路易斯酸与类水滑石在氧化反应中的协同催化作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异佛尔酮本身是优良的高分子溶剂以及化工中间体,其选择性氧化产物氧代异佛尔酮则是多种类胡萝卜素以及调味化合物的关键中间体。但是,自从氧代异佛尔酮工业化生产以来,几乎所有关键技术和生产都被国外所垄断。随着我国本土精细化工的发展,氧代异佛尔酮需求量越来越大,亟待自主生产并降低成本。所以,研究选择性氧化异佛尔酮直接合成氧代异佛尔酮是非常有意义的。
     但由于异佛尔酮C=O双键与C=C双键间存在共轭,电子离域的作用使得烯丙位的C-H键键能增强,使得异佛尔酮难以直接氧化。若能找到一种简单的方法来削弱C=O双键与C=C双键间的电子离域作用,将能有效降低C-H键键能,起到C-H活化的效果,从而使得本身难以直接氧化的异佛尔酮变得容易氧化。本文研究的目的就是探寻这样一种能削弱电子离域,从而使底物得以活化的非催化剂修饰方法。
     本文的工作内容主要是在前人研究的基础上,以共沉淀法制备含Cu、Mg、Al三种金属的类水滑石催化剂,尝试以路易斯酸盐作为添加剂,通过添加剂与底物之间的相互作用而达到C-H活化的效果,从而提高直接氧化异佛尔酮反应的效率,得到的结论如下:
     (1)制备的催化剂为NO3-离子插层型的类水滑石六方晶系且有一定含量的结合水,催化剂中三种金属的物质的量之比与投料比接近,Cu:Mg:A1≈1:3:1,并综合热重和元素分析得到了每种金属在催化剂中的质量摩尔浓度。
     (2)通过加入各种不同的路易斯酸作为添加剂,在目标产物产率基本不受影响的情况下,确实大大缩短了直接氧化异佛尔酮这一反应的时间,从48h缩短到4h左右。其中,以加入典型的路易斯酸盐ZnCl2, AICl3, SnCl2等作为添加剂的效果最好。
     (3)通过一系列反应条件控制和比较,得到了使目标产物KIP转化率最大的条件a以及使整个催化反应效率最高的条件b,分别为
     a.60℃,催化剂量为0.1g, ZnCl2为20%异佛尔酮摩尔量,TBHP为3.5倍异佛尔酮摩尔量
     b.60℃,催化剂用量为0025g, ZnCl2为20%异佛尔酮摩尔量,TBHP为2.5倍异佛尔酮摩尔量
     反应时间均为4h,a目标产物产率可达53.6%(选择性100%),TOF=4.4/h,b目标产物产率可达43.0%(选择性100%),TOF=141.0/h。
     (4)提出了添加剂与底物作用的机理并以计算佐证,同时以1H-NMR和紫外吸收光谱通过实验证实这一作用的存在。
     总之,本文提出的这一提高催化反应效率的方法是切实可行且有新颖性,这也为研究催化反应提供了一个新的思路。
Isophorone is a great solvent of polymer compound and an important intermediate of chemical industry, and its selective oxidation product ketoisophorone, is the key intermediate for the synthesis of various carotenoids and flavoring substances. But since the isophorone has been industrial produced, almost all the key technologies and most of volume of production have been kept from us. Along with the development of native fine chemical industry, the demand of native produced isophorone and cost reduction kept growing. It is meaningful for us to do research about the direct oxidation from isophorone to ketoisophorone.
     The reason that isophorone is hard to be directly oxidized, because there is conjugation effect between C=O and C=C which enhances the C-H bond of allylic position. If we find an easy way to weaken the electronic delocalization effect between C=O and C=C, the C-H bond dissociation energy will be decreased efficiently. C-H activation makes isophorone easy to be oxidized. What we want to present here is a method without catalyst modified to weaken the delocalization effect and activate the substrate.
     The main work of this thesis is based on the predecessors, we use coprecipitation to synthetize HTLcs with Cu, Mg and Al. We make Lewis acid as our additives here, it weakens the electronic delocalization effect of isophorone and makes the C-H bond of allylic position activated. Eventually we improve the efficiency of isophorone oxidation. Here are the main conclusions:
     (1) The synthetized catalyst is NO3-intercalated HTLc with hexagonal system and some amount of H2O. The ratio of the amount of substance of three metal elements in the catalyst is close to their raw ratio, Cu:Mg:A1≈1:3:1. We calculate the molality of each metal element with results of TGA and ICP.
     (2) By adding different kinds of Lewis acids as additives, the reaction time of isophorone oxidation is shortened from48h to4h without the decrease of the target product yield. Among all kinds of additives, ZnCl2, AICl3and SnCl2 are more efficient.
     (3) Through a series of researches, we get two optimized conditions. A has the maximum yield of the target product KIP and b has the maximum catalytic reaction efficiency. a.60℃,0.1g HTLc,20%molar weight of isophrone ZnCl2,350%molar weight of isophrone TBHP b.60℃,0.025g HTLc,20%molar weight of isophrone ZnCl2,250%molar weight of isophrone TBHP The reaction time is4h. Under condition a, yield of target product KIP is53.6%(100%selectivity), TOF=4.4/h, and under condition b, yield of KIP is43.0%(100%selectivity), TOF=141.0/h.
     (4) A computational simulation confirms that the lewis acid does make the substrate more active.1HNMR and ultra violet absorption spectroscopy gave evidence on the existence of interaction between the additive and isophorone.
     In brief, the presented way to improve the catalytic reaction efficiency is achievable and novel. It gives us a new thinking of studying catalytic reactions.
引文
[1]Victorio Cadierno, Sergio E. Garci'a-Garrido, Jose'Gimeno et al, Bis(allyl)-Ruthenium(Ⅳ) Complexes as Highly Efficient Catalysts for the Redox Isomerization of Allylic Alcohols into Carbonyl Compounds in Organic and Aqueous Media:Scope, Limitations, and Theoretical Analysis of the Mechanism, J. AM. CHEM. SOC.2006,128,1360-1370
    [2]Xiaofeng Wu, Xiaohong Li et al, RhⅢ-and IrⅢ-Catalyzed Asymmetric Transfer Hydrogenation of Ketones in Water, Chem. Eur. J.2008,14,2209-2222.
    [3]Youli Xiao, Zheng Wang, Kuiling Ding, Copolymerization of Cyclohexene Oxide with CO2 by Using Intramolecular Dinuclear Zinc Catalysts, Chem. Eur. J. 2005,11,3668-3678.
    [4]Ajeet Kumar, Santosh Kumar et al, Selective Protection of Carbonyl Compounds over Nano-sized Nickel Catalysts, Catal Lett, (2008) 122:98-105.
    [5]Nicholas M. Leonard, Matthew C. Oswald et al, A Simple and Versatile Method for the Synthesis of Acetals from Aldehydes and Ketones Using Bismuth Triflate, J. Org. Chem.2002,67,5202-5207.
    [6]Haiyan Hong, Lei Hu et al, Preparation of Pt@Fe2O3 Nanowires and their Catalysis of Selective Oxidation of Olefins and Alcohols, Chem. Eur. J.2011,17, 8726-8730.
    [7]Manuel Ojeda, Sergio Rojas et al, Synthesis of Rh nano-particles by the microemulsion technology Particle size effect on the CO+H2 reaction, Applied Catalysis A:General 274 (2004) 33-41.
    [8]Wenhao Fang, Jiashu Chen et al, Hydrotalcite-Supported Gold Catalyst for the Oxidant-Free Dehydrogenation of Benzyl Alcohol:Studies on Support and Gold Size Effects, Chem. Eur. J.2011,17,1247-1256.
    [9]Yu.A. Ryndin, M.V. Stenin, Synthesis and Properties of Composite Catalysts Containing Pd and HO2O3 Particles in Pores of Carbon Carrier, React. Kinet. Catal. Lett., Vol.44, No.2,303-308 (1991).
    [10]M. Masteri-Farahani, N. Tayyebi, A new magnetically recoverable nanocatalyst for epoxidation of olefins, J. Mol. Catal. A,348 (2011),83-87.
    [11]M. Masteri-Farahani, F. Farzaneh, M. Ghandi, J. Mol. Catal. A,243 (2006), 170-175.
    [12]B.M. Faroldi, E.A. Lombardo, L.M. Cornaglia, Surface properties and catalytic behavior of Ru supported on composite La2O3-SiO2 oxides, Applied Catalysis A:General 369 (2009) 15-26.
    [13]Ga'bor Laurenczy, Ferenc Joo', Levente Na'dasdi, Formation and Characterization of Water-Soluble Hydrido-Ruthenium(II) Complexes of 1,3,5-Triaza-7-phosphaadamantane and Their Catalytic Activity in Hydrogenation of CO2 and HCO3- in Aqueous Solution, Inorg. Chem.2000,39,5083-5088.
    [14]Heinrich Richter, Renate Rohlmann, Olga Garca MancheCo, Catalyzed Selective Direct α-and β-Alkylation of Aldehydes with Cyclic Benzyl Ethers by Using T+BF4- in the Presence of an Inexpensive Organic Acid or Anhydride, Chem. Eur. J. 2011,17,11622-11627.
    [15]Huizhen Liu et al, Selective Phenol Hydrogenation to Cyclohexanone Over a Dual Supported Pd-Lewis Acid Catalyst, Science 326,1250 (2009).
    [16]YE Qi-liang, ZHOU Wen-yong, SUN Hao. Review on the preparation of isophorone and keto-isophorone[J]. Chem Indus Engin Prog,2002,21(10):718-722.
    [17]DANG Ming-yan, ZUO Ji-cheng. The Mg-Al compound oxide catalyst synthesize isphorone by gas-phase method [J]. Liaoning Chem Indust,2002, 31(9):373-375.
    [18]H. Mayer, Pure Appl. Chem.51 (1979) 535.
    [19]E. Demole, P. Enggist, Helv. Chim. Acta 57 (1974) 2087.
    [20]M. Shibagaki, S. Shibata, H. Kaneko, Agric. Biol. Chem.45 (1981) 2911.
    [21]J.Y. Mao, N. Li, H.R. Li, X.B. Hu, J. Mol. Catal. A:Chem.258 (2006) 178.
    [22]S.B. Halligudi, N.K.K. Raj, S.S. Deshpande, S. Gopinathan, J. Mol. Catal. A: Chem.157(2000)9.
    [23]N. Ito, T. Etoh, H. Hagiwara, M. Kato, Synthesis (1997) 153.
    [24]M. Beyrhouty, A.B. Sorokin, S. Daniele, L.G. Hubert-Pfalzgraf, New J. Chem.29(2005) 1245.
    [25]M. Costantini, A. Dromard, M. Jouffret, B. Brossard, J. Varagnat, J. Mol. Catal.7(1980) 89.
    [26]J.Y. Mao, X.B. Hu, H. Li, Y. Sun, C.M. Wang, Z.R. Chen, Green Chem.10 (2008)827.
    [27]X.B. Hu, J.Y. Mao, Y. Sun, H. Chen, H.R. Li, Catal. Commun. 10 (2009) 1908.
    [28]V.J. Freer, P. Yates, Chem. Lett. (1984) 2031.
    [29]E.F. Murphy, A. Baiker, J. Mol. Catal. A 179 (2002) 233.
    [30]T. Joseph, S.B. Halligudi, C. Satyanarayan, D.P. Sawant, S. Gopinathan, J. Mol. Catal. A:Chem. 168 (2001) 87.
    [31]E.F. Murphy, T. Mallat, A. Baiker, M. Schneider, Appl. Catal., A 197 (2000) 295.
    [32]A. Hanyu, Y. Sakurai, S. Fujibayashi, S. Sakaguchi, Y. Ishii, Tetrahedron Lett.38(1997) 5659.
    [33]Congmin Wang et al, Catalysis Communications 11 (2010) 758-762.
    [34]Tony K. M. Shing et al, Org. Lett., Vol.8, No.14,2006.
    [35]E.F. Murphy, A. Baiker, Journal of Molecular Catalysis A:Chemical 179 (2002)233-241.
    [36]Dasari Kishore, Alirio E. Rodrigues, Catalysis Communications 8 (2007) 1156-1160.
    [37]Dasari Kishore, Alirio E. Rodrigues, Applied Catalysis A:General 345 (2008) 104-111.
    [38]Rives V. (ed.), Layered Double Hydroxides:Present and Future (Nova Sci. Publ., New York, USA,2001).
    [39]S.M. Auerbach, K.A. Carrado and P.K. Dutta (ed.), Handbook of Layered Materials (Marcel Dekker, Inc., New York, Basel,2004).
    [40]X. Duan and D.G. Evans (ed.), Layered Double Hydroxides-Structure and Bonding Series, Vol. 119 (Springer, Berlin,2006).
    [41]E. Manasse, Atti. Soc. Toscana Sci. Nat. Proc. Verb.24 (1915) 92.
    [42]G. Aminoff and B. Broome, Kungl. Sven. Vet. Akademiens Handlingar. 9(1930)23.
    [43]H.F.W. Taylor, Mineral. Mag. 39 (1973) 377.
    [44]R. Allmann, Acta Crystallogr. 24 (1968) 972.
    [45]S. Miyata, Clays Clay Miner. 23 (1977) 369.
    [46]S. Miyata, Clays Clay Miner. 31 (1983) 305.
    [47]F.J. Brocker and L. Kainer, German Patent,2,024,282 (to BASF AG, Germany,1971).
    [48]T. Katsuomi, S. Tetsuya, W. Peng, K. Tokuhisa and T. Ken, J. Catal.221 (2004) 43.
    [49]M. Piemontese, F. Trifiro, A. Vaccari, E. Foresti and M. Gazzano (ed.), Preparation of Catalyts V (Elsevier, Amsterdam,1991), p.49.
    [50]M.J. Climent, A. Corma, S. Iborra and A Velty, J. Catal.221 (2004) 474.
    [51]K. Koteswara Rao, M. Gravelle, J.S. Valente and F. Figueras, J. Catal.173 (1998) 115.
    [52]A. Ramani, B.M. Chanda, S. Velu and S. Sivasanker, Green Chem.1 (1999) 163.
    [53]A. Corma, S. Iborra, J. Primo and F. Rey, Appl. Catal. A Gen.114 (1994) 215.
    [54]B.M. Choudary, S. Madhi, N.S. Chowdari, M.L. Kantam and B. Sreedhar, J. Am. Chem. Soc.124 (2002) 14127,
    [55]S. Kannan, Appl. Clay Sci.13 (1998) 347.
    [56]S. Velu and C.S. Swamy, Appl. Catal. A Gen.119 (1994) 241.
    [57]F. Figueras, J. Lopez, J. Sanchez-Valente, T.T.H. Vu, J.-M. Clacens and J. Palomeque, J. Catal.211 (2002) 144.
    [1]Roman Prihod'ko, Mikhail Sychev, Igor Kolomitsyn, etal. Layered double hydroxides as catalysts for aromatic nitrile hydrolysis[J].Microporous and Mesoporous Materials,2002,3 (56):241-255.
    [2]E.lvarez-Ayuso,H.W.Nugteren, Emission reduction of aluminium anodising industry by production of Mg2+- Al3+- SO42- -drotalcite- type compound.Chemosphere[J].2006,1 (62):155-162.
    [3]W H Feitknecht. Chim. Acta,1942,25:131.
    [4]Piero Porta, Simone Morpurgo Cu/Zn/Co/Al/Cr-containing hydrotalcite-type anionic clays [J].Applied Clay Science,1995,1-2 (10):31-44.
    [5]Ruiyu Zhao, Changlong Yin, Huiji Zhao,etal. Synthesis, characterization, and application of hydotalcites in hydrodesulfurization of FCC gasoline [J].Fuel Processing Technology,2003,3 (81):201-209.
    [6]Y. Zhao, F. Li, R. Zhang, D. G. Evans, X. Duan, Chem. Mater.2002,14,4286.
    [7]J. T. Kloprogge, L. Hickey, R. L. Frost, J. Solid State Chem.2004,17,4047.
    [8]W. F. Lee, Y. C. Chen, Eur. Polym. J.2006,42,1634.
    [9]M. R.Othman, J. Kim, J. Sol-Gel Sci. Technol.2008,47,274.
    [10]M. Jitianu, M. Zaharescu, M. Balasoiu, A. Jitianu, J. Sol-Gel Sci. Technol.2003, 26,217.
    [11]O. Lorret, S. Morandi, F. Prinetto, G. Ghiotti, D. Tichit, R. Durand, B. Coq, Micro. Meso.Mater.2007,103,48.
    [12]M.R. Perez, C. Barriga, J.M. Fernandez,etal.Synthesis of Cd/(Al+Fe) layered double hydroxides and characterization of the calcination products [J] Journal of Solid State Chemistry.2007,1-2 (180):3434-3442.
    [13]Akino Tsujimura, Miho Uchida, Akitsugu Okuwaki.Synthesis and sulfate ion-exchange properties of a hydrotalcite-like compound ntercalated by chloride ions[J]. Journal of Hazardous Materials 2007,1-2 (143):582-586.
    [14]Yijun Liu, Edgar Lotero, James G. Goodwin Jr,etal. Transesterification of poultry fat with methanol using Mg-Al hydrotalcite derived catalysts[J].Applied Catalysis A: General,2007,331:138-148.
    [15]Nigamananda Das, Amrendra Samal Synthesis,characterisation and rehydration behaviour of titanium (IV) contaning hydrotalcite like compounds[J].Microporous and Mesoporous Materials.2004,1-3(72):219-225.
    [16]A.V.Radha,P.V.Kamath,C.Shivakumara. Mechanism of the anion exchange reactions of the layered double hydroxides (LDHs) of Ca and Mg with Al[J].Solid State Sci,2005,10(7):1180.
    [17]P.Benito,I.Guinea,F.M.Labajos,V.Rives.Microwave-assisted reconstruction of Ni-Al hydrotalcite-like compounds [J]Journal of Solid State Chemistry,2008,5 (181): 987-996.
    [18]F. Kooli, V. Rives, M. A. Ulibarri, Inorg. Chem.1995,34,5114.
    [19]M. del Arco, P. Malet, R. Trujillano, V. Rives, Chem.Mater.1999,11,624.
    [20]A. S. Prakash, P. V. Kamath, M. S. Hegde, Mater. Res. Bull.2000,35,2189.
    [21]V. Rives, F. M. Labajos, Inorg. Chem.1993,32,5000.
    [22]F. M. Labajos, V. Rives, P. Malet, M. A. Centeno, M. A. Ulibarri, Inorg. Chem. 1996,35,1154.
    [23]C. Barriga, W. Jones, P. Malet, V. Rives, M. A. Ulibarri, Inorg. Chem.1998,37, 1812.
    [24]S. Kannan, R. V. Jasra, J.Mater. Chem.2000,10,2311.
    [25]L.Hickey, J. T. Kloprogge, R. L. Frost, J.Mater. Sci.2000,35,4347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700