单个蛋白分子的测定及配体与受体在细胞表面结合和运动的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文第一章对单分子检测(SMD)的意义及常用的单分子检测技术作了简单介绍。SMD技术在生命科学上的应用可以在单分子水平上揭示分子的动态行为、动力学过程和机制,并发现大量分子集合体中分子个体的性质和行为。这一章中我们对在生物大分子SMD中应用较为广泛的技术:全内反射荧光显微术(TIRFM)的原理等进行了介绍。对TIRFM用于分子马达的运动、分子间相互作用、生物大分子的构象变化等离体生物单分子探测作了详细的综述。对TIRFM用于细胞信号转导、细胞趋化性、离子通道等在体生物单分子探测作了详细的综述。
     第二章中我们建立了一种新的、灵敏的全内反射荧光显微术(TIRFM)的基于蛋白与玻片之间达到吸附平衡的单分子检测(SMD)定量方法。在我们的工作之前文献中用TIRFM检测了罗丹明6G分子和罗丹明6G标记的DNA分子,检测限仅2.5×10~(-9)mol/L。我们用Alexa Fluor 488标记的羊抗鼠IgG(H+L)(Alexa Fluor 488 goat anti-rat IgG(H+L),IgG(H+L)-488)作为检测蛋白。首先将IgG(H+L)-488在盖玻片上孵育一定时间。IgG(H+L)-488在溶液和玻片之间达到吸附平衡后,使用安装有电子多级放大电感偶合器(electronmultiplying charge coupled device,EMCCD)的TIRFM拍摄IgG(H+L)-488的荧光图像。图像中荧光点的数目为隐失场中IgG(H+L)-488分子吸附在盖玻片上的数目和溶液中的数目的总和。当溶液的浓度在5.4×10~(11)~8.1×10~(-10)mol/L之间时,图像中荧光点的数目与溶液中的IgG(H+L)-488浓度有良好的线性关系。线性范围的下限比文献报道的低了46倍。此部分内容已发表在Anal.Chim.Acta杂志上。
     第三章中我们在单分子水平对转铁蛋白与细胞膜上的转铁蛋白受体介导的转运过程早期阶段进行了研究。转铁蛋白-转铁蛋白受体介导的转运过程是生物体细胞最具特点的转运过程之一。转铁蛋白-转铁蛋白受体介导的转运过程的早期阶段包括质膜上转铁蛋白与转铁蛋白受体复合物(TfR-Tf)的运动、聚集以及内涵体的形成等,这些现象曾用形态学、生物化学等方法进行研究,但大多将大量细胞溶解后通过直接测量放射性标记物或荧光标记物的强度进行判断。由于受大量细胞平均化检测方法的限制,无法动态观察这些过程。在本章中我们以单分子检测方法中灵敏度高、对样品损伤小的细胞内TIRFM为主要检测方式,对下列过程进行了实时动态的观察。
     1.实时动态观察了溶液中Tf-QD被质膜上TfR捕获的过程。
     2.在实时追踪质膜上TfR-Tf的聚集过程时,观察到了质膜上TfR-Tf通过扩散运动与质膜上另一个已形成的TfR-Tf复合体聚集的过程。
     3.在4℃下和37℃下通过观测荧光点的运动来分析细胞膜上的TfR-Tf复合物及其侧向运动,观测到人的胃癌细胞膜上的TfR在4℃和37℃时扩散的方式有自由扩散和受限扩散形式。并且通过荧光点的连续移动对应于照片中的像素坐标分别计算出了两个温度下TfR-Tf复合体的瞬时扩散系数。
     上述在单分子水平上的研究结果,目前均未见文献报道。
     在第四章中我们在α_1-肾上腺素受体的拮抗剂—药物小分子哌唑嗪(prazosin)和α_1-肾上腺素受体的激动剂—去氧肾上腺素(phenylephrine)键合上生物素(biotin)。利用生物素与链酶亲和素(streptavidin)之间极强的亲和力将链酶亲和素包被的量子点(QD-streptavidin)标记到哌唑嗪和去氧肾上腺素上,并用于观察此两药物小分子与活细胞表面α_(1A)-肾上腺素受体结合的情况。由于量子点独特的优良光学性质,近年来用量子点标记药物小分子及用于细胞成像已有报道。然而,他们利用多步化学键合反应将药物小分子连接到量子点上的方法存在反应产率低及分离提纯等问题。而且用这种方法很难控制连接到量子点上药物小分子的数目。另一种思路是首先将生物素连接到药物小分子(生物素化药物小分子),这些生物素化药物小分子然后与QD-streptavidin反应将生物素化药物小分子结合到量子点上。文献也报道了用这种思路将多巴胺转运蛋白的拮抗剂结合到量子点上,但未用于细胞的荧光成像。根据这种背景我们进行了下列的研究工作:
     1.用与文献完全不同的合成路线将生物素与药物小分子哌唑嗪和去氧肾上腺素键合在一起,再与QD-streptavidin反应将量子点标记到哌唑嗪和去氧肾上腺素。这种标记量子点的方法克服了文献中化学键合反应标记法存在的反应产率低及分离提纯等问题,而且还可以控制每个量子点上连接到量子点上药物小分子的数目,因为每个量子点上包被的链酶亲和素的量是一定的。由于QD-streptavidin已有商品,所以我们这种标记量子点的方法十分方便,有利于在生命科学的研究中应用。研究结果证明用这种方法标记量子点的哌唑嗪和去氧肾上腺素仍具有药理活性,可用于细胞的荧光成像。
     2.研究了去氧肾上腺素与生物素之间连接不同链长的化合物时去氧肾上腺素与细胞表面α_(1A)-肾上腺素受体结合的情况。发现在生物素与去氧肾上腺素之间的链越长,越易于与细胞表面α_(1A)-肾上腺素受体结合,反映了细胞表面受体-配体结合时可能存在空间位阻的影响。
     3.用标记量子点的哌唑嗪和去氧肾上腺素观察了哌唑嗪和去氧肾上腺素在表达α_(1A)-肾上腺素受体的HEK293A细胞表面与受体结合与定位的情况,并且用几种方法证明了哌唑嗪和去氧肾上腺素与α_(1A)-肾上腺素受体结合的特异性。还观测到了激动剂去氧肾上腺素和拮抗剂哌唑嗪与α_(1A)-肾上腺素受体结合作用的差异。
In chapter one,significance of single molecule detection(SMD)and techniques were reviewed briefly.These techniques were powerful tools for investigation of dynamics and kinetics of molecules.New information can be obtained from the single molecule research,which is otherwise hidden or averaged out.Single molecule detection is a technology of studying biomolecules with high spatial and temporal resolution.Fluorescence microscopy was rapidly expanding from single molecule detection techniques into all fields of cell and molecular biology.Total internal reflection fluorescence microscopy(TIRFM)was introduced.An intimate summary of their applications was also provided with single-molecule analysis in vitro and single-molecule analysis in vivo.
     In chapter two,we developed a sensitive single-molecule imaging method for quantification of protein by total internal reflection fluorescence microscopy(TIRFM) with adsorption equilibrium.Rhodamine 6G(RtG)and DNA molecules labeled by R6G had been detected by TIRFM in literature.The limit of detection(LOD)was only 2.5×10~(-9)mol/L.We choosed Alexa Fluor 488-labeled goat anti-rat IgG(H+L) (IgG(H+L)-488)as the model protein.First,the solution of IgG(H+L)-488 was incubated with a glass microscope coverslip for a certain time.In this case,the adsorption equilibrium of protein was achieved between the solution and the coverslip.Then,fluorescence images of protein molecules in an evanescent wave field were taken by a highly sensitive electron multiplying charge coupled device. Finally,the number of fluorescent spots corresponding to the protein molecules in the images was counted.The spot number showed an excellent linear relationship with protein concentration.The concentration linear range was 5.4×10~(-11)to 8.1×10~(-10) mol/L.The low end of the linear relationship was 46-fold lower than reported in literature.
     In chapter three,the total internal reflection fluorescence microscopy combined with Epi-FM was used to study the early events of Transferrin and Transferrin Receptor-mediated transcytosis in living cells at single molecule level.The early stages of Transferrin and Transferrin Receptor processes included moving, congregation and internalization of Transferrin-Transferrin Receptor complexes, which have already been studied by morphological methods and biochemical methods. But most researches made judgement by the direct measurement of radioactive marker or the stability of fluorescent labelling marker after a large number of cytolysis.Due to the limitation of equation measuring method,these processes could not be observed dynamically.We has carried out dynamic study on the early events of Transferrin and Transferrin Receptor-mediated transcytosis at single molecule level, and the moving and congregation of Transferrin and Transferrin Receptor complexes in the real time.And there were no reports about real time tracking until now.These early processes using single molecule fluorescence detection were as follow.
     1.The process that Transferrin-QD(Tf-QD)in the solution bound to its receptor (TfR)on the cell membrane to produce a complex(TfR-Tf)was visualized in real time.
     2.The lateral moving and the congregation of TfR-Tf complexes on the plasma membrane were traced at single molecule level.Then,the congregation of two TfR-Tf complexes happened.
     3.At the temperature of 4℃and 37℃,the analysis of TfR-Tf complexes and the lateral moving on the plasma membrane were observed through surveying the movement of fluorescence spots.On the previous condition,the suffused modes of TfR on living MGC832 cell were free diffusion mode and restricted diffusion mode. Consequently,the transient diffusion coefficients of TfR-Tf complexes were calculated respectively by pixel coordinates correspond to sequential movements of fluorescence spots in pictures.
     In chapter four,we report the incorporation of biotin onto small drug molecules, the antagonist prazosin,and the agonist phenylephrine,through a series of reactions. Prazosin and phenylephrine were respectively labeled with quantum dot (QD)-streptavidins through the strong affinity between biotin and streptavidin to observe the binding between small drug molecules andα_(1A)-AR.Because of the unique optical properties of QD,more and more studies have been reported now concerning such fluorescent QD-marked drug molecules and application in fluorescence imaging of cells.However,most of such processes included complicated modifications on drug molecules and therefore gave rise to the problems of yield and separation. Moreover,the attached amount of drug molecules to QD is difficult to control. Another method is to biotinylate small drug molecules and then to bind them to QD-streptavidin.Though there is now report that the antagonist of dopamine transporter can bind to QD in such way,application in fluorescence imaging on living cell has not been seen.Motivated by these considerations,we have performed investigations as follows:
     1.Using a novel synthetic clue,we have attached biotin to prazosin and phenylephrine molecules.Then,QD-streptavidins were introduced to bind prazosin and phenylephrine specifically and effectively.In such way,the problems of yield and separation usually met in covalent binding were avoided.Also,the amount of small molecules attached to QD became much controllable because the number of streptavidin coated on QD was invariable.Because QD-streptavidin is available commercially,it is convenient to apply to the life science studies.Obtained results indicated that the QD-labeled prazosin and phenylephrine molecules still had pharmacological activity.That is,QD-streptavidin could work effectively as fluorescent probe in imaging of living cell.
     2.Comparisons are made on the binding abilities respectively betweenα_(1A)-AR on the cell surface and four biotinylated phenylephrines with different chain lengths. It is found that the phenylephrine with longer chain between biotin and phenylephrine can bind toα_(1A)-AR on the cell surface more easily.Correspondingly,more fluorescent spots would appear under the same condition.This reflected the possible steric hindrance on the binding ability between acceptor on the cell surface and ligands.
     3.The phenylephrine-QD and prazosin-QD were used to observe their binding and anchoring status with the acceptor on the cell surface ofα_(1A)-AR HEK293A. Several methods have adopted to support the binding specificity of prazosin-QD and phenylephrine-QD toα_(1A)-AR respectively.Furthermore,we also observed the function difference when agonist-phenylephrine and antagonist-prazosin were respectively bound toα_(1A)-AR.
引文
1.汪尔康,陈义.生命分析化学.北京:科学出版社,2006,904.
    2.陈宜张,林其谁.生命科学中的单分子行为及细胞内实时检测.北京:科学出版社,2005,198-218.
    3.陈宜张,林其谁.生命科学中的单分子行为及细胞内实时检测.北京:科学出版社,2005,1-12.
    4.Hirschfeld,T.Appl.Opt.1976,15,2965-2966.
    5.Dickson R M,Norris D J,Tzeng Y L,Moerner W E,Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide)gels[J].Science,1996,274,966-968.
    6.Xu X,Yeung E S,Direct measurement of single-molecule diffusion and photodecomposition in free solution[J].Science,1997,275,1106-1109.
    7.Xu X,Yeung E S,Long-range electrostatic trapping of single-protein molecules at a liquid-solid interface[J].Science,1998,281,1650-1653.
    8.Ma Y,Shortreed M R,Yeung E S,High-throughput single-molecule spectroscopy in free solution[J].Anal Chem,2000,72,4640-4645.
    9.Kang S H,Yeung E S,Dynamics of single-protein molecules at a liquid/solid interface:Implications in capillary electrophoresis and chromatography[J].Anal Chem,2002,74,6334-6339.
    10.Li H,Yeung E S,Direct observation of anomalous single-molecule enzyme kinetics[J].Anal Chem,2005,77,4374-4377.
    11.Singh-Zocchi S,Dixt S,Ivanov V,Zocchi G,Single-molecule detection of DNA hybridization[J].Proc Natl Acad Sci USA,2003,100,7605-7610.
    12.Fang X,Tan W,Imaging single fluorescent molecules at the interface of an optical fiber probe by evanescent wave excitation[J].Anal Chem,1999,71,3101-3105.
    13.Kozuka J,Yokota H,Arai Y,Ishii Y,Yanagida T,Dynamic polymorphism of single actin molecules in the actin filament[J].Nat Chem Biol,2006,2,83-86.
    14.Nagamatsu S,Ohara-Imalzumi M,Imaging exocytosis of single insulin secretory granules with TIRF microscopy[J].Methods Mol Biol,2008,440,259-268.
    15.Fan Z L,Jin W R,A method for visualization of biomolecules labeled by a single quantum dot in living cells by a combination of total internal reflection fluorescence microscopy and intracellular fluorescence microscopy[J].Talanta,2007,72,1114-1122.
    16.王琛,王桂英,徐至展,全内反射荧光显微术[J].物理学进展,2002,22,406-415.
    17.Soper S A,Shera E B,Martin J C,Jett J H,Hahn J H,Nutter H L,Keller R A,Single-molecule detection of Rhodamine 6G in ethanolic solutions using continuous wave laser excitation[J].Anal Chem,1991,63,432-437.
    18.Weiss S,Fluorescence spectroscopy of single biomolecules[J].Science,1999,283,1676-1683.
    19.Michaelis J,Hettich C,Mlynek J,Sandoghdar V V,Optical microscopy using a single-molecule light source[J].Nature,2000,405,325-328.
    20.Funatsu T,Harada Y,Tokunaga M,Saito K,Yanagida T,Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution[J].Nature,1995,374,555-559.
    21.Axelrod D,Total internal reflection fluorescence microscopy in cell biology[J].Traffic 2001,2,764-774.
    22.Kawano Y,Enders R G,Total internal reflection fluorescence microscopy[J].Appl Note,1999,11,28-30.
    23.Tokunaga M,Kiwamu K S,Saito K,Iwane A H,Yanagida T,Single molecule imaging of fluorophores and enzymatic reactions achived by objective-type total internal reflection fluorescence microscopy[J].Biochem Biophys Res Commun,1997,235,47-53.
    24.Toomre D,Manstein D J,Lighting up the cell surface with evanescent wave microscopy[J].Trends Cell Biol,2001,11,298-303.
    25.Mathur A B,Truskey G A,Reichert W M,Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells[J].Biophy J,2000,78,1725-1735.
    26.Sako Y,Hibino K,Miyauchi T,Miyamoto Y,Ueda M,Yanagida T,Single-molecule imaging of signalling molecules in living cells[J].Single Mol,2000,1,159-163.
    27.Ishijima A,Yanagida T,Single molecule nanobioscience[J].Trends Biochem Sci,2001,26,438-444.
    28.Mehta A D,Rief M,Spudich J A,Smith D A,Simmons R M,Single-molecule biomechanics with optical methods[J].Science,1999,283,1689-1695.
    29.Ishii Y,Yanagida T,Single molecule detection in life science[J].Single Mol,2000,1,5-16.
    30.Seisenberger,G.;Ried,M.U.;Endress,T.;Buning,H.;Hallek,M.;Brauchle,C.,Real-time single-molecule imaging of the infection pathway of an adeno-associated virus[J].Science 2001,294,(5548),1929-1932.
    31.Harms,G.S.;Cognet,L.;Lommerse,P.H.;Blab,G.A.;Kahr,H.;Gamsjager,R.;Spaink,H.P.;Soldatov,N.M.;Romanin,C.;Schmidt,T.,Single-molecule imaging of 1-type Ca(2+)channels in live cells[J].Biophys.J.2001,81,(5),2639-2646.
    32.Vrljic,M.;Nishimura,S.Y.;Brasselet,S.;Moerner,W.E.;McConnell,H.M.,Translational diffusion of individual class Ⅱ MHC membrane proteins in cells[J].Biophys.J.2002,83,(5),2681-2692.
    33.Dickson R M,Norris D J,Tzeng Y L,Moerner W E,Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide)gels[J].Science,1996,274,966-969.
    34.Moerner W E,Orrit M,Illuminating single molecules in condensed matter[J].Science,1999,283,1670-1676.
    35.Kitamura K,Tokunaga M,Iwane A H,Yanagida T,A single myosin head moves along an actin filament with regular steps of 5.3 nanometres[J].Nature,1999,397,129-134.
    36.Ronald D V,Takashi F,Daniel W P,Laura R,Yoshie H,Toshio Y,Direct observation of single kinesin molecules moving along microtubules[J].Nature,1996,380,451-453.
    37.Okada Y,Hirokawa N,A processive single-headed motor:kinesin superfamily protein KIF1A[J].Science,1999,283,1152-1157.
    38.Harada Y,Funatsu T,Murakami K,Nonoyama Y,Ishihama A,Yanagida T,Single-molecule imaging of RNA polymerase-DNA interactions in real time[J].Biophys J,1999,76,709-715.
    39.Sakamoto T,Amitani I,Yokota E,Ando T,Direct observation of processive movement by individual myosin V molecules[J].Biochem Biophys Res Commun,2000,272,586-590.
    40.Inoue Y,lwane A H,Miyai T,Muto E,Yanagida T,Motility of single one-headed kinesin molecules along microtubules[J].Biophys J,2001,81,2838-2850.
    41.Nishikawa S,Homma K,Komori Y,Iwaki M,Wazawa T,Iwone A H,Salto J,Ikebe R,Katayama E,Yanagida T,Ikebe M,Class Ⅵ myosin moves processively long actin filaments backward with large steps[J].Biochem Biophys Res Commun,2002,290,311-317.
    42.Seitz A,Surrey T,Processive movement of single kinesins on crowded microtubules visualized using quantum dots[J].EMBO J,2006,25,267-277.
    43.Yamaguchi J,Nemoto N,Sasaki T,Tokumasu A,Mimod-Kiyosue Y,Yagi T,Funatsu T,Rapid functional analysis of protein-protein interaction by fluorescent C-terminal labeling and single-molecule imaging[J].FEBS,2001,502,79-83.
    44.Yasuda R,Noji H,Kinosita J K,Yoshida M,F1-ATPase is a highly efficient molecular motor that rotates with discrete 120° steps[J].Cell,1998,93,1117-1124.
    45.Williams D H,Cox J P L,Doig A J,Gardner M,Gerhard U,Kaye P T,Lal A R,Nicholls I A,Salter C J,Mitchell R C,Toward the semiquantitative estimation of binding constants.Guides for peptide-peptide binding in aqueous solution[J].J Am Chem Soc,1991,113,7020-7030.
    46.Whitcombe M J,Martin L,Vulfson E N,Predicting the selectivity of imprinted polymers[J].Chromatographia,1998,47,457-464.
    47.Yamasaki R,Hoshino M,Wazawa T,Ishii Y,Yanagida T,Kawata Y,Higurashi T,Sakai K,Nagai J,Goto Y,Single molecular observation of the interaction of GroEL with substrate proteins[J].J Mol Biol,1999,292,965-972.
    48.Kaseda K,Yokota H,Ishii Y,Yanagida T,Inoue T,Fukui K,Kodama T,Single-molecule imaging of interaction between dextran and glucosyltransferase from Streptococcus sobrinus[J].J Bact,2000,182,1162-1166.
    49.Yokota H,Kaseda K,Matsuura H,Arai Y,Iwane A,Ishii Y,Kodama T,Yanagida T,Single-molecule imaging of the dynamic interactions between macromolecules [J].J Nanosci Nanotechnol,2004,4,616-621.
    50.Zhuang X W,Kim H,Pereira M J B,Babcock H P,Walter N G,Chu S,Correlating structural dynamics and function in single ribozyme molecules[J].Science,2002,296,1473-1476.
    51.Yao G,Fang X H,Yokota H,Yanagida T,Tan W H,Monitoring molecular beacon DNA probe hybridization at the single-molecule level[J].Chem-Eur J, 2003,9,5686-5692.
    52.Zhuang X W,Bertley L E,Babcock H P,Russell R,Ha T,Herschlag D,Chu S,A single-molecule study of RNA catalysis and folding[J].Science,2000,288,2048-2051.
    53.Ishii Y,Yoshida T,Funatsu T,Wazawa T,Yanagida T,Fluorescence resonance energy transfer between single fluorophores attached to a coiled-coil protein in aqueous solution[J].Chem.Phys,1999,247,163-173.
    54.Wazawa T,Ishii Y,Funatsu T,Yanagida T,Spectral fluctuation of a single fluorophore conjugated to a protein molecule[J].Biophys J,2000,78,1561-1569.
    55.Li H W,Yeung E S,Single-molecule dynamics of conformational changes in Flavin Adenine Dinucleotide[J].J Photochem Photobiol A-Chem,2005,172,73-79.
    56.Hashimoto F,Tsukahara S,Watarai H,Lateral diffusion dynamics for single molecules of fluorescent cyanine dye at the free and surfactant-modified dodecane-water interface[J].Langmuir,2003,19,4197-4204.
    57.Gai H W,Wang Q,Ma Y F,Lin B C,Correlations between molecular numbers and molecular masses in an evanescent field and their applications in probing molecular interactions[J].Angew Chem Int Ed,2005,44,5107-5110.
    58.Sako Y,Uyemura T,Total internal reflectionfluorescence microscopy for single-molecule imaging in living cells[J].Cell Struct Funct,2002,27,357-365.
    59.Sako Y,Shigeru M,Toshio Y,Single-molecule imaging of EGFR signaling on the surface of living cells[J].Nat Cell Biol,2000,2,168-172.
    60.Schutz G J,Gerald K,Pastuchenko V P,Schindler H,Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy[J].EMBO J,2000,19,892-901.
    61.Jamora C,Damanuj R,Kocieniewski P,Fuchs E,Links between signal transduction,transcription and adhesion in epithelial bud development[J].Nature,2003,422,317-326.
    62.Jin T,Zhang N,Long Y,Parent C A,Devreotes P N,Localization of the protein βγ complex in living cells during chemotaxis[J].Science,2000,287,1034-1036.
    63.Ueda M,Sako Y,Tanaka T,Devreotes P,Yanagida T,Single-molecule analysis of chemotactic signaling in dictyostelium cells[J].Science,2001,294,864-867.
    64.Ide T,Yanagida T,An artificial lipid bilayer formed on an agarose-coated glass for simultaneous electrical and optical measurement of single ion channels[J].Biochem Biophys Res Commun,1999,265,595-599.
    65.Ide T,Takeuchi Y,Aoki T,Yanagida T,Simultaneous optical and electrical recording of a single ion-channel[J].Jpn J Physiol,2002,52,429-434.
    66.Ide T,Takeuchi Y,Yanagida T,Development of an experimental apparatus for simultaneous observation of optical and electrical signals from single ion channels [J].Single Mol,2002,3,33-42.
    67.Demuro A,Parker I,Imaging the activity and localization of single voltage-gated Ca~(2+)channels by total internal reflection fluorescence microscopy[J].Biophys J,2004,86,3250-3259
    68.Demuro A,Parker I,Imaging single-channel calcium microdomains by total internal reflection microscopy,[J].Biol Res,2004,37,675-679.
    69.Demuro A,Parker I,Optical single-channel recording:imaging Ca~(2+)flux through individual ion channels with high temporal and spatial resolution[J].J Biomed Op t,2005,10,011002-001008.
    70.Schmoranzer J,Goulian M,Axelrod D,Simon S M,Imaging constitutive exocytosis with total internal reflection fluorescence microscopy[J].J Cell Biol,2000,149,23-31.
    71.Toomre D,Steyer J A,keller P,Almers W,Simons K,Fusion of constitutive membrane traffic with the cell surface observed by evanescent wave microscopy [J].J Cell Biol,2000,149,33-40.
    72.Iino R,Koyama I,Kusumi A,Single molecule imaging of green fluorescent proteins in living cells:Ecadherin forms oligomers on the free cell surface[J].Biophys J,2001,80,2667-2677.
    73.Xu X N,Brownlow W,Huang S,Chen J,Single-molecule detection of efflux pump machinery in pseudomonas aeruginosa[J].Biochem Biophys Res Commun,2003,305,79-86.
    74.Wormald S,Zhang J G,Krebs D L,Mielke L A,Silver J,Alexander W S,Speed T P,Nicola N A,Hilton D J,The comparative roles of suppressor of cytokine signaling-1 and -3 in the inhibition and desensitization of cytokine signaling[J].J Biol Chem,2006,281,11135-11143.
    75.Musselmann K,Alexandrou B,Kane B,Hassell J R,Maintenance of the keratocyte phenotype during cell proliferation stimulated by insulin[J].J Biol Chem,2005,280,32634-32639.
    76.Alexa Fluor Dyes--simply the best and brightest fluorescence dyes and conjugates.Molecular probes Co.www.probes.com.
    77.Patterson G H,Lippincott-Schwartz J,A photoactivatable GFP for selective photolabeling of proteins and cells[J].Science,2002,297,1873-1877.
    78.苑晓玲,从玉文,陈家佩,绿色荧光蛋白的特性及其在信号转导中的应用[J].生命的科学,2001,21,445-449.
    79.金 鹰,绿荧光蛋白(GFP)研究进展[J].激光生物学报,1999,8,228-234.
    80.Lippincott-Schwartz J,Patterson G H,Development and use of fluorescence protein markers in living cells[J].Science,2003,300,87-91.
    81.阮康成,量子点荧光光谱学与生命科学[J].生命科学,2003,15,85-87.
    82.Rosenthal S J,Bar-coding biomolecules with fluorescent nanocrystals[J].Nat Biotechnol,2001,19,621-622.
    83.Bawendi M G,Steigerwald M L,Brus L E,The quantum mechanics of large semiconductor clusters(quantum dots)[J].Annu Rev Phys Chem,1990,41,477-496.
    84.孙宝全,徐咏蓝,衣光舜,陈德朴,半导体纳米晶体的光致发光特性及在生物材料荧光标记中的应用[J].分析化学,2002,30,1130-1136.
    85.GAO X H,NIE S M.Molecular profiling of single cells and tissue specimens with quantum dot[J].Trends Biotechnol,2003,21,371-373.
    86.Leatherdale C A,Woo W K,Mikulec F V,Bawendi M G,On the absorption cross section of CdSe nanocrystal quantum dots[J].Phys Chem B,2002,106, 7619-7622.
    87.Dubertret B,Skourides P,Norris D J,Noireaux V,Bdvanlou A H,Libchaber A,In vivo imaging of quantum dots encapsulated in phospholipid micells[J].Science,2003,298,1759-1762.
    88.Colvin V L,Kulinowski K M,Nanoparticles as catalysts for protein fibrillation[J].Proc Natl Acad Sci USA,2007,104,8679-8680.
    89.Courty S,Luccardini C,Bellaiche Y,Cappello G,Dahan M,Tracking individual kinesin motors in living cells using single quantum-dot imaging[J].Nano Lett,2006,6,1491-1495.
    90.Garon E B,Marcu L,Luong Q,Tchemiantchouk O,Crooks G M,Koeffler H P,Quantum dot labeling and tracking of human leukemic,bone marrow and cord blood cells[J].Leuk Res,2007,31,643-651.
    91.Kampani K,Quann K,Ahuja J,Wigdahl B,Khan Z K,Jain P,A novel high throughput quantum dot-based fluorescence assay for quantitation of virus binding and attachment[J].J Virol Methods,2007,141,125-132.
    92.Kaul Z,Yaguchi T,Harada J I,Ikeda Y,Hirano T,Chiura H X,Kaul S C,Wadhwa R,An antibody-conjugated internalizing quantum dot suitable for long-term live imaging of cells[J].Biochem Cell Biol,2007,85,133-140.
    1.Zarrin F,Dovichi N J,Sub-picoliter detection with the sheath flow cuvette[J].Anal Chem,1985,57,2690-2692.
    2.Nguyen D C,Keller R A,Jett J H,Martin J C,Detection of single molecules of phycoerythrin in hydrodynamically focused flows by laser-induced fluorescence [J].Anal Chem,1987,59,2158-2161.
    3.Peck K,Stryer L,Glazer A N,Mathies R A,Single-molecule fluorescence detection:autocorrelation criterion and experimental realization with phycoerythrin[J].Proc Natl Acad Sci USA,1989,86,4087-4091.
    4.Soper SA,Davis LM,Shera EB,J.Opt.Soc.Am B 1992,9,1761-1769.
    5.Soper S A,Mattingly Q L,Vegunta P,Photon burst detection of single near-infrared fluorescent molecules[J].Anal Chem,1993,65,740-747.
    6.Rauer B,Neumann E,Widengren J,Rigler R,Fluorescence correlation spectrometry of the interaction kinetics of tetramethylrhodamin α-bungarotoxin with Torpedo californica acetylcholine recepto[J].Biophys Chem,1996,58,3-12.
    7.Gai H W,Wang Q,Ma Y F,Lin B C,Correlations between Molecular Numbers and Molecular Masses in an Evanescent Field and Their Applications in Probing Molecular Interactions[J].Angew Chem Int Ed,2005,44,5107-5110.
    8.Castro A,Williams JGK,Single-molecule detection of specific nucleic acid sequences in unamplified genomic DNA[J].Anal Chem,1997,69,3915-3920.
    9.Van Orden A,Machara N P,Goodwin P M,Keller R A,Single molecule identification in flowing sample streams by fluorescence burst size and intraburst fluorescence decay rate[J].Anal Chem,1998,70,1444-1451.
    10.Castro A,Okinaka R T,Ultrasensitive,direct detection of a specific DNA sequence of Bacillus anthracis in solution[J].Analyst,2000,125,9-11.
    11.Barnes M D,Ng K C,Whitten W B,Ramsey J M,Detection of single rhodamine-6G molecules in levitated microdroplets[J].Anal Chem,1993,65,2360-2365.
    12.Lermer N,Barnes M D,Kung C,Whitten W B,Ramsey J M,High efficiency molecular counting in solution:Single-molecule detection in electrodynamically focused microdroplet streams[J].Anal Chem,1997,69,2115-2121.
    13.Kung C,Barnes M D,Lermer N,Whitten W B,Ramsey J M,Confinement and manipulation of individual molecules in attoliter volumes[J].Anal Chem,1998,70,658-661.
    13.Xue Q,Yeung ES,Differences in the chemical-reactivity of individual molecules of an enzyme[J].Nature,1995,373,681-683.
    14.Graig D B,Arriag E A,Wong J C Y,Lu H,Dovichi N J,Studies on single alkaline phosphatase molecules:reaction rate and activation energy of a reaction catalyzed by a single molecule and the effect of thermal denaturation-the death of an enzyme[J].J Am Chem Soc,1996,118,5245-5253.
    15.Chen D,Dovichi N J,Single-molecule detection in capillary electrophoresis:Molecular shot noise as a fundamental limit to chemical analysis[J].Anal Chem,1996,68,690-696.
    16.Firster Ⅲ J C,Jacobson S C,Davis L M,Ramsey J M,Counting single chromophore molecules for ultrasensitive analysis and separations on microchip devices[J].Anal Chem,1998,70,431-437.
    17.Chou H,Spence C,Scherer A,Quake S,A microfabricated device for sizing and sorting DNA molecules[J].Proc Natl Acad Sci USA,1999,96,11-13.
    18.Polakowski R,Craig D B,Skelley A,Dovichi N J,Single molecules of highly purified bacterial alkaline phosphatase have identical activity[J].J Am Chem Soc,2000,122,4853-4855.
    19.Lagally E T,Medintz L,Mathies R A,Single-molecule DNA amplification and analysis in an integrated microfluidic device[J].Anal Chem,2001,73,565-570.
    20.Li H,Xue G,Yeung E S,Selective detection of individual DNA molecules by capillary polymerase chain reaction[J].Anal Chem,2001,73,1537-1543.
    21.Zheng J,Yeung E S,Anomalous radial migration of single DNA molecules in capillary electrophoresis[J].Anal Chem,2002,74,4536-4547.
    22.Anazawa T,Matsunaga H,Yeung E S,Electrophoretic quantitation of nucleic acids without amplification by single-molecule imaging[J].Anal Chem,2002,74,5033-5038.
    23.Eigen M,Rigler R,Sorting single molecules-application to diagnostics and evolutionary biotechnology[J].Proc Natl Acad Sci USA,1994,91,5740-5747.
    24.Edman L,Mets U,Rigler R,Conformational transitions monitored for single molecules in solution[J].Proc Natl Acad Sci USA,1996,93,6710-6715.
    25.Nie S,Chiu D T,Zare R N,Probing individual molecules with confocal fluorescence microscopy[J].Science,1994,266,1018-1021.
    26.Lyon W A,Nie S,Confinement and detection of single molecules in submicrometer channels[J].Anal Chem,1997,69,3400-3405.
    28.Haab B B,Mathies R A,Single-molecule detection of DNA separations in microfabricated capillary electrophoresis chips employing focused molecular streams[J].Anal Chem,1999,71,5137-5145.
    29.Weston K D,Dyck M,Tinnefeld P,Muller C,Herten D P,Sauer M,Measuring the number of independent emitters in single-molecule fluorescence images and trajectories using coincident photons[J].Anal Chem,2002,74,5342-5349.
    30.Byassee T A,Chan WCW,Nie S,Probing single molecules in single living cells [J].Anal Chem,2000,72,5606-5611.
    31.Prummer M,Sick B,Renn A,Wild U P,Multiparameter microscopy and spectroscopy for single-molecule analytics[J].Anal Chem,2004,76,1633-1640.
    32.Li H,Zhou D,Browne H,Balasubramanian S,Klenerman D,Molecule by molecule direct and quantitative counting of antibody-protein complexes in solution[J].Anal Chem,2004,76,4446-4451.
    33.Sun B,Chiu D T,Determination of the encapsulation efficiency of individual vesicles using single-vesicle photolysis and confocal single-molecule detection[J].Anal Chem,2005,77,2770-2776.
    34.Tan W,Yeung E S,Monitoring the reactions of single enzyme molecules and single metal ions[J].Anal Chem,1997,69,4242-4248.
    35.Hirschfeld,T.Appl.Opt.1976,15,2965-2966.
    36.Dickson R M,Norris D J,Tzeng Y L,Moerner W E,Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide)gels[J].Science,1996,274,966-969.
    37.Xu X,Yeung E S,Direct measurement of single-molecule diffusion and photodecomposition in free solution[J].Science,1997,275,1106-1109.
    38.Xu X,Yeung E S,Long-range electrostatic trapping of single-protein molecules at a liquid-solid interface[J].Science,1998,281,1650-1653.
    39.Ma Y,Shortreed M R,Yeung E S,High-throughput single-molecule spectroscopy in free solution[J].Anal Chem,2000,72,4640-4645.
    40.Kang S H,Yeung E S,Dynamics of single-protein molecules at a liquid/solid interface:Implications in capillary electrophoresis and chromatography[J].Anal Chem,2002,74,6334-6339.
    41.Li H,Yeung E S,Direct observation of anomalous single-molecule enzyme kinetics[J].Anal Chem,2005,77,4374-4377.
    42.Singh-Zocchi S,Dixt S,Ivanov V,Zocchi G,Single-molecule detection of DNA hybridization[J].Proc Natl Acad Sci USA,2003,100,7605-7610.
    43.Fang X,Tan W,Imaging single fluorescent molecules at the interface of an optical fiber probe by evanescent wave excitation[J].Anal Chem,1999,71,3101-3105.
    44.Schultz S,Smith D R,Mock J J,Schultz D A,Single-target molecule detection with nonbleaching multicolor optical immunolabels[J].Proc Natl Acad Sci USA,2000,97,996-1001.
    45.Kang S H,Lee S,Yeung E S,Direct observation of single native DNA molecules in a microchannel by differential interference contrast microscopy[J].Anal Chem,2004,76,4459-4464.
    46.Fan F F,Bard A J,Electrochemical detection of single molecules[J].Science,1995,267,871-874.
    47.Fan F F,Kwak J,Bard A J,Single molecule electrochemistry[J].J Am Chem Soc,1996,118,9669-9675.
    48.Tokunaga M,Kitamura K,Saito K,Iwane A H,Yanagida T,Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy[J].Biochem Biophys Res Commun,1997,235,47-53.
    49.Toomre D,Manstein D J,Lighting up the cell surface with evanescent wave microscopy[J].Trends Cell Biol,2001,11,298-303.
    50.Hanley,D.C,Harris,J.M,Quantitative dosing of surfaces with fluorescent molecules:characterization of fractional monolayer coverages by counting single molecules[J].Anal Chem,2001,73,5030-5037.
    51.Lee,Y.H,Maus,R.G,Smith,B,W.Winefordner,J.D,Laser-Induced Fluorescence Detection Of A Single-Molecule In A Capillary[J].Anal Chem,1994, 66,4142-4149.
    52.Sako Y,Uyemura T,Total internal reflectionfluorescence microscopy for single-molecule imaging in living cells[J].Cell Struct Funct,2002,27,357-365.
    1.Qian Z M,Tang P L,Wang Q,Iron crosses the endosomal membrane by a carrier-mediated process[J].Prog Biophys Mol Biol,1997,67,1-15.
    2.Alberts.Molecular biology of the cell[M].Garland publishing,N Y,1994,618-633.
    3.Qian Z M,Pu Y M,Tang P L,Transferrin-bound iron uptake by reticulocyte:Current knowledge and aspects to be investigated.Progress in Biochemistry and Biophysics,1997,24(1):8-13.
    4.Klausner R D,Renswoude J V,Ashwell G,Kempf C,Schechter A N, Receptor-mediated endocytosis of transferring in K562 cells.J Bio Chem,1983,258,4715-4724.
    5.Harding C,Heuser J,Stahl P,Receptor-mediated endocytosis of transferrin and of the transferrin receptor in rat reticulocytes recycling[J].J Cell Biol,1983,97,329-339.
    6.Hernandez X A,Smith M,Glass J,Apo-transferrin is internalized and routed differently from Fe-transferrin by Caco-2 cells:a confocal microscopy study of vesicular transport in intestinal cells[J].Blood,2000,95,721-723.
    7.Sheff D,Pelletier L,O'Connell C B,Warren G,Mellman I,Transferrin receptor recycling in the absence of perinuclear recycling endosomes[J].J Cell Biol,2002,156,797-804.
    8.Sonnichsen B,De Renzis S,Nielsen E,Rietdorf J,Zerial M,Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4,Rab5,and Rab11[J].J Cell Biol,2000,149,901-914.
    9.Srivastava M,Petersen N O,Diffusion of transferring receptor clusters[J].Biophys Chem,1998,75,201-211.
    10.Iacopetta B J,Morgan E H,The kinetics of transferrin endocytosis and iron uptake from transferrin in rabbit reticulocytes[J].J Biol Chem,1983,258,9108-9115.
    11.Schwake L,Henkel A W,Riedel H D,Stremmel W,Patch-clamp capacitance measurements:new insights into the endocytic uptake of transferring[J].Blood Cells Mol Dis,2002,29,459-464.
    12.Zak O,Trinder D,Aisen P,Primary receptor-recognition site of human transferrin is in the c-terminal lobe[J].J Biol Chem,1994,269,7110-7114.
    13.吴志坚,张永学,裸鼠中人肝细胞癌转铁蛋白受体的分子显像研究[J].中华肿瘤杂志,2006,28(2),96-98.
    14.Yang P H,Sun X S,Chiu J F,Sun H Z,He Q Y,Transferrin-mediated gold nanoparticle cellular uptake.Bioconjug Chem,2005,16,494-496.
    15.Axelrod D,Lateral motion of membrane proteins and biological function[J].J Membr Biol,1983,75,1-10.
    16.Peters R,Lateral mobility of proteins and lipids in the red cell membrane and the activation of adenylate cyclase by beta-adrenergic receptors[J].Febs Lett,1988,234,1-7.
    17.胡坤生,袁燕华,电荷耦合器件荧光成像研究膜上受体扩散[J].生物物理学报,1997,13(12),415-419.
    18.Mashanov G I,Tacon D,Knight A E,Peckham M,Molloy J E,Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy[J].Methods,2003,29,142-152.
    19.Mica O I,Chiyono N,Toshiteru K,Konosuke K,Yoko N,Shinya N,Site of docking and fusion of insulin secretory granules in live MIN6-Cells analyzed by TAT-conjugated Anti-syntaxin 1 Antibody and Total Internal Reflection Fluorescence Microscopy[J].J Bio Chem,2004,279,8403-8408.
    20.Xu X H,Brownlow W,Huang S,Chen J,Single-molecule detection of efflux pump machinery in pseudomonas aeruginosa[J].Biochem Biophys Res Comm,2003,305,79-86.
    21.Lidke D S,Nagy P,Heintzmann R,Arndt-Jovin D J,Post J N,Grecco H E,Jares-Erijman E A,Jovin T M,Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction[J].Nat Biotechnol,2004,22,198-203.
    22.Dahan M,Le'vi S,Luccardini C,Rostaing P,Riveau B,Triller A,Diffusion Dynamics of Glycine Receptors Revealed by Single - Quantum Dot Tracking[J].Science,2003,302,442-445.
    23.Sako Y,Minoguchi S,Yanagida T,Single-molecule imaging of EGFR signalling on the surface of living cells[J].Nat Cell Biol,2000,2,168-172.
    24.Ichinose J,Sako Y,Single-molecule measurement in living cells[J].Trends Anal Chem,2004,23,587-594.
    25.Axelrod D,Total Internal Refection Fluorescence Microscopy in cell biology[J].Traffic,2001,2,764-774.
    26.Toomre D,Manstein D J,Lighting up the cell surface with evanescent wave microscopy[J].Trends Cell Bio,2001,11,298-303.
    27.Mehta A D,Matthias R,Spudich J A,Smith D A,Simmons R M,Single-molecule biomechanics with optical methods[J].Science,1999,283,1689-1695.
    28.Kubitscheck U,Kuckmann O,Kues T,Peters R,Imaging and tracking of single GFP molecules in solution[J].Biophys J,2000,78,2170-2179.
    29.Vrljic M,Nishimura S Y,Brasselet S,Moerner W E,MeConnell H M,Translational diffusion of individual class Ⅱ MHC membrane proteins in cells[J].Biophys J,2002,83,2681-2692.
    30.Goulian M,Simon S M,Tracking single proteins within cells[J].Biophys J,2000,79,2188-2198.
    31.Moerner W E,Optical measurements of single molecules in cells[J].Trends Anal Chem,2003,22,544-548.
    32.T.A.Hamilton,H.G.Wada,H.H.Sussman,Identification of ransferring receptors on the surface of human cultured cells,Proc.Natl.Acad.Sci.U.S.A.1979,6406- 6410;36
    33.Sun X,Jin W,Catalysis-electrochemical determination of zeptomole enzyme and its application for single-cell analysis[J].Anal Chem,2003,75,6050-6055.
    34.辛华.细胞生物学实验[M].北京:科学出版社,2001:117-118.
    35.Fan Z L,Jin W R,A method for visualization of biomolecules labeled by a single quantum dot in living cells by a combination of total internal reflection fluorescence microscopy and intracellular fluorescence microscopy.Talanta,2007,72,1114-1122.
    36.严军,董志华,CCD超分辨率位置测量方法及性能分析[J].测试技术学报,2006,20(3),189-194.
    37.Chaiet L,Wolf F J,The properties of streptavidin,a biotin-binding protein produced by streptomycetes[J].Arch Biochem Biophys,1964,106,1-5.
    38.Green N M,Avidin and streptavidin[J].Methods Enzymol,1990,184,51-67.
    39.Green N M,Avidin[J].Adv Protein Chem,1975,29,85-133.
    40.Hofmann K,Wood S W,Brinton C C,Montibeller J A,Finn F M,Iminobiotin affinity columns and their application to retrieval of streptavidin[J].Proc Natl Acad Sci USA,1980,77,4666-4668.
    41.Qdot(?)Streptavidin Conjugates User Manual.Invitrogen Co,www.invitrogen.com,2-3.
    42.Basche T,Fluorescence intensity fluctuations of single atoms,molecules and nanopariticles[J].J Lumin,1998,76&77,263-269.
    43.Hohng S,Ha T,Near-Complete Suppression of Quantum Dot Blinking in Ambient Conditions[J].J Am Chem Soc,2004,126,1324-1325.
    44.常彦忠,科学通报,转铁蛋白-转铁蛋白受体系统在药物运输和定向给药中的应用[J].科学通报,2003,48(3),213-218.
    45.Li,H.S.,Stolz,D.B.,Romero,G.Characterization of endocytic vesicles using magnetic microbeads coated with signalling ligands[J].Traffic,2005,6(2):324-334.
    46.A.Steyer,W.Almers,Tracking single secretory granules in live chromaffin cells by evanescent-field fluorescence microscopy[J].Biophys J,1999,76,2262-2271.
    47.Saffman P G,Delbruck M,Brownian motion in biological membranes[J].Proc Natl AcadSci USA,1975,72,3111-3113.
    48.Barak L S,Ferguson S S,Zhang J,Martenson C,Meyer T,Caron M G,Internal trafficking and surface mobility of a functionally intact beta2-adrenergic receptor-green fluorescent protein conjugate[J].Mol.Pharmacol,1997,51,177-184.
    49.Wilson,K.M.,I.E.G.Morrison,P.R.Smith,N.Fernandez,and R.J.Cherry.1996.Single particle tracking of cell surface HLA-DR molecules using R-phycoerythrin-labeled monoclonal antibodies and fluorescence digital imaging [J].J Cell Sci,1996,109,2101-2109.
    50.Vrljic M,Nishimura S Y,Brasselet S,Moerner W E,McConnell H M,Translational diffusion of individual Class ⅡMHC membrane proteins in cells [J].Biophys J,2002,83,2681-2692.
    51.Beyer U,Roth T,Schumacher P,Maier G.Unold A,Frahm A W,Fiebig H H,Unger C,Kratz F,Synthesis and in vitro efficacy of transferrin conjugates of the anticancer drug chlorambucil[J].J Med Chem,1998,41,2701-2708.
    52.Tanaka T,Fujishima Y,Kaneo Y.Receptor mediated endocytosis and cytotoxicity of transferring-mitomycin C conjugate in the HepG2 cell and primary cultured rat hepatocyte[J].Biol Pharm Bull,2001,24,268-273.
    53.Lim C J,Shen W C,Comparison of monomeric and oligomeric transferrin as potential carrier in oral delivery of protein drugs[J].J Control Release,2005,106,273-286.
    54.Li H Y,Sun H Z,Qian Z M,The role of the transferrin-transferfin-receptor system in drug delivery and targeting[J].Trends Pharmacol Sci,2002,23,206-209.
    55.Kavimandan N J,Losi E,Wilson J J,Brodbelt J S,Peppas N A,Synthesis and characterization of insulin-transferrin conjugates[J].Bioconjug Chem,2006,17,1376-1384
    1.Marinissen M J,Gutkind J S,G-protein-coupled receptors and signaling networks:emerging paradigms[J].Trends Pharmacol Sci,2001,22,368-376.
    2.Ji T H,Grossmann M,Ji I,G protein-coupled receptors.I.Diversity of receptor-ligand interactions[J].J Biol Chem,1998,273,17299-17302.
    3.Rozengurt E,Neuropeptides as growth factors for normal and cancer cells[J].Trends Endocrinol Metab,2002,13,128-134.
    4.Rozengurt E,Walsh J H,Gastrin,CCK,signaling,and cancer[J].Annu Rev Physiol,2001,63,49-76.
    5.Wank S A,G protein-coupled receptors in gastrointestinal physiology.I.CCK receptors:an exemplary family[J].Am J Physiol Gastrointest Liver Physiol,1998,274,G607-G613.
    6.Alivisatos A P,Semiconductor Clusters,nanocrystals,and quantum dots[J].Science,1996,271,933-937.
    7.阮康成,量子点荧光光谱学与生命科学[J].生命科学,2003,15,85-87.
    8.Rosenthal S J,Bar-coding biomolecules with fluorescent nanocrystals[J].Nat Biotechnol,2001,19,621-622.
    9.Bawendi M G,Steigerwald M L,Brus L E,The quantum mechanics of large semiconductor clusters(quantum dots)[J].Annu Rev Phys Chem,1990,41,477-496.
    10.孙宝全,徐咏蓝,衣光舜,陈德朴,半导体纳米晶体的光致发光特性及在生物材料荧光标记中的应用[J].分析化学,2002,30,1130-1136.
    11.Cai W B,Shin D W,Chen K,Gheysens O,Cao Q Z,Wang S X,Gambhir S S,Chen X Y,Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects[J].Nano Lett,2006,6,669-676.
    12.McBride J,Treadway J,Feldman L C,Pennycook S J,Rosenthal S J,Structural basis for near unity quantum yield core/shell nanostructures[J].Nano Lett,2006,6,1496-1501.
    13.Bruchez M,Jr,Moronne M,Gin P,Weiss S,Alivisatos A P,Semiconductor nanocrystals as fluorescent biological labels[J].Science,1998,281,2013-2016.
    14.Chan W C,Nie S,Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J].Science,1998,281,2016-2018.
    15.Thurer R,Vigassy T,Hirayama M,Wang J,Bakker E,Pretsch E,Potentiometric immunoassay with quantum dot labels[J].Anal Chem,2007,79,5107-5110.
    16.Howarth M,Takao K,Hayashi Y,Ting AY,Targeting quantum dots to surface proteins in living cells with biotin ligase[J].Proc Natl Acad Sci USA,2005,102,7583-7588.
    17.Lidke D S,Nagy P,Heintzmann R,Arndt-Jovin D J,Post J N,Grecco H E,Jares-Erijman E A,Jovin T M,Quantum dot ligands provide new insights into erbB/HER receptorA-mediated signal transduction[J].Nat Biotechnol,2004,22,198-203.
    18.Tan W B,Jiang S,Zhang Y,Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference[J].Biomaterials,2007,28,1565-1571.
    19.Bouzigues C,Morel M,Triller A,Dahan M,Asymmetric redistribution of GABA receptors during GABA gradient sensing by nerve growth cones analyzed by single quantum dot imaging[J].Proc Natl Acad Sci USA,2007,104,11251-11256.
    20.Kim S,Lim Y T,Soltesz E G,De Grand A M,Lee J,Nakayama A,Parker J A,Mihaljevic T,Laurence R G,Dor D M,Cohn L H,Bawendi M G,Frangioni J V,Near-infrared fluorescent type Ⅱquantum dots for sentinel lymph node mapping [J].Nature Biotechnology,2004,22,93-97.
    21.Rosenthal S J,Tomlinson I,Adkins E M,Schroeter S,Adams S,Swafford L,McBride J,Wang Y Q,DeFelice L J,Blakely R D,Targeting cell surface receptors with ligand-conjugated nanocrystals[J].J Am Chem Soc,2002,124,4586-4594.
    22.Tomlinson I D,Mason J,Burton J N,Blakely R,Rosenthal S J,The design and synthesis of novel derivatives of the dopamine uptake inhibitors GBR 12909 and GBR 12935.High-affinity dopaminergic ligands for conjugation with highly fluorescent cadmium selenide/zinc sulfide core/shell nanocrystals[J].Tetrahedron,2003,59,8035-8047.
    23.Tomlinson I D,Mason J N,Blakely R D,Rosenthal S J,High affinity inhibitors of the dopamine transporter(DAT):Novel biotinylated ligands for conjugation to quantum dots[J].Bioorg Med Chem Lett,2006,16,4664-4667.
    24.Tomlinson I D,Grey,J L,Sandra J.Rosenthal S J,A Synthesis of 6-(2,5-Dimethoxy-4-(2-aminopropyl)phenyl)-hexylthiol.A ligand for conjugation with fluorescent cadmium selenide/zinc sulfide core/shell nanocrystals and biological imaging[J].Molecules,2002,7,777-790.
    25.Tomlinson I D,Gies A P,Gresch P J,Dillard J,Orndorff R L,Sanders-Bush E,Hercules D M,Rosenthal S J,Universal polyethylene glycol linkers for attaching receptor ligands to quantum dots[J].Bioorg Med Chem Lett,2006,16,6262-6266.
    26.Gussin H A,Tomlinson I D,Little D M,Warnement M R,Qian H H,Rosenthal S J,Pepperberg D R,Binding of muscimol-conjugated quantum dots to GABAC receptors[J].J Am Chem Soc,2006,128,15701-15713.
    27.Le Gac S,Vermes I,Van den Berg A,Quantum dots based probes conjugated to annexin V for photostable apoptosis detection and imaging[J].Nano Lett,2006,6,1863-1869.
    28.Howarth M,Chinnapen D J,Gerrow K,Dorrestein P C,Grandy M R,Kelleher N L,EI-Husseini A,Ting A Y,A monovalent streptavidin with a single femtomolar biotin binding site[J].Nat Methods,2006,3,267-273.
    29.Medintz I L,Deschamps J R,Maltose-binding protein:a versatile platform for prototyping biosensing[J].Curr Opin Biotechnol,2006,17,17-27.
    30.Goldman E R,Balighian E D,Mattoussi H,Kuno K M,Mauro J M,Tran P T,Anderson G P,Avidin:A natural bridge for quantum dot-antibody conjugates[J].J Am Chem Soc,2002,124,6378-6382.
    31.Minet O,Dressier C,Beuthan J,Heat stress induced redistribution of fluorescent quantum dots in breast tumor cells[J].J Fluoresc,2004,14,241-247.
    32.Bashir R,Gomcz R,Sarikaya A,Ladisch M R,Sturgis J,Robinson J P,Adsorption of avidin on microfabricated surfaces for protein biochip applications [J].Biotechnol Bioeng,2001,73,324-328.
    33.Young S H,Rozengurt E,Qdot nanocrystal conjugates conjugated to bombesin or ANG Ⅱ label the cognate G protein-coupled receptor in living cells[J].Am J Physiol Cell Physiol,2006,290,C728-C732.
    34.Tomlinson I D,Mason J N,Blakely R D,Rosenthal S J,Methods Mol Biol,2005,303,51-60.
    35.Akerman M E,Chan W C W,Laakkonen P,Bhatia S N,Ruoslahti E,Nanocrystal targeting in vivo[J].Proc Natl Acad Sci USA,2002,99,12617-12621.
    36.Lidke D S,Nagy P,Heintzmann R,Arndt-Jovin D J,Post J N,Grecco H E,Jares-Erijman E A,Jovin T M,Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction[J].Nat Biotechnol,2004,22,198-203.
    37.Pathak S,Cao E,Davidson M C,Jin S,Silva G A,Quantum dot applications to neuroscience:new tools for probing neurons and glia[J].J Neurosci,2006,26,1893-1895.
    38.Dahan M,Levi S,Luccardini C,Rostaing P,Riveau B,Triller A,Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking[J].Science,2003,302,442-445.
    39.Mason J N,Tomlinson I D,Rosenthal S J,Blakely R D,Methods Mol.Biol.2005,303,35-50.
    40.Vu T Q,Maddipati R,Blute T A,Nehilla B J,Nusblat L,Desai T A,Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth[J].Nano Lett,2005,5,603-607.
    41.Yang L J,Li Y B,Simultaneous detection of escherichia coli O157:H7 and salmonella typhimurium using quantum dots as fluorescence labels[J].Analyst,2006,131,394-401.
    42.Goldman E R,Clapp A R,Anderson G P,Uyeda H T,Mauro J M,Medintz I L,Mattoussi H,Multiplexed toxin analysis using four colors of quantum dot fluororeagents[J].Anal Chem,2004,76,684-688.
    43.Piran U,Riordan W J,Dissociation rate constant of the biotin-streptavidin complex[J].J Immunol Methods,1990,133,141-143.
    44.Chaiet L,Wolf F J,The properties of streptavidin,a biotin-binding protein produced by streptomycetes[J].Arch Biochem Biophys,1964,106,1-5.
    45.Green N M,Avidin and streptavidin[J].Methods Enzymol,1990,184,51-67.
    46.Green N M,Avidin[J].Adv Protein Chem,1975,29,85-133.
    47.Hofmann K,Wood S W,Brinton C C,Montibeller J A,Finn F M,Iminobiotin affinity columns and their application to retrieval of streptavidin[J].Proc Natl Acad Sci USA,1980,77,4666-4668.
    48.Qdot(?)Streptavidin Conjugates User Manual.Invitrogen Co,www.invitrogen.com,2-3.
    49.Tomlinson I D,Mason J N,Blakely R D,Rosenthal S J,Inhibitors of the serotonin transporter protein(SERT):The design and synthesis of biotinylated derivatives of 3-(1,2,3,6-tetrahydro-pyridin-4-yl)-1H-indoles.High-affinity serotonergic ligands for conjugation with quantum dots[J].Bioorg Med Chem Lett,2005,15,5307-5310.
    50.Vu T Q,Chowdhury S,Munia N J,Qian H H,Standaertb R F,Pepperberg D R,Activation of membrane receptors by a neurotransmitter conjugate designed for surface attachment[J].Biomateriais,2005,26,1895-1903.
    51.郑虎.药物化学(第四版).北京:人民卫生出版社
    52.彭久合,魏玉金,夏霖,倪沛洲,α1肾上腺素受体拮抗剂的研究[J].药学进展,1995,19,206-211.
    53.Althuis T H,Hess H J,Synthesis and identification of the major metabolites of prazosin formed in dog and rat[J].J Med Chem,1997,20,146-148.
    54.Becker J M,Wilchek M,Katchalski E,Irreversible inhibition of biotin transport in yeast by biotinyl-p-nitrophenyl ester[J].Proc Natl Acad Sci USA,1971,68,2604-2607.
    55.高兴文,哌唑嗪合成图解[J].中国医药工业杂志,1994,25,42-43.
    56.万保坤,邢维鹏,刘芳,盐酸特拉唑嗪合成的改进[J].中国医药工业杂志,2000,31,385-386.
    57.Fan Z L,Jin W R,A method for visualization of biomolecules labeled by a single quantum dot in living cells by a combination of total internal reflection fluorescence microscopy and intracellular fluorescence microscopy[J].Talanta,2007,72,1114-1122.
    58.P.G.De Benedetti,F.Fanelli,M.C.Menziani;M.Cocchi;R.Testa,b and A.Leonardi,-Adrenoceptor subtype selectivity:molecular modeling and theoretical quantitative structure-affinity relationships[J].Bioorgan Med Chem,1997,5,809-816.
    59.Sugawara T,Hirasawa A,Hashimoto K,Tsujimoto G,Differences in the subcellular localization of al-adrenoceptor subtypes can affect the subtype selectivity of drugs in a study with the fluorescent ligand BODIPY FL-prazosin [J].Life Sciences,2002,70,2113-2124.
    60.Sake Y,Minoguchi S,Yanagida T,Single-molecule imaging of EGFR signalling on the surface of living cells[J].Nat Cell Biol,2000,2,168-172.
    61.Capaccio M,Gavalas V G,Meier M S,Anthony J E,Bachas L G,Coupling biomolecules to fullerenes through a molecular adapter[J].Bioconjugate Chem,2005,16,241-244.
    62.Knepper S M,Buckner S A,Brune M E,DeBernardis J F,Meyer M D,Hancock A A,A-61603,a potent a_1-adrenergic receptor agonist,selective for the a_1A receptor subtype.J Pharmacol Exp Ther 1995,274,97-103.
    63.Perez D M,Structure-function of a_1-adrenergic receptors[J].Biochem pharmacol,73,2007,73,1051-1062.
    64.吕志珍,徐明,张幼怡,苯肾上腺素荧光标记物的合成及其生物活性的鉴定[J].北京大学学报(医学版),2004,36,623-625
    65.Posner B,Hong Y L,Benvenuti E,Potchoiba M,Nettleton D,Lui L,Ferric A,Lai F,Fang Y,Miret J,Wielis C,Webb B,Multiplexing G protein-coupled receptors in microarrays:A radioligand-binding assay[J].Anal Biochem,2007,365,266-273.
    66.Michel M C,Goepel M,Differential α_1-adrenoceptor labeling by[~3H]prazosin and [~3H]tamsulosin[J].Eur J Pharmacol,1998,342,85-92.
    67.gicci A,Bronzetti E,Conterno A,Greco S,Mulatero P,Schena M,Schiavone D,Tayebati S K,Veglio F,Amenta F,α_1-adrenergic receptor subtypes in human peripheral blood lymphocytes[J].Hypertension,1999,33,708-712.
    68.Hague C,Chen Z J,Pupo A S,Schulte N A,Toews M L,Minneman K P,The N terminus of the human α_1D-adrenergic receptor prevents cell surface expression[J].J Pharmacol Exp Ther,2004,309,388-397.
    69.Hein P,Goepel M,Cotecchia S,Michel M C,Comparison of[~3H]tamsulosin and [~3H]prazosin binding to wild-type and constitutively active α_(1B)-adrenoceptors[J].Life Sci,2000,67,503-508.
    70.Stone E A,Rosengarten H,Lin Y,Quartermain D,Pharmacological blockade of brain α_1-adrenoceptors as measured by ex vivo[~3H]prazosin binding is correlated with behavioral immobility[J].Eur J Pharmacol,2001,420,97-102.
    71.Subhash M N,Nagaraja M R,Sharada S,Vinod K Y,Cortical alpha-adrenoceptor downregulation by tricyclic antidepressants in the rat brain[J].Neurochem Int,2003,43,603-609.
    72.Tang L M,Cheng J T,Tong Y C,Inhibitory effect of buflomedil on prostate α_(1A)-adrenoceptor in the Wistar rat[J].Neurosci Lett,2004,367,224-227.
    73.Szot P,White S S,Greenup J L,α_1-adrenoreceptor in human hippocampus:Binding and receptor subtype mRNA expression[J].Brain Res Mol Brain Res,2005,139,367-371.
    74.Sanders J D,Szot P,Weinshenker D,Analysis of brain adrenergic receptors in dopamine-β-hydroxylase knockout mice[J].Brain Res,2006,1109,45-53.
    75.Kramarova L I,Bronnikov G E,Ignat'ev D A,Adrenergic receptor density in brown adipose tissue of active and hibernating hamsters and ground squirrels[J].Comp Biochem Physiol A,2007,146,408-414.
    [1]F.Zarrin,N.J.Dovichi,Anal.Chem.57(1985)2690.
    [2]D.C.Nguyen,R.A.Keller,J.H.Jett,J.C.Martin,Anal.Chem.59(1987)2158.
    [3]K.Peck,L.Stryer,A.N.Glazer,R.A.Mathies,Proc.Natl.Acad.Sci.USA 86(1989)4087.
    [4]S.A.Soper,L.M.Davis,E.B.Shera,Journal Of The Optical Society Of America B-Optical Physics 9(1992)1761.
    [5]S.A.Soper,Q.L.Mattingly,P.Vegunta,Anal.Chem.65(1993)740.
    [6]B.Rauer,E.Neumann,J.Widengren,R.Rigler,Biophys.Chem.58(1996)3.
    [7]A.Castro,J.G.Williams,Anal.Chem.69(1997)3915.
    [8]A.Van Orden,N.P.Machara,P.M.Goodwin,R.A.Keller,Anal.Chem.70(1998)1444.
    [9]A.Castro,R.T.Okinaka,Analyst 125(2000)9.
    [10]M.D.Barnes,K.C.Ng,W.B.Whitten,J.M.Ramsey,Anal.Chem.65(1993)2360.
    [11]N.Lermer,M.D.Barnes,C.-Y.Kung,W.B.Whitten,J.M.Ramsey,Anal.Chem.69(1997)2115.
    [12]C.-Y.Kung,M.D.Barnes,N.Lermer,W.B.Whitten,J.M.Ramsey,Anal.Chem.70(1998)658.
    [13]Q.Xue,E.S.Yeung,Nature 373(1995)681.
    [14]D.B.Craig,E.A.Arriaga,J.C.Y.Wong,H.Lu,N.J.Dovichi,J.Am.Chem.Soc.118(1996)5245.
    [15]D.Y.Chen,N.J.Dovichi,Anal.Chem.68(1996)690.
    [16]J.C.Fister,Ⅲ,S.C.Jacobson,L.M.Davis,J.M.Ramsey,Anal.Chem.70(1998)431.
    [17]H.P.Chou,C.Spence,A.Scherer,S.Quake,Proc.Natl.Acad.Sci.USA 96(1999)11.
    [18]R.Polakowski,D.B.Craig,A.Skelley,N.J.Dovichi,J.Am.Chem.Soc.122(2000)4853.
    [19]E.T.Lagally,I.Medintz,R.A.Mathies,Anal.Chem.73(2001)565.
    [20]H.Li,G.Xue,E.S.Yeung,Anal.Chem.73(2001)1537.
    [21]J.Zheng,E.S.Yeung,Anal.Chem.74(2002)4536.
    [22]T.Anazawa,H.Matsunaga,E.S.Yeung,Anal.Chem.74(2002)5033.
    [23]M.Eigen,R.Rigler,Prec.Natl.Acad.Sci.USA 91(1994)5740.
    [24]L.Edman,U.Mets,R.Rigler,Proc.Natl.Acad.Sci.USA 93(1996)6710.
    [25]S.Nie,D.T.Chiu,R.N.Zare,Science 266(1994)1018.
    [26]W.A.Lyon,S.Nie,Anal.Chem.69(1997)3400.
    [27]B.B.Haab,R.A.Mathies,Anal.Chem.71(1999)5137.
    [28]K.D.Weston,M.Dyck,P.Tinnefeld,C.Muller,D.P.Herten,M.Saner,Anal.Chem.74(2002)5342.
    [29]T.A.Byassee,W.C.Chan,S.Nie,Anal.Chem.72(2000)5606.
    [30]M.Prummer,B.Sick,A.Renn,U.P.Wild,Anal.Chem.76(2004)1633.
    [31]H.Li,D.Zhou,H.Browne,S.Balasubramanian,D.Klenerman,Anal.Chem.76(2004)4446.
    [32]B.Sun,D.T.Chiu,Anal.Chem.77(2005)2770.
    [33]W.Tan,E.S.Yeung,Anal.Chem.69(1997)4242.
    [34]R.M.Dickson,D.J.Norris,Y.L.Tzeng,W.E.Moerner,Science 274(1996)966.
    [35]X.H.Xu,E.S.Yeung,Science 275(1997)1106.
    [36]X.H.Xu,E.S.Yeung,Science 281(1998)1650.
    [37]Y.Ma,M.R.Shortreed,E.S.Yeung,Anal.Chem.72(2000)4640.
    [38]S.H.Kang,E.S.Yeung,Anal.Chem.74(2002)6334.
    [39]H.W.Li,E.S.Yeung,Anal.Chem.77(2005)4374.
    [40]M.Singh-Zocchi,S.Dixit,V.Ivanov,G.Zocchi,Proc.Natl.Acad.Sci.USA 100(2003)7605.
    [41]X.H.Fang,W.H.Tan,Anal.Chem.71(1999)3101.
    [42]S.Schultz,D.R.Smith,J.J.Mock,D.A.Schultz,Proc.Natl.Acad.Sci.USA 97(2000)996.
    [43]S.H.Kang,S.Lee,E.S.Yeung,Anal.Chem.76(2004)4459.
    [44]F.-R.F.Fan,A.J.Bard,Science 267(1995)871.
    [45]F.-R.F.Fan,J.Kwak,A.J.Bard,J.Am.Chem.Soc.118(1996)9669.
    [46]M.Tokunaga,K.Kitamura,K.Saito,A.H.Iwane,T.Yanagida,Biochem.Biophys.Res.Commun.235(1997)47.
    [47]D.B.Craig,J.C.Y.Wong,N.J.Dovichi,Anal.Chem.68(1996)697.
    [48]D.Toomre,D.J.Manstein,Trends Cell Biol.11(2001)298.
    [49]T.Hirschfeid,Appl.Opt.15(1976)2965.
    1.Marinissen M J,Gutkind J S,G-protein-coupled receptors and signaling networks:emerging paradigms[J].Trends Pharmacol Sci,2001,22,368-376.
    2.Ji T H,Grossmann M,Ji I,G protein-coupled receptors.I.Diversity of receptor-ligand interactions[J].J Biol Chem,1998,273,17299-17302.
    3.Rozengurt E,Neuropeptides as growth factors for normal and cancer cells[J].Trends Endocrinol Metab,2002,13,128-134.
    4.Rozengurt E,Walsh J H,Gastrin,CCK,signaling,and cancer[J].Annu Rev Physiol,2001,63,49-76.
    5.Wank S A,G protein-coupled receptors in gastrointestinal physiology.I.CCK receptors:an exemplary family[J].Am J Physiol Gastrointest Liver Physiol,1998,274,G607-G613.
    6.Piascik MT,Perez DM.Alphal-adrenergic receptors:new insights and directions [J].J Pharmacol Exp Ther,2001,298,403-410.
    7.Bruchez M,Jr,Moronne M,Gin P,Weiss S,Alivisatos A P,Semiconductor nanocrystals as fluorescent biological labels[J].Science,1998,281,2013-2016.
    8.Chan W C,Nie S,Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J].Science,1998,281,2016-2018.
    9.Alivisatos A P,Semiconductor Clusters,nanocrystals,and quantum dots[J].Science,1996,271,933-937.
    10.Rosenthal S J,Bar-coding biomolecules with fluorescent nanocrystals[J].Nat Biotechnol,2001,19,621-622.
    11.Bawendi M G,Steigerwald M L,Brus L E,The quantum mechanics of large semiconductor clusters(quantum dots)[J].Annu Rev Phys Chem,1990,41,477-496.
    12.Cai W B,Shin D W,Chen K,Gheysens O,Cao Q Z,Wang S X,Gambhir S S,Chen X Y,Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects[J].Nano Lett,2006,6,669-676.
    13.McBride J,Treadway J,Feldman L C,Pennycook S J,Rosenthal S J,Structural basis for near unity quantum yield core/shell nanostructures[J].Nano Lett,2006,6,1496-1501.
    14.Thurer R,Vigassy T,Hirayama M,Wang J,Bakker E,Pretsch E,Potentiometric immunoassay with quantum dot labels[J].Anal Chem,2007,79,5107-5110.
    15.Howarth M,Takao K,Hayashi Y,Ting AY,Targeting quantum dots to surface proteins in living cells with biotin ligase[J].Proc Natl Acad Sci USA,2005,102,7583-7588.
    16.Lidke D S,Nagy P,Heintzmann R,Arndt-Jovin D J,Post J N,Grecco H E,Jares-Erijman E A,Jovin T M,Quantum dot ligands provide new insights into erbB/HER receptorA-mediated signal transduction[J].Nat Biotechnol,2004,22,198-203.
    17.Tan W B,Jiang S,Zhang Y,Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference[J].Biomaterials,2007,28,1565-1571.
    18.Bouzigues C,Morel M,Triller A,Dahan M,Asymmetric redistribution of GABA receptors during GABA gradient sensing by nerve growth cones analyzed by single quantum dot imaging[J].Proc Natl Acad Sci USA,2007,104,11251-11256.
    19.Kim S,Lim Y T,Soltesz E G,De Grand A M,Lee J,Nakayama A,Parker J A,Mihaljevic T,Laurence R G,Dor D M,Cohn L H,Bawendi M G,Frangioni J V,Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping [J].Nature Biotechnology,2004,22,93-97.
    20.Rosenthal S J,Tomlinson I,Adkins E M,Schroeter S,Adams S,Swafford L,McBride J,Wang Y Q,DeFelice L J,Blakely R D,Targeting cell surface receptors with ligand-conjugated nanocrystals[J].J Am Chem Soc,2002,124,4586-4594.
    21.Tomlinson I D,Mason J,Burton J N,Blakely R,Rosenthal S J,The design and synthesis of novel derivatives of the dopamine uptake inhibitors GBR 12909 and GBR 12935.High-affinity dopaminergic ligands for conjugation with highly fluorescent cadmium selenide/zinc sulfide core/shell nanocrystals[J].Tetrahedron, 2003,59,8035-8047.
    22.Tomlinson I D,Mason J N,Blakely R D,Rosenthal S J,High affinity inhibitors of the dopamine transporter(DAT):Novel biotinylated ligands for conjugation to quantum dots[J].Bioorg Med Chem Lett,2006,16,4664-4667.
    23.Tomlinson I D,Grey,J L,Sandra J.Rosenthal S J,A Synthesis of 6-(2,5-Dimethoxy-4-(2-aminopropyl)phenyl)-hexylthiol.A ligand for conjugation with fluorescent cadmium selenide/zinc sulfide core/shell nanocrystals and biological imaging[J].Molecules,2002,7,777-790.
    24.Tomlinson I D,Gies A P,Gresch P J,Dillard J,Orndorff R L,Sanders-Bush E,Hercules D M,Rosenthal S J,Universal polyethylene glycol linkers for attaching receptor ligands to quantum dots[J].Bioorg Med Chem Lett,2006,16,6262-6266.
    25.Gussin H A,Tomlinson I D,Little D M,Warnement M R,Qian H H,Rosenthal S J,Pepperberg D R,Binding of muscimol-conjugated quantum dots to GABAC receptors[J].J Am Chem Soc,2006,128,15701-15713.
    26.Le Gac S,Vermes I,Van den Berg A,Quantum dots based probes conjugated to annexin V for photostable apoptosis detection and imaging[J].Nano Lett,2006,6,1863-1869.
    27.Howarth M,Chinnapen D J,Gerrow K,Dorrestein P C,Grandy M R,Kelleher N L,El-Husseini A,Ting A Y,A monovalent streptavidin with a single femtomolar biotin binding site[J].Nat Methods,2006,3,267-273.
    28.Medintz I L,Deschamps J R,Maltose-binding protein:a versatile platform for prototyping biosensing[J].Curr Opin Biotechnol,2006,17,17-27.
    29.Goldman E R,Balighian E D,Mattoussi H,Kuno K M,Mauro J M,Tran P T,Anderson G P,Avidin:A natural bridge for quantum dot-antibody conjugates[J].J Am Chem Soc,2002,124,6378-6382.
    30.Minet O,Dressler C,Beuthan J,Heat stress induced redistribution of fluorescent quantum dots in breast tumor cells[J].J Fluoresc,2004,14,241-247.
    31.Bashir R,Gomez R,Sarikaya A,Ladisch M R,Sturgis J,Robinson J P,Adsorption of avidin on microfabricated surfaces for protein biochip applications [J].Biotechnol Bioeng,2001,73,324-328.
    32.Young S H,Rozengurt E,Qdot nanocrystal conjugates conjugated to bombesin or ANG Ⅱ label the cognate G protein-coupled receptor in living cells[J].Am J Physiol Cell Physiol,2006,290,C728-C732.
    33.Tomlinson I D,Mason J N,Blakely R D,Rosenthal S J,Methods Mol Biol,2005,303,51-60.
    34.Akerman M E,Chan W C W,Laakkonen P,Bhatia S N,Ruoslahti E,Nanocrystal targeting in vivo[J].Proc Natl Acad Sci USA,2002,99,12617-12621.
    35.Lidke D S,Nagy P,Heintzmann R,Arndt-Jovin D J,Post J N,Grecco H E,Jares-Erijman E A,Jovin T M,Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction[J].Nat Biotechnol,2004,22,198-203.
    36.Pathak S,Cao E,Davidson M C,Jin S,Silva G A,Quantum dot applications to neuroscience:new tools for probing neurons and glia[J].J Neurosci,2006,26,1893-1895.
    37.Dahan M,Le'vi S,Luccardini C,Rostaing P,Riveau B,Triller A,Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking[J].Science,2003,302,442-445.
    38.Mason J N,Tomlinson I D,Rosenthal S J,Blakely R D,Methods Mol.Biol.2005,303,35-50.
    39.Vu T Q,Maddipati R,Blute T A,Nehilla B J,Nusblat L,Desai T A,Peptide-conjugated quantum dots activate neuronal receptors and initiate downstream signaling of neurite growth[J].Nano Lett,2005,5,603-607.
    40.Yang L J,Li Y B,Simultaneous detection of escherichia coli O157:H7 and salmonella typhimurium using quantum dots as fluorescence labels[J].Analyst,2006,131,394-401.
    41.Goldman E R,Clapp A R,Anderson G P,Uyeda H T,Mauro J M,Medintz I L,Mattoussi H,Multiplexed toxin analysis using four colors of quantum dot fluororeagents[J].Anal Chem,2004,76,684-688.
    42.Piran U,Riordan W J,Dissociation rate constant of the biotin-streptavidin complex[J].J Imraunol Methods,1990,133,141-143.
    43.Chaiet L,Wolf F J,The properties of streptavidin,a biotin-binding protein produced by streptomycetes[J].Arch Biochem Biophys,1964,106,1-5.
    44.Green N M,Avidin and streptavidin[J].Methods Enzymol,1990,184,51-67.
    45.Tomlinson I D,Mason J N,Blakely R D,Rosenthal S J,Inhibitors of the serotonin transporter protein(SERT):The design and synthesis of biotinylated derivatives of 3-(1,2,3,6-tetrahydro-pyridin-4-yl)-1H-indoles.High-affinity serotonergic ligands for conjugation with quantum dots[J].Bioorg Med Chem Lett,2005,15,5307-5310.
    46.Vu T Q,Chowdhury S,Munia N J,Qian H H,Standaertb R F,Pepperberg D R,Activation of membrane receptors by a neurotransmitter conjugate designed for surface attachment[J].Biomaterials,2005,26,1895-1903.
    47.Sun X,Jin W,Catalysis-electrochemical determination of zeptomole enzyme and Its application for single-cell analysis,Anal Chem,2003,75,6050-6055.
    48.Zheng H,Pharmaceutical Chemistry(Quart edition).Beijing:People's medical publishing house.
    49.Althuis T H,Hess H J,Synthesis and identification of the major metabolites of prazosin formed in dog and rat[J].J Med Chem,1997,20,146-148.
    50.Becker J M,Wilchek M,Katchalski E,Irreversible inhibition of biotin transport in yeast by biotinyl-p-nitrophenyl ester[J].Proc Natl Acad Sci USA,1971,68,2604-2607.
    51.Gao X W,Graphical synthetic routes of prazosin[J].Chin J Pharmaceutical,1994,25,42-43.
    52.Wan Bao-Kun,Xing W P,Liu F,Cai W,Improved synthesis of terazosin[J].Chin J Pharmaceuticals,2000,31,385-386.
    53.P.G.De Benedetti,F.Fanelli,M.C.Menziani;M.Cocchi;R.Testa,b and A.Leonardi,α_1-Adrenoeeptor subtype selectivity:molecular modeling and theoretical quantitative structure-affinity relationships[J].Bioorgan Med Chem,1997,5,809-816.
    54.Sugawara T,Hirasawa A,Hashimoto K,Tsujimoto G,Differences in the subcellular localization of al-adrenoceptor subtypes can affect the subtype selectivity of drugs in a study with the fluorescent ligand BODIPY FL-prazosin [J].Life Sciences,2002,70,2113-2124.
    55.Sako Y,Minoguchi S,Yanagida T,Single-molecule imaging of EGFR signalling on the surface of living cells[J].Nat Cell Biol,2000,2,168-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700