芳香族污染物基因毒性作用的分子水平研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芳香族污染物,特别是芳香族染料和芳香族表面活性剂,在环境中大量存在,并对生物体造成危害。芳香族污染物及其复合污染物(芳香族污染物之间或芳香族污染物与其他类物质形成的复合物)进入生物体后与DNA直接或间接发生相互作用,改变DNA的结构与构象或引起DNA损伤,从而影响其功能或改变其遗传特性。因此,研究芳香族污染物及其复合污染物与DNA的相互作用和其基因毒性作用的评价方法,将有助于人们从基因分子水平上了解芳香族污染物毒性作用机理,有利于正确认识和评估污染物的毒性。
     本论文主要利用光谱学技术对环境中常见的芳香族污染物及其复合污染物的基因毒性作用机理进行了研究,利用光谱学响应信号对这些污染物的基因毒性作用强度进行了评价。论文主要包括以下四个部分:
     第一部分:利用吸收光谱法和圆二色谱法从基因分子水平上研究了甲基紫对ctDNA的毒性作用。结果表明,在低甲基紫浓度时,甲基紫与DNA的结合方式为“嵌入作用”方式;而在较高甲基紫浓度时,甲基紫与ctDNA的结合模式为“静电作用”,求得其结合常数为K_(25℃)~θ为1.80×10~3 L·mol~(-1)。本部分还利用紫外可见吸收光谱信号(△A)评价了甲基紫的基因毒性作用强度。当甲基紫与ctDNA的作用模式为静电式结合时,在pH为6.50、甲基紫浓度为4.0×10~(-5) mol L~(-1)的条件下,甲基紫基因分子毒性作用最强;在0~40 min内,随时间增加,甲基紫基因分子毒性作用强度逐渐减弱;在40~120 min内,随时间增加,作用强度减弱程度变小,趋于稳定;当NaCl浓度大于0.008 mol/L时,随离子强度增大,甲基紫与ctDNA的作用强度明显降低,进一步说明甲基紫与ctDNA的结合模式为“静电作用”。圆二色谱的实验结果表明,甲基紫可使DNA构象发生改变,并呈现明显的直线型剂量-效应关系。
     第二部分:在体外研究了甲苯胺蓝(TB)对ctDNA的基因毒性作用。紫外-可见吸收光谱、荧光光谱和荧光偏振的实验结果表明ctDNA可以通过两种作用模式与甲苯胺蓝发生作用而表现出一定的基因毒性。在低甲苯胺蓝浓度下,甲苯胺蓝嵌插入ctDNA碱基对中。在高浓度甲苯胺蓝浓度下,甲苯胺蓝与ctDNA外部磷酸根发生静电结合。静电结合和嵌插结合的键合常数分别为1.01×10~6 L mol~(-1)和2.17×10~7 L mol~(-1),键合位点数分别为0.9和0.4。圆二色谱的研究结果表明这两种结合方式对ctDNA构象有不同的影响。以DNA对甲苯胺蓝的荧光猝灭程度评价了甲苯胺蓝的基因毒性强度。在甲苯胺蓝浓度为4.0×10~(-6) mol L~(-1),pH值在6.50~8.50范围内时,甲苯胺蓝的基因毒性作用最强。
     第三部分:模拟研究了生物体内偶氮染料碱性橙与CTMAB芳香族复合污染物的基因毒性作用。吸收光谱、共振光散射光谱、圆二色谱和透射电镜的实验结果均表明碱性橙本身基因毒性不强,而碱性橙-CTMAB复合污染物则表现出明显的毒性。污染物在ctDNA表面的聚集产生毒性,聚集程度反映基因毒性大小。基于这一点,利用ctDNA加入前后碱性橙-CTMAB复合污染物共振光散射强度的改变值评价其基因毒性作用强度。当碱性橙浓度为3.0×10.4 mol L~(-1)、CTMAB浓度为1.6×10~(-5) mol L~(-1)、pH大于7.00时,碱性橙-CTMAB复合污染物对ctDNA的基因毒性作用最强。圆二色谱的结果表明碱性橙-CTMAB复合污染物在基因毒性作用过程中能使ctDNA构象发生改变。透射电镜的结果表明碱性橙-CTMAB复合污染物与ctDNA发生作用,生成了离子缔合物。各种光谱学手段的实验结果表明碱性橙-CTMAB复合污染物的基因毒性作用比碱性橙或CTMAB单独存在时毒性作用都强。
     第四部分:利用吸收光谱、共振光散射及透射电镜等技术在体外模拟研究了芳香族污染物十六烷基三甲基溴化砒啶(CPB)与纳米银复合污染物所产生的基因毒性。研究发现,粒径20-50 nm范围内的纳米银颗粒单独存在时其基因毒性不强。而nanoAg与芳香族阳离子表面活性剂CPB作用后形成的nanoAg-CPB复合物则有明显的基因毒性。利用ctDNA加入前后nanoAg-CPB复合体系共振光散射强度的改变值评价其基因毒性。在pH为7.6、3.3×10~(-6)g mL~(-1) nano-Ag和6.0×10~(-6) mol L~(-1) CPB协同作用下,nanoAg-CPB复合污染物显示出最强的基因毒性作用。本部分同时考察了纳米银在这一环境行为中的形态变化,当nanoAg与CPB形成复合物时,nanoAg发生聚集并且粒径变大。加入ctDNA后,三者发生相互作用,使nanoAg变得分散并且粒径变小,这也间接说明纳米银-CPB复合污染物具有基因毒性。
A large amount of aromatic pollutants,particularly aromatic dyes and aromatic surfactants,exist in the environment and have toxic effects on organism.Aromatic pollutants or aromatic combined pollutants may interact with DNA directly or indirectly,changing the structure and conformation of DNA or causing DNA damage, thus affect DNA function or change the genetic character of DNA.Therefore,the study of the interaction between aromatic pollutants and DNA and the genotoxicity assessment methods of aromatic pollutants and aromatic combined pollutants will contribute to the understanding of the toxicity mechanism of aromatic pollutants in the molecular level of gene,also to the correct understanding and evaluation of the toxicity of aromatic pollutants.
     Utilizing spectroscopy techniques,the dissertation investigate the genotoxicity mechanism of aromatic pollutants and aromatic combined ones.The genotoxicity assessment methods of them are also established utilizing the spectroscopy responding signals.The dissertation consists of the following four parts.
     In the first part,utilizing UV-Vis spectrophotometry and circular dichroism(CD) techniques,the toxic effects of methyl violet(MV) to calf thymus DNA(ctDNA) was studied in the molecular level.The results showed that MV interacted with ct DNA by two binding models.At low MV concentrations,MV intercalated into ctDNA base pairs.At higher MV concentrations,MV was attached to the negative charged phosphate groups.The binding constant(K~θ25℃) of the electrostatic binding model was 1.80×10~3 L·mol~(-1).Utilizing the absorbency signal,the genotoxicity of MV was estimated.MV had a strong genotoxicity interaction intensity at the 4.0×10~(-5) mol L~(-1) MV and pH 6.50.The genotoxicity of MV decreased with the time in 0~40 min;the weakening extent the genotoxicity of MV decreased gradually with the time in 40~120 min.When the NaCl concentration was greater than 0.008 mol/L,the interaction intensity of MV with ctDNA decreased significantly with increasing ionic strength,further illuminating that MV was attached to the negative charged phosphate groups.CD results showed that MV can change the conformation of DNA,showing a significant linear dose-response relationship.
     In the second part,the genotoxicity mechanism of toluidine blue(TB) was examined in vitro.The absorption spectra,fluorescence spectra and fluorescence polarization showed that TB interacted with ctDNA by two binding models to show gene toxicity.At low dye concentrations,TB intercalated into base pairs of ctDNA.At higher dye concentrations,TB was attached to the negative charged phosphate groups. The binding constant of the intercalation binding model and electrostatic binding model was 2.17×10~7 L mol~(-1) and 1.01×10~6 L mol~(-1) and the number of binding sites was 0.4 and 0.9,respectively.CD results showed that the two binding models had different effects on ctDNA conformation.Utilizing the fluorescence quenching extent of TB by ctDNA,the genotoxicity interaction intensity of TB was estimated and the interaction intensity of TB was strongest at the 4.0×10~(-1) mol L~(-1) TB and pH range 6.50~8.50.
     In the third part,the genotoxicity of the azo dye chrysoidine hydrochloride combined with cetyltrimethyl ammonium bromide(CTMAB) in the living tissue was studied in vitro.The absorption spectrum,resonance light scattering(RLS),CD and transmission electron microscopy(TEM) results showed that the genotoxicity of chrysoidine hydrochloride itself was weak,while the chrysoidine hydrochloride-CTMAB combined aromatic pollutant showed obvious genotoxicity. The assembly of the contaminants on ctDNA,which can be shown by RLS,is considered as a sign of genotoxicity.The genotoxicity of chrysoidine hydrochloride-CTMAB combined aromatic pollution was evaluated by the change of the RLS intensity signal of the system due to the addition of ctDNA.The genotoxicity interaction intensity of the combined pollutant to ctDNA showed a strong co-effect at the dose of 3.0×10~(-4) mol L~(-1) chrysoidine hydrochloride,1.6×10~(-5) mol L~(-1) CTMAB and pH higher than 7.00.The CD results showed that the conformation of ctDNA changed in the genotoxic process of chrysoidine hydrochloride-CTMAB combined contamination.The TEM results showed that ctDNA interact with the chrysoidine hydrochloride-CTMAB combined contamination to form an ion associated complex. The experimental results showed that the combination of chrysoidine hydrochloride-CTMAB had higher genotoxicity than either chrysoidine hydrochloride or CTMAB individually.
     In the last part,the environmental genotoxic behavior of the aromatic detergent cetylpyridine bromide(CPB) combined with silver nanoparticles(nanoAg) was examined in vitro.The experimental results showed that the genotoxicity of nanoAg itself was very weak,but when combined with CPB,nanoAg showed obvious genotoxicity.By means of the change of the RLS intensity signal of the nanoAg-CPB system caused by the addition of ctDNA to it,the genotoxicity interaction intensity of nanoAg-CPB combined pollution was estimated.The combined materials had a strong co-effect on ctDNA at the concentration of 3.3×10~(-6) g mL~(-1) nanoAg and 6.0×10~(-6) mol L~(-1) CPB and pH 7.6.After the formation of a nanoAg-CPB complex,the nanoAg aggregate.After the addition of ctDNA to the nanoAg-CPB system,the particles were scattered and the diameter decreased,which illuminated that CPB-nanoAg has genotoxicity.
引文
[1]沈同,王镜岩.生物化学(第二版).北京:高等教育出版社,1990:329-333.
    [2]刘军,罗国安,王义明,孙汉文.小分子与核酸相互作用的研究进展.药学学报,2001,36(1):74-78.
    [3]孙伟,李清军,焦奎,陆路德.有机小分子与DNA的相互作用及其在DNA分析中的应用.化学试剂,2005,27(3):149-152.
    [4]李静,李景印,郭玉凤.生物小分子与DNA相互作用的光谱及电化学研究进展.化学研究,2005,16(4):101-104.
    [5]吴会灵,杨芃原,张重杰,何锡文.小分子与核酸相互作用的研究进展.分析化学,2004,9:1256-1261.
    [6]张蓉颖,庞代文,蔡汝秀.DNA与其靶向分子相互作用研究进展.高等学校化学学报,1999,20:1210-1217.
    [7]刘志全,禹军,徐顺清.我国环境污染对健康危害的现状及其对策研究.环境保护,2005,4:31-34.
    [8]杨春艳.环境污染对人体的危害.水利渔业,2008,2:85.
    [9]孟紫强.环境毒理学基础.北京:高等教育出版社,2003,12.
    [10]D.Marina,P.Pereza,C.Teijeiroa,E.Palecek.Interactions of surface-confined DNA with acid-activated mitomycin C.Biophysical Chemistry,1998,75(2):87-95.
    [11]卓琳.DNA与小分子相互作用的研究进展.重庆工商大学学报(自然科学版),2005,22(5):440-445.
    [12]周新文,朱国念,孙钵荷.混合重金属离子对卿鱼(Carassius aruatus)Na/K ATPase活性的影响及基因毒性作用研究.浙江大学学报(农业与生命科学版),2001,27(6):665-669.
    [13]胡洲.亚甲基蓝荧光探针对DNA的分析及其在重金属和百草枯与DNA作用研究中的应用.浙江大学硕士学位论文,2006.
    [14]H.C.Pitot.The molecular biology of carcinogenesis.Cancer,1993,72(Suppl 3):962-970.
    [15]王新莹,纪鸣,李志果,陆晓杰,程炯佳,毕树平.金属离子与DNA相互作用的研究进展.分析科学学报,2005,21(5):557-562.
    [16]D.Yang,A.H.Wang.Structural Studies of Interactions between anticancer platinum compounds and DNA.Prog.Biophy.Mol.Biol.,1996,66:81-111.
    [17]J.Anastassopoulou.Metal-DNA interactions.Journal of Molecular Structure,2003,651-653:19-26.
    [18]IARC.Beryllium,cadmium,mercury and exposures in the glass manufacturing industry,Lyon,France.International Agency for Research on Cancer,1993,58:1-415.
    [19]杨频,任蕤,杨斌盛.铽(Ⅲ)探针法研究一些金属离子与DNA的作用.化学研究与应用,1994,6(1):22-26.
    [20]L.D.Kosturko,C.Folzer,R.F.Stewart.The crystal and molecular structure of a 2:1 complex of 1-methylthymine-mercury(Ⅱ).Biochemistry,1974,13(19):3949-3952.
    [21]R.B.Martin.Metal Ions in Biological Systems.New York:Marcel Dekker,Inc.1996.
    [22]Z.Hossain,F.Huq.Studies on the interaction between Cd~(2+) ions and nucleobases and nucleotides.J.Inorg.Biochem.,2002,90:97-105.
    [23]G.De Munno,M.Medaglia,D.Armentano,J.Anastassopoulou,T.Theophanides.New supramolecular complexes of manganese(Ⅱ) and cobalt(Ⅱ) with nucleic bases.Crystal structures of[M(H_2O)_6(1-Mecyt)_6][ClO_4]_2·H_2O,[Co(1-Mecyt)_4][ClO_4]_2 and [M(H_2O)_4(cyt)_2][ClO_4]_2·2cyt·2H_2O[M=Co~Ⅱ or Mn~Ⅱ;cyt=cytosine;1-Mecyt=1-methylcytosine].J.Chem.Soc.,Dalton Trans.,2000,10:1625-1629.
    [24]V.Andrushchenko,J.H.van de sande,H.Wieser.Vibrational Circular Dichroism and IR Absorption of DNA Complexes with Cu~(2+) Ions.Biopolymers,2003,72(5):374-390.
    [25]H.A.Tajmir-Riahi,M.Langlais,R.Savoie.A laser Raman spectroscopic study of the interaction of calf-thymus DNA with Cu(Ⅱ) and Pb(Ⅱ) ions:metal ion binding and DNA conformational changes.Nucleic Acids Res.,1988,16(2):751-762.
    [26]F.E.Russetto,E.J.Nieboer.The interaction of metal ions with synthetic DNA:induction of conformational and structural transitions.J Inorg Biochem.,1994,54(3):167-186.
    [27]H.A.Tajmir-Riahi,M.Naoui,R.Ahmad.The effects of Cu~(2+) and Pb~(2+) on the solution structure of calf thymus DNA:DNA condensation and denaturation studied by Fourier transform IR difference spectroscopy.Biopolymers,1993,33(12):1819-1827.
    [28]H.Arakawa,R.Ahmad,M.Naoui,H.A.Tajmir-Riahi.A Comparative Study of Calf Thymus DNA Binding to Cr(Ⅲ) and Cr(Ⅵ) Ions.J Biol Chem,275(14):10150-10153.
    [29]I.Smirnov,R.H.Shafer.Lead is unusually effective in sequence-specific folding of DNA.J.Mol.Biol.,2000,296:1-5.
    [30]S.Mansy,R.S.Tobias.Heavy metal-nucleotide reactions.Ⅳ.Nature of the reaction between mercury(Ⅱ) and uridine or thymidine.Vibrational spectroscopic studies on binding to N(3),C(4)=O,and C(5) of the uracil base.Inorg.Chem.,1975,14:287-291.
    [31]宋远志.对硝基苯酚与杂交中DNA的相互作用.中国公共卫生,2005,21,1:27-29.
    [32]蒋湘宁,刘淑芬,徐晓白.^32P后标记新法研究DNA-苯醌加合物.环境科学学报,1992,12(4):407-414.
    [33]刘淑芬,尹秀琴.用^32P后标记方法测定典型有毒污染物的DNA加合物.环境化学,1996,15(4):320-331.
    [34]D.L.D.Deforce,F.P.K.Ryniers,E.G.Van den Eeckhout.Analysis of DNA adducts in DNA hydrolysates by capillary zone electrophoresis and capillary zone electrophoresis-electrospray mass spectrometry.Analytical Chemistry,1996,68:3575-3584.
    [35]K.Ramanathan,K.Rogers.A fluorescence based assay for DNA damage induced by styrene oxide.Sensors and Actuators,2003,91:205-210.
    [36]邵华,李杰,师以康.苯乙烯-DNA加合特性的研究.中华劳动卫生职业病杂志,2002,20(5):347-349.
    [37]袭著革,戴树桂,孙咏梅.典型醛类污染物与细胞DNA分子的结合作用.环境科学,2001,22(1):19-21.
    [38]C.B.Wigley,R.F.Newbold,J.Amos,P.Brookes.Cell-mediated mutagenesis in cultured Chinese hamster cells by polycyclic hydrocarbons:mutagenicity and DNA reaction related to carcinogenicity in a series of compounds.Int J Cancer,1979,23(5):691-696.
    [39]柯惟中,余多慰,顾柏平,庄振武.乙酸对DNA空间结构微观损伤的Raman光谱特征.光谱学与光谱分析,2001,21(6):790-793.
    [40]袭著革,晁福寰,杨丹凤,孙咏梅,李官贤,张华山,张伟,杨玉花,刘焕亮.乙醛对脱氧核糖核酸分子的损伤作用.环境科学,2004,25(3):102-105.
    [41]马立波,石昕,牛淑妍,张书圣.溴化乙锭与DNA相互作用的电化学及紫外-可见光谱研究.青岛科技大学学报(自然科学版),2003,24(5):398-400.
    [42]张立金,闵顺耕,李国学,熊艳梅,孙英.克百威与DNA之间作用的光谱学研究.光谱学与光谱分析,2005,25(5):739-742.
    [43]倪永年,杜姗.异丙威及其水解产物对DNA潜在损伤作用的研究.农业环境科学学报,2006,3:619-622.
    [44]徐菲,韩巧君,徐伟刚,陶恒沂.高压氧对基因的毒性作用.中国职业医学,2005,32(5):58-59.
    [45]D.D.Zwart,W.Sloof.Toxicity of mixtures of heavy metals and petrochemicals to Xenopus laevis.Bull Environ Contam Toxicol,1987,38:345-351.
    [46]H.Diehl,J.Gating,D.Habermann.An experimental design for the simulation of combined-acting pollutants.Eeotoxicol Environ Saf.,1985,9(3):369-372.
    [47]何勇田,熊先哲.复合污染研究进展.环境科学,1994,15(6):79-83.
    [48]郑振华,周培疆.复合污染研究的新进展.应用生态学报,2001,12(3):469-473.
    [49]修瑞琴,许永香,高世荣,任改英,付迎春.砷与镉、锌离子对斑马鱼的联合毒性实验.中国环境科学,1998,18(4):349-352.
    [50]F.Ribeyre,C.Amiardtriquet,A.Boudou,J.C.Amiard.Experimental study of interactions between five trace elements-Cu,Ag,Se,Zn and Hg-toward their bioaccumulation by fish (Brachydanio rerio) from the direct route.Ecotoxicol Environ Safe,1995,32(1):1-11.
    [51]J.Willuhn,A.Otto,H.Koewius,F.Wunderlich.Subtoxic cadmium-concentrations reduce copper-toxicity in the earthworm Enchytraeus buchholzi.Chemosphere,1996,32(11):2205-2210.
    [52]吴燕玉,陈怀满.Cd,Pb,Cu,Zn,As复合污染在农田生态系统的迁移动态研究.环境科学学报,1998,18(4):407-412.
    [53]叶海波,林琴,陈建弟,颜海波,孙兴富.重金属复合污染的研究进展.台州学院学报,2005,27(6):64-69.
    [54]吴燕玉,王新,梁仁禄,吴铁铮.重金属复合污染对土壤-植物系统的生态效应Ⅰ.对作物、微生物、苜蓿、树木的影响.应用生态学报,1997,8(2):207-212.
    [55]S.A.Shehata,M.R.Lasheen,I.A.Kobbia.Toxic effect of certainmetals mixture on some physiological and morphological characteristics of freshwater algae.Water,Air and Soil Pollut.,1999,110(1/4):119-135.
    [56]陈志伟,李兴华,周华松.铜、镉单一及复合污染对蚯蚓的急性毒性效应.浙江农业学报,2007,19(1):20-24.
    [57]蔡玲玲,汪美贞,贾秀英.Cu~(2+)Cd~(2+)及其复合污染对中华大蟾蜍蝌蚪DNA的影响.农业环境科学学报,2007,26(4):1361-1364.
    [58]C.J.Moreau,P.L.Klerks,C.N.Haas.Interaction between phenanthrene and zinc in their toxicity to the sheepshead minnow(Cyprinodon variegaus).Environ Contain Toxicol,1999,37(2):251-257.
    [59]I.M.C.Lo,X.Y.Yang.EDTA extraction of heavy metals form different soil fractions and synthetic soils.Water,Air and Soil Pollut.,1999,109(1/4):219-236.
    [60]M.Sillanpaa,A.Oikari.Assessing the impact of complexation by EDTA and DTPA on heavy metal toxicity using Mirotox bioassay.Chemosphere,1996,32(8):148-1497.
    [61]马成仓,洪法水.EDTA对汞毒害下小麦种子萌发代谢的影响.农业环境保护,1996,15(3):134-135,133.
    [62]李清芳,马成仓.EDTA对汞毒害下玉米幼苗细胞膜损伤及体内保护系统变化的缓解作用.农业环境保护,1997,16(4):165-167.
    [63]M.A.M.Kedziorek,A.Dupuy,A.C.M.Bourg.Leaching of Cd and Pb from a polluted soil during the percolation of EDTA:laboratory column experiments modeled with a non-equilibrium solubilization step.Environ Sci Technol,1998,32(11):1609-1614.
    [64]Y.A.Grty,F.Cccavo,H.Bolton.Microbial reduction of cobalt III EDTA in the presence and absence of manganese(Ⅳ) oxide.Environ Sci Technol.,1998,32(2):244-250.
    [65]A.Kungolos,I.Aoyama,S.Muramoto.Toxicity of organic and in organic mercury to Saccharonyces cerevisiae.Ecotoxicol Environ Safe,1999,43(2):149-155.
    [66]杨春璐,孙铁珩,和文祥.汞和两种农药复合污染对土壤转化酶活性的影响.中国环境科学,2006,26(4):486-490.
    [67]胡著邦,汪海珍,吴建军,徐建民.镉与苄嘧磺隆除草剂单一污染和复合污染土壤的微生物生态效应.浙江大学学报(农业与生命科学版),2005,31(2):151-156.
    [68]吴庆钰,杨俊诚,张建峰,姜慧敏,侯彦楠.镉与苄嘧磺隆复合污染对水稻细胞、DNA 的毒害作用.农业环境科学学报,2007,26(6):2216-2220.
    [69]沈国清,陆贻通,周培.土壤环境中重金属和多环芳烃复合污染研究进展.上海交通大学学报(农业科学版),2005,23(1):102-106.
    [70]N.Irha,J.Slet,V.Petersell.Effect of heavy metals and PAH on soil assessed via dehydrogenase assay.Environ Int,2003,28(8):779-782.
    [71]沈国清,陆贻通,洪静波.重金属和多环芳烃复合污染对土壤酶活性的影响及定量表征.应用与环境生物学报,2005,11(4):479-482.
    [72]张永,廖柏寒,曾敏,罗承辉.表面活性剂LAS与重金属Cd复合污染对黄豆生长的影响.农业环境科学学报,2004,23(6):1070-1072.
    [73]罗立新,孙铁珩.Cd和表面活性剂复合污染对小麦叶片若干生理状性的影响.应用生态学报,1998,9(1):95-100.
    [74]朱辛强,黄幸抒,钱军程,方莹.两种农药联合毒性评价方法的比较.卫生毒理学杂志,1993,7(1):60-61.
    [75]张清敏,陈正雄,郭立,余海晨,戴树桂.涕灭威-十二烷基苯磺酸钠复合污染体系对茎线虫DNA的损伤与修复.农业环境科学学报,2003,22(1):97-101.
    [76]李阳,张清敏,戴树桂.涕灭威及其复合污染对斑马鱼胚胎DNA的影响.应用生态学报,2003,14(6):982-984.
    [77]张清敏,李得翔,熊瑛,戴树桂.涕灭威复合污染体系对土壤微生物的生态毒理效应.农业环境保护,2001,20(5):302-304.
    [78]董玉瑛,雷炳莉,张春宝,张凤杰.SDS与取代芳烃多元混合体系联合毒性作用研究.环境科学,2006,27(8):1643-1646.
    [79]董玉瑛,雷炳莉,鲍雅静.十二烷基硫酸钠与取代芳烃对发光菌的联合毒性作用.中南大学学报:自然科学版,2006,37(4):726-730.
    [80]苏丽敏,袁星.苯胺类二元混合物对发光菌和大型蚤联合毒性的比较研究.东北师大学报:自然科学版,2007,39(2):112-115.
    [81]林春,康立娟,苏丽敏.2,4-二硝基甲苯与硝基苯衍生物对发光菌的联合毒性.吉林大学学报:理学版,2002,40(4):419-422.
    [82]杨永滨,刘征涛,户志杰,赵兵,方征,王婉华.卤代酚复合污染对鲤科金鱼的生化毒性效应研究.环境科学研究,2007,20(2):1-4.
    [83]徐建,张平,穆洪,高敏苓.两种除草剂复合污染对蚯蚓的毒性效应.农业环境科学学报,2006,25(5):1188-1192.
    [84]张天宝.新药遗传毒性评价方法的研究现状和发展趋势.癌变.畸变.突变.,2002,14(4):243-246.
    [85]李欣,熊习昆.体外遗传毒性评价方法的新动向.华南预防医学,2007,33(6):38-42.
    [86]肖凯,李宏霞.遗传毒性试验方法应用现况与研究进展.现代预防医学,2004,31(4):524-526.
    [87]P.D.Josephy,P.Gruz,T.Nohmib.Recent advances in the construction of bacterial genotoxicity.Mut Res,1997,386:1-23.
    [88]A.Hakura,S.Suzuki,S.Sawada,T.Sugihara,Y.Hori,K.Uchida,W.D.Kerns,F.Sagami,S.Motooka,T.Satoh.Use of human liver S9 in the Ames test:assay of three procarcinogens using human S9 derived from multiple donors.Regulatory Toxicology and Pharmacology,2003,37(1):20-27.
    [89]A.Hakura,S.Suzuki,S.Sawada,S.Motooka,T.Satoh.An improvement of the Ames test using a modified human liver S9 preparation.Journal of Pharmacological and Toxicological Methods,2001,46:169-172.
    [90]L.Diamond,K.Cherian,R.G.Harvey,J.DiGiovanni.Mutagenic activity of methyl-and fluoro-substituted derivatives of polycyclic aromatic hydrocarbons in a human hepatoma (HepG2) cell-mediated assay.Mutat Res.,1984,136(1):65-72.
    [91]吕晓华,张立实,王瑞淑.体外微核试验方法研究进展.癌变·畸变·突变,1999,11(2):109-112.
    [92]杨颖.体外微核技术及其进展.国外医学卫生学分册,2007,34(2):80-83.
    [93]曹佳.微核试验.北京:军事医学科学出版社,2000:264-272.
    [94]D.J.Kirkland,L.Henderson,D.Marzin,L.M(u|¨)ler,J.M.Parry,G.Speit,D.J.Tweats,G.M.Williams.Testing strategies in mutagenicity and genetic toxicology:An appraisal of the guidelines of the European Scientific Committee for Cosmetics and Non-Food Products for the evaluation of hair dyes.Mut Res,2005,588(2):88-105.
    [95]E.Schmitt,L.Lehmann,M.Metzler,H.Stopper.Hormonal and genotoxic activity of resveratrol.Toxicol Lett,2002,136:133-142.
    [96]R.Thier,D.Bonacker,T.Stoiber,K.J.B(o|¨)hm,M.Wang,E.Unger,H.M.Bolt,G.Degen.Interaction of metal salts with cytoskeletal motor protein systems.Toxicol Lett,2003,140-141:75-81.
    [97]M.Hayashi,J.T.Macgregor,D.G.Gatehouse,I.-D.Adler,D.H.Blakey,S.D.Dertinger,G.Krishna,T.Morita,A.Russo,S.Sutou.In vivo rodent erythrocyte micronucleus assay.Ⅱ.Some aspects of protocol design including repeated treatments,integration with toxicity testing,and automated scoring.Environmental and molecular mutagenesis,2000,35:234-252.
    [98]I.Decordier,M.Kirsch-Volders.The in vitro micronucleus test:from past to future.Mut Res,2006,607(1):2-4.
    [99]余明泽,欧世萍,蒋中仁.微核试验的应用进展.预防医学情报杂志,2006,22(6): 705-707.
    [100]曹佳.微核自动化检测的研究进展和意义.卫生毒理学杂志,1993,7(3):183-187.
    [101]R.Moreira Rosa,K.Sulzbacher,P.J.Nascimento,R.Roesler,J.Saffi,M.Brendel,J.A.Pegas Henriques.Genotoxicity of diphenyl diselenide in bacteria and yeast.Mut Res,2004,563:107-115.
    [102]T.Bartos,S.Letzsch,M.Skarek,Z.Flegrova,P.Cupr,I.Holoubek.GFP assay as a sensitive eukaryotic screening model to detect toxic and genotoxic activity of azaarenes.Environ Toxicol,2006,21:343-348.
    [103]S.E.Critchlow,S.P.Jackson.DNA end-joining:from yeast to man.Trends Biochem.Sci.,1998,23:394-398.
    [104]柴局,刘淑英,张文广,李金泉,王惠梅,张海军,赵艳红.荧光原位杂交技术在染色体上应用的研究进展.畜牧与饲料科学,2008,1:53-56.
    [105]逄兵,倪祖尧.荧光原位杂交原理及其在染色体畸变研究中的应用.劳动医学,1997,14(1):52-56.
    [106]吴静.外来化合物常规毒理学检测的新终点及新方法.国外医学卫生学分册,2000,27(4):232-234.
    [107]任平,梁运霞,宋德花.基因芯片和荧光原位杂交技术在毒理学的应用.黑龙江畜牧兽医,2003,5:25.
    [108]G.Schriever-Schwemmmer,I.D.Adler.Differentiation of micronuclei in mouse bone marrow cells:a comparison between CREST staining and fluorescent in situ hybridization with centromeric and telomeric DNA probes.Mutagenesis,1994(9):333-340.
    [109]徐德祥,郑履康,邓丽霞.双色荧光原位杂交检测丙烯腈接触男工精子性染色体数目畸变.癌变·畸变·突变,1999,11(4):167-171.
    [110]呼庆,齐鸿雁,张洪勋.荧光原位杂交技术及其在微生物生态学中的应用.生态学报,2004,24(5):1048-1054.
    [111]刘瑛,温来欣.基因芯片技术在实验室中的应用.职业与健康,2008,24(14):1448-1450.
    [112]李自青,王军.基因芯片技术在肿瘤研究中的应用.实用医技杂志,2008,15(7):886-888.
    [113]张天宝.基因芯片及其在医学研究中的意义.第二军医大学学报,2000,21(1):91-94.
    [114]T.Hu,D.P.Gibson,G.J.Carr,S.M.Torontali,J.P.Tiesman,J.G.Chancy,M.J.Aardema.Identification of a gene expression profile that discriminates indirect-acting genotoxins from direct-acting genotoxins.Mutat Res,2004,549:5-27.
    [115]D.A.Dickinson,G.R.Warnes,G.Quievryn,J.Messer,A.Zhitkovich,E.Rubitski,J.Aubrecht.Diferentiation of DNA reactive and non-reactive genotoxie mechanisms using gene expression profile analysis.Mutat Res,2004,549:29-41.
    [116]J.M.Balbus.Ushering in the new toxicology:toxieogenomics and the public interest.Envimn Health Perspect,2005,113(7):818-822.
    [117]W.B.Mattes,S.D.Pettit,S.A.Sansone,P.R.Bushel,M.D.Waters.Database Development in Toxicogenomics:Issues and Efforts.Environmental Health Perspectives,2004,112:495-505.
    [118]R.K.Newton,M.Aardema,J.Aubrecht.The utility of DNA mieroarrays for characterizing genotoxicity.Environmental Health Perspectives,2004,112:420-422.
    [119]O.Ostling,K.J.Johanson.Microelect rophoretic study of radiation-induced DNA damages in individual mammalian cells.Biochem Biophys Res Commun,1984,123(1):291-298.
    [120]N.P.Singh,M.T.McCoy,R.R.Tice,E.L.Schneider.A simple technique for quantitation of low levels of DNA damage in individual cells.Exp Cell Res,1988,175(1):184-191.
    [121]宋博,郑履康.单细胞凝胶电泳技术的应用与进展.中国职业医学,2000,27(6):45-47.
    [122]袭著革,晁福寰,杨丹凤,孙咏梅,李官贤,张华山,张伟,杨玉花,刘焕亮.甲醛致核酸损伤作用的实验研究.环境科学学报,2004,24(4):719-722.
    [123]李达圣,Kanchisa Morimoto,Tatsuya Takeshita,吕玉泉.应用单细胞凝胶电泳比较研究砷对人类细胞DNA的损伤.中国地方病学杂志,2001,20(3):212-216.
    [124]D.Solpana,S.Duran,D.Saraydin,O.Guven.Adsorption of methyl violet in aqueous solutions by poly(acrylamide-co-acrylic acid) hydrogels.Radiation Physics and Chemistry,2003,66:117-127.
    [125]A.Mittal,V.Gajbe,J.Mittal.Removal and recovery of hazardous triphenylmethane dye,Methyl Violet through adsorption over granulated waste materials.Journal of Hazardous Materials,2008,150:364-375.
    [126]B.H.Hameed.Equilibrium and kinetic studies of methyl violet sorption by agricultural waste.Journal of Hazardous Materials,2008,154:204-212.
    [127]A.E.Ofomaja.Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia(Mansonia altissima) wood sawdust.Chem.Eng.J.,2008,143(1-3):85-95.
    [128]D.Ghosh,K.G.Bhattacharyya.Adsorption of methylene blue on kaolinite.Appl.Clay Sci.,2002,20:295-300.
    [129]R.C.Cutlip,W.S.Monlux.Experimental Crystal Violet and Methyl Violet Poisoning in Dogs and Cattle.Can J Comp Med Vet Sci.,1967,31:80-84.
    [130]N.A.Littlefield,B.N.Blackwell1,C.C.Hewitt,D.W.Gaylor.Chronic toxicity and carcinogenicity studies of gentian violet in mice.Fundamental and Applied Toxicology,1985,5(5):902-912.
    [131]A.K.Mittal,S.K.Gupta.Biosorption of cationic dyes by dead macro fungus Fomitopsis carnes:batch studies.Water Sci.Technol.,1996,34(10):81-87.
    [132]J.Li,S.Wang,X.Zhu.Pathological changes following retrograde infusion of methyl violet in the parotid gland of the miniature pig.Chinese Journal of Stomatology,1999,34(2):91-93.
    [133]K.Srzednicka-Chrzanowska.A case of eye injury caused by methyl violet.Klin Oczna,1958,28(2):165-168.
    [134]I.David.Action of ouabain and methyl violet on the work of the isolated frog heart.Arch Sci Biol(Bologna),1954,38(2):99-112.
    [135]K.Norrby,H.Mobacken.Effect of triphenylmethane dyes(brilliant green,crystal violet,methyl violet) on proliferation in human normal fibroblast-like and established epithelial-like cell lines.Acta Derm Venereol,1972,52(6):476-483.
    [136]B.Riedel,O.Bucher.The effect of methyl violet on the course of mitosis of cultured connective tissue cells.Anat Anz.,1966,118(5):444-451.
    [137]E.C.Long,J.K.Barton.On demonstrating DNA intercalation.Acc.Chem.Res.,1990,23(9):271-273.
    [138]M.Dourlent,C.Helene.A quantitative analysis of proflavine binding to polyadenylic acid,polyuridilic acid and transfer RNA.Eur.J.Biochem.,1971,23(1):86-95.
    [139]R.W.Armstrong,T.Kurucsev,U.P.Strauss.The interaction between acridine dyes and deoxyribonucleic acid.J.Am.Chem.Soc.,1970,92(10):3174-3181.
    [140]马婧,孟庆翔,任丽萍,张涛,牟豪杰.荧光探针技术研究阿特拉津与ct-DNA的相互作用.光谱学与光谱分析,2008,28(9):2122-2125.
    [141]M.Purcell,J.F.Neault,H.A.Tajmir-Riahi.Interaction of taxol with human serum albumin.Biochim Biophys Acta,2000,1478(1):61-68.
    [142]李山,沈春强,闫明娟.次甲基蓝褪色光度法测定脱氧核糖核酸.分析试验室,2005,24(6):36-38.
    [143]魏琴,李媛媛,杜斌,段彩虹,张慧.俾士麦棕与核酸相互作用的吸收光谱行为.分析化学,2005,33(9):1279-1282.
    [144]宋玉民,杨培菊,王流芳,杨美玲,康敬万.全反式维甲酸合钐(Ⅲ)配合物与DNA作用的研究.光子学报,2003,61(8):1266-1270.
    [145]N.Nikolis,C.Methenitis,G.Pneumatikakis.Studies on the interaction of altromycin B and its platinum(Ⅱ) and palladium(Ⅱ) metal complexes with calf thymus DNA and nucleotides.Journal of Inorganic Biochemistry,2003,95:177-193.
    [146]A.Bonincontro,S.Marchetti,G.Onori,A.Santucci.Complex formation between DNA and dodecyl-dimethyl-amine-oxide induced by pH.Chemical Physics Letters,2003,370:387-392.
    [147]S.Schafer,W.S.Sheldrick.Coligand tuning of the DNA binding properties of half-sandwich organometallic intercalators:Influence of polypyridyl(pp) and monodentate ligands(L=Cl,(NH_2)_2CS,(NMe_2)_2CS) on the intercalation of (η~5-pentamethylcyclopentadienyl)-iridium(Ⅲ)-dipyridoquinoxaline and -dipyridophenazine complexes.Journal of Organometallic Chemistry,2007,692:1300-1309.
    [148]王桂芬,李海南,李春哲,毕淑云.嗪草酮与脱氧核糖核酸相互作用的研究.分忻化学(FENXI HUAXUE)研究简报,2006,34(8):1165-1168.
    [149]陈业高,张燕.以DNA为作用靶追踪分离天然植物药活性成分.中国现代应用药学杂志,2002,19(1):1-3.
    [150]K.M.Gattas-Asfura,D.M.Naistat,R.M.Leblanc.Color change of toluidine blue induced by polyanionic quantum dots.Colloids and Surfaces A:Physicochem.Eng.Aspects.,2006,282-283:471-474.
    [151]H.K.Singh,M.Saquib,M.M.Haque,M.Muneer.Heterogeneous photocatalysed decolorization of two selected dye derivatives neutral red and toluidine blue in aqueous suspensions.Chemical Engineering Journal,2008,136:77-81.
    [152]S.K.Alpat,O.Ozbayrak,S.Alpat,H.Akcay.The adsorption kinetics and removal of cationic dye,Toluidine Blue O,from aqueous solution with Turkish zeolite.Journal of Hazardous Materials,2008,151:213-220.
    [153]A.J.Dunipacea,R.Beavena,T.Noblitta,Y.Lia,S.Zuntb,G.Stookeya.Mutagenic potential of toluidine blue evaluated in the Ames test.Mutation Research/Genetic Toxicology,1992,279(4):255-259.
    [154]van DUIJN C Jr.Toxic and photodynamic effects of toluidine blue on living bull spermatozoa.Experimental Cell Research,1962,26(2):373-381.
    [155]J.F.Tremblay,S.Dussault,G.Viau,F.Gad,M.Boushira,R.Bissonnette.Photodynamic therapy with toluidine blue in Jurkat cells:cytotoxicity,subcellular localization and apoptosis induction.Photochem Photobiol Sci.,2002,1(11):852-856.
    [156]P.G.Kr(u|¨)ger,B.Diamant,L.Scholander.Non-degranulating structural changes of rat mast cells induced by antigen and toluidine blue.Experimental Cell Research,1970,63(1):101-109.
    [157]L.M.Popa,Rodica Repanovici.The study of toluidine blue-ribosomal RNA complexes.Biochimica et Biophysica Acta(BBA),1969,182(1):158-168.
    [158]S.A.Lall,J.C.Wohlebb.Optical studies of the interaction of 33258 Hoechst with DNA,chromatin and metaphase chromosomes.Chromosoma(Berlin),1975,52:297-316.
    [159]C.Zimmer,U.Wahnert.Non-intercalating DNA binding ligands,specificity of their interaction and their use as tools in biophysical,biochemical and biological investigations of the genetic materials.Prog.Biophys.Mol.Biol.,1986,47(1):31-112.
    [160]郭良洽,叶芳贵,林旭聪,谢增鸿.甲苯胺蓝荧光猝灭法测定核酸.光谱学与光谱分析,2006,26(1):121-124.
    [161]陈国珍.荧光分析法(第二版).北京:科学出版社,1990:112-119.
    [162]W.Y.Li,J.G.Xu,X.W.He.Characterization of the Binding of Methylene Blue to DNA by Spectroscopic Methods.Analytical Letters,2000,33(12):2453-2464.
    [163]C.V.Kumar,E.H.Asuncion.DNA binding studies and site selective fluorescence sensitization of an anthryl probe.J.Am.Chem.Soc.,1993,115(19):8547-8553.
    [164]L.M.Popa,L.Bosch.Ribonucleic acid toluidine blue complexes studied by gel electrophoresis and spectrophotometry.Febs Letters,1969,4(3):143-146.
    [165]Q.Y.Chen,D.H.Li,Y.Zhao,H.H.Yang,Q.Z.Zhua,J.G.Xu.Interaction of a novel red-region fluorescent probe,Nile Blue,with DNA and its application to nucleic acids assay.Analyst,1999,124:901-906.
    [166]J.B.Chaires,N.Dattagupta,D.M.Crothers.Studies on Interaction of Anthracycline Antibiotics and Deoxyribonucleic Acid:Equilibrium Binding Studies on Interaction of Daunomycin with Deoxyribonucleic Acid.Biochemistry,1982,21:3933-3940.
    [167]杨培慧,苏章益,陈晓翔.EB荧光探针表征阿霉素及其转铁蛋白复合物与DNA的相互作用.药物分析杂志,2006,26(8):1124-1127.
    [168]I.M.Klotz,D.L.Hunston.Properties of Graphical Representations of Multiple Classes of Binding Sites.Biochemistry,1971,10(16):3065-3069.
    [169]杨源源,张志超,盛辉,刘凤玉,钱旭红,徐芹,张晶.一种苊并杂环有机小分子嵌入DNA的几何学模式研究.高等学校化学学报,2007,28(7):453-457.
    [170]S.Mahadevan,M.Palaniandavar.Spectral and Electrochemical Behavior of Copper(Ⅱ)-Phenanthrolines Bound to Calf Thymus DNA.[(5,6-dimethyl-OP)2Cu]~(2+)(5,6-dimethyl-OP=5,6-Dimethyl-1,10-phenanthroline) Induces a Conformational Transition from B to Z DNA.Inorg.Chem.,1998,37:3927-3934.
    [171]E.Tatrai,M.Brozik,M.Naray,Z.Adamis,G.Ungvary.Combined pulmonary toxicity of cadmium chloride and sodium diethyldithiocarbamate.J Appl Toxicol,2001,21(2):101-105.
    [172]S.A.Geras'kin,V.G.Dikarev,N.S.Dikareva.Effect of combined radioactive and chemical (heavy metals,herbicides) pollution on the yield of cytogenetic disruptions in the intercalary meristem of spring barley.Radiats Biol Radioecol,2002,42(4):369-383.
    [173]A.J.Lin,Y.G.Zhu,Y.P.Tong.Evaluation of genotoxicity of combined soil pollution by cadmium and imidacloprid.Science in China(Ser.C Life Sciences),2005,48(Supp Ⅰ):7-13.
    [174]B.P.Chattopadhyay,A.Mukherjee,K.Mukherjee,A.Roychowdhury.Exposure to vehicular pollution and assessment of respiratory function in urban inhabitants.Lung,2007,185(5):263-270.
    [175]M.Skarek,P.Cupr,T.Bartos,J.Kohoutek,J.Klanova,I.Holoubek.A combined approach to the evaluation of organic air pollution-a case study of urban air in Sarajevo and Tuzla (Bosnia and Herzegovina).Sci Total Environ,2007,384(1-3):182-193.
    [176]M.Skarek,J.Janosek,P.Cupr,J.Kohoutek,A.Novotna-Rychetska,I.Holoubek.Evaluation of genotoxic and non-genotoxic effects of organic air pollution using in vitro bioassays.Environ Int,2007,33(7):859-866.
    [177]刘红玉,廖柏寒,鲁双庆.表面活性剂、酸雨和Cd~(2+)复合污染对蚕豆胚根细胞核的毒性.应用生态学报,2004,15(3):493-496.
    [178]K.T.Kim,Y.G.Lee,S.D.Kim.Combined toxicity of copper and phenol derivatives to Daphnia magna:effect of complexation reaction.Environ Int,2006,32(4):487-492.
    [179]A.M.Saillenfait,F.Gallissot,J.P.Sabate,N.Bourges-Abella,R.Cadot,G.Morel,A.M.Lambert.Developmental toxicity of combined ethylbenzene and methylethylketone administered by inhalation to rats.Food Chem Toxicol,2006,44(8):1287-1298.
    [180]梁继东,周启星.甲胺磷、乙草胺和铜单一与复合污染对蚯蚓的毒性效应研究.应用生态学报,2003,14(4):593-596.
    [181]T.K.George,D.Waite,K.Liber,J.Sproull.Toxicity of a complex mixture of atmospherically transported pesticides to ceriodaphnia dubia.Environ Monit Assess,2003,85(3):309-326.
    [182]J.Zhu,Z.Y.Zhao,Y.T.Lu.Evaluation of genotoxicity of combined soil pollution by cadmium and phenanthrene on earthworm.J Environ Sci(China),2006,18(6):1210-1215.
    [183]M.Isik,D.T.Sponza.Fate and toxicity of azo dye metabolites under batch long-term anaerobic incubations.Enzyme and Microbial Technology,2007,40:934-939.
    [184]D.T.Sponza,Mustafa Isik.Toxicity and intermediates of C.I.Direct Red 28 dye through sequential anaerobic/aerobic treatment.Process Biochemistry,2005,40:2735-2744.
    [185]S.Meric,H.Selcuk,M.Gallo,V.Belgiorno.Decolourisation and detoxifying of Remazol Red dye and its mixture using Fenton's reagent.Desalination,2005,173:239-248.
    [186]A.Dhouib,N.Hamad,I.Hassa(i|¨)ri,S.Sayadi.Degradation of anionic surfactants by Citrobacter braakii.Process Biochemistry,2003,38:1245-1250.
    [187]A.Adak,M.Bandyopadhyay,A.Pal.Removal of anionic surfactant from wastewater by alumina a case study.Colloids and Surfaces A:Physicochem.Eng.Aspects,2005,254:165-171.
    [188]M.Gormley,D.P.Campbell.The effects of surfactant dosed water on solid transport in above ground near horizontal drainage systems.Building and Environment,2007,42:707-716.
    [189]B.Arechabala,C.Coiffard,P.Rivalland,L.J.Coiffard,Y.de Roeck-Holtzhauer.Comparison of cytotoxicity of various surfactants tested on normal human fibroblast cultures using the neutral red test,MTT assay and LDH release.J Appl Toxicol,1999,19(3):163-165.
    [190]M.A.Partearroyo,H.Ostolaza,F.M.Goni,E.Barbera-Guillem.Surfactant-induced cell toxicity and cell lysis.A study using B16 melanoma cells.Biochem Pharmacol,1990,40(6):1323-1328.
    [191]L.A.Gould,A.B.Lansley,M.B.Brown,B.Forbes,G.P.Martin.Mitigation of surfactant erythrocyte toxicity by egg phosphatidylcholine.J Pharm Pharmacol,2000,52(10):1203-1209.
    [192]R.T.Liu,J.H.Yang,X.Wu,H.Sui.Interaction of morin with CTMAB:aggregation and location in micellar.Spectrochimica Acta Part A,2001,57:2561-2566.
    [193]J.R.Mannekutla,B.G.Mulimani,S.R.Inamdar.Solvent effect on absorption and fluorescence spectra of coumarin laser dyes:Evaluation of ground and excited state dipole moments.Spectrochim.Acta Part A:Mol.Biomol.Spectrosc.,2008,69(2):419-426.
    [194]J.Griffiths.Colour and constitution of organic molecules.Academic Press Inc.(London)Ltd.,1976.
    [195]黄量,于德全.紫外光谱在有机化学中的应用(上册).北京:科学出版社,1988.
    [196]S.P.Liu,X.L.Hu,H.Q.Luo,L.Fan.The Rayliegh light scattering spectra characteristic of cationic surfactant with nucleic acid reaction and their analytical application.Science in China(Series B),2002,45(2):173-183.
    [197]R.T.Liu,J.H.Yang,X.Wu,C.X.Sun.Study on the Resonance Light Scattering Spectrum of Berberine-Cetyltrimethylammonium Bromide System and the Determination of Nucleic Acids at Nanogram Levels.Spectrochim.Acta,part A,2002,58(3):459-467.
    [198]R.Hosseinzadeh,R.Maleki,A.A.Matin,Y.Nikkhahi.Spectrophotometric study of anionic azo-dye light yellow(X6G) interaction with surfaetants and its micellar solubilization in cationic surfactant micelles.Spectrochim.Acta Part A:Mol.Biomol.Spectrosc.,2008,69(4):1183-1187.
    [199]R.T.Liu,J.H.Yang,X.Wu,Z.M.Li,F.Huang.Resonance Rayleigh Light-scattering of Thiamine Hydrochloride-nucleic acid-CTMAB systems and their analytical application.Journal of Trace and Microprobe Techniques,2002,20(3):363-376.
    [200]R.T.Liu,J.H.Yang,C.X.Sun,L.Li,X.Wu,Z.M.Li,C.S.Qi.Study of the interaction of nucleic acids with acridine orange-CTMAB and determination of nucleic acids at nanogram levels based on the enhancement of resonance light scattering. Chemical Physics Letters, 2003,376:108-115.
    [201] Y.F. Long, C.Z. Huanga. Spectral studies on the interaction of Amido black IOB with DNA in the presence of cetyltrimethylammonium bromide. Talanta, 2007, 71:1939-1943.
    [202] R.T. Liu, J.H. Yang, C.X. Sun, X. Wu, L. Li, B.Y. Su. Study on the interaction between nucleic acids and cationic surfactants. Colloids and surfaces B-Biointerfaces, 2004, 34(1): 59-63.
    [203] C. Cantor, P.R. Schimme. Biophysical Chemistry. San Francisco: W. H. Freeman, 1980,2: 398.
    [204] W.Y. Li, S.T. Zhu, X.W. He, H. Liang. Study on the Interaction Mechanism between Ge-132 and DNA by Spectral Methods. Acta Chimica Sinica. 2002,60(1): 105-108.
    [205] E.K. Efthimiadou, N. Katsaros, A. Karaliota, G Psomas. Mononuclear copper(II) complexes with quinolones and nitrogen-donor heterocyclic ligands: Synthesis, characterization, biological activity and interaction with DNA. Inorganica Chimica Acta, 2007, 360: 4093-4102.
    [206] L.D. Mello, R.M.S. Pereira, A.C.H.F. Sawaya, M.N. Eberlin, L.T. Kubota. Electrochemical and spectroscopic characterization of the interaction between DNA and Cu(II)-naringin complex. Journal of Pharmaceutical and Biomedical Analysis, 2007, 45: 706-713.
    [207] J.H. Zheng, X. Wu, M.Q. Wang, D.H. Ren, W. Xu, J.H. Yang. Study on the interaction between silver nanoparticles and nucleic acids in the presence of cetyltrimethylammonium bromide and its analytical application. Talanta, 2008, 74: 526-532.
    [208] V.I. Ivanov, L.E. Minchenkova, A.K. Schyolkina, A.I. Poletayev. Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers, 1973,12:89-110.
    [209] M.J. Tunis-Schneider, M.F. Maestre. Circular dichroism spectra of oriented and unoriented deoxyribonucleic acid films-A preliminary study. J. Mol. Biol., 1970, 52: 521-541.
    [210] J. Zhang, J. Yang, X.Q. Zhu. The Advancement of Environmental and Ecotoxicological Research of Nanomaterial. Asian Journal of Ecotoxicology. 2006, l(4):350-356
    [211] P.J. Borm, D. Robbins, S. Haubold, T. Kuhlbusch, H. Fissan, K. Donaldson, R. Schins, V. Stone, W. Kreyling, J. Lademann, J. Krutmann, D. Warheit, E. Oberdorster. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol., 2006, 3:11.
    [212] H. Tang, D. Wang, X. Ge. Environmental nano-pollutants (ENP) and aquatic micro-interfacial processes. Water Sci. Technol., 2004, 50(12): 103-109.
    [213] H.F. Wang, J. Wang, X.Y. Deng, H.F. Sun, Z.J. Shi, Z.N. Gu, Y.F. Liu, Y.L. Zhao. Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol., 2004,4(8):1019-1024.
    [214]刘岚,唐萌,刘璐,尹其华,王波,熊丽林,顾宁,马明,张宇.Fe_2O_3-Glu纳米颗粒在小鼠体内的代谢动力学研究.环境与职业医学,2006,23(1):1-3.
    [215]J.R.Gurr,A.S.Wang,C.H.Chenb,K.Y.Jan.Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells.Toxicology,2005,213:66-73.
    [216]L.Braydich-Stolle,S.Hussain,J.J.Schlager,M.C.Hofmann.In vitro cytotoxicity of nanoparticles in mammalian germline stem cells.Toxicol.Sci.,2005,88(2):412-419.
    [217]S.M.Hussain,K.L.Hess,J.M.Gearhart,K.T.Geiss,J.J.Schlager.In vitro toxicity of nanoparticles in BRL 3A rat liver cells.Toxicol.in Vitro,2005,19:975-983.
    [218]L.H.Ding,J.Stilwell,T.T.Zhang,O.Elboudwarej,H.J.Jiang,J.P.Selegue,P.A.Cooke,J.W.Gray,F.F.Chen.Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast.Nano Lett.,2005,5(12):2448-2464.
    [219]D.Schubert,R.Dargusch,J.Raitano,S.W.Chan.Cerium and yttrium oxide nanoparticles are neuroprotective.Biochem.Biophys.Res.Commun.,2006,342:86-91.
    [220]E.Bermudez,J.B.Mangum,B.A.Wong,B.Asgharian,P.M.Hext,D.B.Warheit,J.I.Everitt.Pulmonary responses of mice,rats,and hamsters to subchronic inhalation of ultrafine titanium dioxide particles.Toxicol.Sci.,2004,77(2):347-357.
    [221]C.W.Lam,J.T.James,R.McCluskey,R.L.Hunter.Pulmonary toxicity of single-wall carbon nanotubos in mice 7 and 90 day after intratracheal instillation.Toxicol.Sci.,2004,77:126-134.
    [222]N.Scholer,C.Olbrich,K.Tabatt,R.H.Muller,H.Hahn,O.Liesenfeld.Surfactant,but not the size of solid lipid nanoparticles(SLN) influences viability and cytokine production of macrophages.Int.J.Pharm.,2001,221:57-67.
    [223]W.Weyenberg,P.Filer,D.Van den Plas,J.Vandervoort,K.De Smet,P.Sollie,A.Ludwig.Cytotoxicity of submicron emulsions and solid lipid nanoparticles for dermal application.Int.J.Pharm.,2007,337:291-298.
    [224]E.Pereverzeva,I.Treschalin,D.Bodyagin,O.Maksimenko,J.Kreuter,S.Gelperina.Intravenous tolerance of a nanoparticle-based formulation of doxorubicin in healthy rats.Toxicol.Lett.,2008,178(1):9-19.
    [225]N.A.Monteiro-Riviere,A.O.Inman,Y.Y.Wang,R.J.Nemanich.Surfactant effects on carbon nanotube interactions with human keratinocytes.Nanomedicine,2005,1(4):293-299.
    [226]王悦辉,周济,石士考.纳米银对表面吸附荧光素的荧光增强和荧光猝灭效应及KC1 的荧光猝灭释放效应.无机化学学报,2006,22(9):1579-1584.
    [227]刘绍璞,周贤杰,孔玲,罗红群.银纳米微粒的光谱研究.西南师范大学学报(自然科学版),2005,30(4):690-694.
    [228]李延志,李少旦,黄明元,李庆,贺冬秀,薛金花,向艳,邓克勤,肖锡林,杜晓燕,郑晶.吖啶橙与ctDNA柑互作用机理的光谱法研究.光谱实验室,2008,25(2):139-142.
    [229]李延志,肖锡林,李强翔,薛金花,李庆.ctDNA与离子型表面活性剂相互作用的共振瑞利散射法研究.现代生物医学进展,2008,8(5):851-853.
    [230]刘绍璞,胡小莉,罗红群,范莉.阳离子表面活性剂与核酸反应的共振Rayleigh散射光谱特性及其分析应用.中国科学B辑,2001,32(1):18-26.
    [231]Z.Hu,C.L.Tong.Synchronous fluorescence determination of DNA based on the interaction between methylene blue and DNA.Anal.Chim.Acta,2007,587(2):187-193.
    [232]杨卓,刘绍璞.罗丹明6G与金纳米微粒相互作用的光谱特征.洛阳师范学院学报,2006,5:63-66.
    [233]W.E.Yuan,Z.L.Jiang,H.C.Pan,C.Y.Kang.Effect of Cation Surfactants on Absorption Spectra of Silver Nanoparticle in Liquid Phase.Spectrosc.Spect.Anal.,2005,25(6):920-922.
    [234]S.M.Nie,S.R.Emory.Probing Single Molecules and SingleNanoparticles by Surface-Enhanced Raman Scattering Science.Science,1997,275:1102-1106.
    [235]童裳伦,项光宏,黄迪金,刘维屏.表面活性剂敏化的铽离子荧光探针对氧氟沙星的测定.分析化学,2004,32(5):619-621.
    [236]R.T.Liu,J.H.Yang,X.Wu.Interaction of cetyl pyridine bromide with nucleic acids and determination of nucleic acids at nanogram levels based on the enhancement of resonance rayleigh light scattering.Spectrochim.Acta A,2002,58(9):1935-1942.
    [237]K.D.Kim,D.N.Han,H.T.Kim.Optimization of experimental conditions based on the Taguchi robust design for the formation of nano-sized silver particles by chemical reduction method.Chem.Eng.J.,2004,104:55-61.
    [238]季淑莉,司民真,苗润才.纳米银粒子的量子尺寸效应.光子学报,1999,28(1):93-95.
    [239]司民真,徐媛,武荣国,张鹏翔.正电性胶态纳米银中加入凝聚剂后的表面增强拉曼光谱.光谱学与光谱分析,2006,26(12):2251-2253.
    [240]C.L.Tong,G.H.Xiang.Sensitive Determination of Norfloxacin by the Fluorescence Probe of Terbium(Ⅲ)-Sodium Dodecylbenzene Sulfonate and Its Luminescence Mechanism.J.Fluoresc.,2006,16:831-837.
    [241]李来生,黄伟东,王丽苹,鄢远.表面活性剂中DNA构象变化的研究.化学学报,2002,60(1):98-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700