 207-214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700