金属有机络合物C_6Me_6Ru(0)C_6Me_6的合成及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文简述了各类金属有机催化剂的合成及应用概况,介绍了C6Me6Ru(0)C6Me6的相关研究背景。基于钌的催化剂目前研究十分广泛,但对钌芳烃络合物催化芳烃加氢的研究却很少报道,特别是对零价的钌芳烃络合物。本文以RuCl3为原料合成了C6Me6Ru(0)C6Me6,总收率达到37%,比E. O. Fischer工艺收率提高了一倍。此工艺已经申请了发明专利。
     实验结果表明,金属有机络合物C6Me6Ru(0)C6Me6具有均相催化苯加氢的性能,在80℃,氢压为10atm时,催化苯加氢的TOF值(每摩尔催化剂在单位时间内催化底物的物质的量)能达到338h-1。此外,C6Me6Ru(0)C6Me6还具有催化苯部分加氢生成环己烯的性能,当苯的转化率为5%时,环己烯的选择性为10.8%。由于环己烯具有较高的附加值,络合物在选择性催化加氢方面具有较好的应用前景。此外C6Me6Ru(0)C6Me6对其他一些芳烃化合物也具有很好的催化加氢效果。由于空间位阻效应大于给电子效应,甲苯催化加氢速率明显低于苯,而且随着芳环上取代基的增大,空间位阻逐渐加大,其催化加氢速率依次下降。C6Me6Ru(0)C6Me6催化甲苯、对二甲苯、乙基苯加氢的TOF值分别为87h-1、64h-1、59h-1。除了芳烃环可被催化加氢外,链烯烃也可被催化加氢。苯乙烯催化加氢产物在其转化率达到45.4%时,只有乙基苯生成,未检测到乙基环己烷的产生,其TOF值高达227h-1。不仅如此,金属有机络合物C6Me6Ru(0)C6Me6还可用于有机合成领域,均相催化芳烃及其衍生物加氢。
The synthesis route and application of some kinds of organometallic catalysts were introduced briefly in this paper. In addition, the research background of Ruthenium complex C6Me6Ru(0)C6Me6 was elaborated. Ru based catalysts were widely researched all over the world, but arene-ruthenium complexes as catalyst for selective hydrogenation of benzene to cyclohexene were rarely reported, especially the zero value ruthenium arene complexes. I have developed a synthetic route for C6Me6Ru(0)C6Me6. Under our experimental conditions, the overall yield of C6Me6Ru(0)C6Me6 could be reached to 37% based on RuCl3 and improved 18% than Fischer synthesis. This synthesis route had been applied for patent.
     Experimental results indicated that the lab synthesized organometallic compound C6Me6Ru(0)C6Me6 can be used as homogeneous catalyst for hydrogenation of benzene. TOF of benzene could be reached to 338h-1 under 1Oatm of hydrogen pressure under experimental conditions used. In addition, experimental tests indicated that C6Me6Ru(0)C6Me6 had good ability of selective hydrogenation of benzene to cyclohexene. The selectivity of cyclohexene production could be 10.8% when the conversion of benzene was 5.0% under experimental conditions used. Because of high additional value of cyclohexene, C6Me6Ru(0)C6Me6 has more developed potential. This organometallic compound C6Me6Ru(0)C6Me6 was also found to catalyze the hydrogenation of various benzene derivatives in homogenous phase. Toluene was hydrogenated slower than benzene, presumably due to the steric effects which was stronger than electronic effect. Therefore the TOF decreases for the benzene derivatives with bulky substituents because of the increasing steric effects. TOF of methylbenzene,p-dimethylbenzene, ethylbenzene were 87 h-1、64 h-1 59 h-1. In addition to the hydrogenation of aromatic ring, the alkene bond was also hydrogenated. The turnover for the hydrogenation of styrene to ethylbenzene was considerably higher than expected, ca.227h-1. Methylcyclohexane was, however, not detected at all by GC. Therefore this catalyst had considerable potential in organic synthesis, used to hydrogenate aromatic compounds. In addition, this compound can be used in organic synthesis as an effective homogenous catalyst for hydrogenation of benzene derivatives.
引文
[1]Moreno A, Pregosin P S, Laurenczy G, et al. Influence of ion pairing on styrene hydrogenation using a cationic η6-arene β-diketiminato-ruthenium complexe[J]. Organometallics,2009,28(22):6432-6441
    [2]Motoyama Y, Takasaki M, Yoon S H, et al. Rhodium nanoparticles supported on carbon nanofibers as an arene hydrogenation catalyst highly tolerant to a coexisting epoxido group[J]. Org. Lett.,2009,11(21):5042-5045
    [3]Leger B, Nowicki D A, Bourbigou O H, et, al. Rhodium nanocatalysts stabilized by various bipyridine ligands in nonaqueous ionic liquids:influence of the bipyridine coordination modes in arene catalytic hydrogenation[J]. Inorg. Chem.,2008,47(19): 9090-9096
    [4]Nowicki A, Boulaire V L, Roucoux A. Nanoheterogeneous catalytic hydrogenation of arene:evaluation of surfactant-stabilized aqueous ruthenium(0) colloidal suspension[J]. Adv. Synth. Catal.,2007,349:2326-2330
    [5]Hubert C, Nowicki A D, Roucoux A, et al. Catalytically active nanoparticles stabilized by host-guest inclusion complexes in water[J]. Chem. Commun.,2009,1228-1230
    [6]刘伏良,屈连喜,屈元雨.苯加氢制环己烯研究进展[J].邵阳高等专科学校学报,2000,13(4):274-276
    [7]张乐,刘振宇,刘寿长.钌催化苯选择加氢制环己烯的研究进展[J].煤炭转化,2001,24(2):40-45
    [8]路芳,刘青,徐杰.负载型钌基催化剂催化苯选择加氢合成环己烯[J].化学进展,2003,15(4):338-343
    [9]唐雷,石秋杰.钌催化剂催化苯加氢制环己烯的影响因素[J].工业催化,2005,13(7):7-11
    [10]刘国际,汪志宏,李竹霞,等.苯部分加氢制环己烯钌系催化剂研究新进展[J].郑州工业大学学报,1999,20(4):1-5
    [11]Wang J Q, Wang Y Z, Xie S H, et al. Partial hydrogenation of benzene to cyclohexene on a Ru-Zn/m-ZrO2 nanocomposite catalyst[J]. Appl. Catal. A:General,2004,272:29-36
    [12]Odenbrand C U I, Lundin S T. Hydrogenation of benzene to cyclohexene on an unsupported ruthenium catalyst:effect of poisons[J]. J. Chem. Technol. Biotechnol.,1981, 31:660
    [13]Hu S C, Chen Y W. Partial Hydrogenation of benzene to cyclohexene on ruthenium catalysts supported on La2O3-ZnO binary oxides[J]. Ind. Eng. Chem. Res.,1997,36: 5153-5159
    [14]Steen D P J, Scholten J J F. Selectivity to cyclohexene in the gas phase hydrogenation of benzene over ruthenium, as influenced by reaction modifiers. Adsorption of the reaction modifiers, water and caprolactam, on ruthenium[J]. Appl. Catal.,1990,58(2):281-289
    [15]Johnon M M, Nowack G P. Cyclic olefins by selective hydrogenation of aromatics[J]. J. Catal.,1975,38:518-512
    [16]刘寿长,罗鸽,王海荣,等.液相法Ru-M-B/ZrO2催化苯选择加氢制环己烯反应条件的研究[J].催化学报,2002,23(4):317-320
    [17]赵多,陈光文,袁权.蜂窝陶瓷整体反应器内苯选择加氢制环己烯[J].催化学报,2005,26(9):824-828
    [18]Simal F, Wlodarczak L, Democeau A, et al. Highly efficient kharasch addition catalysed by RuCl(Cp)(PPh3)2[J]. Tetrahedron Lett.,2000,41:6071-6074
    [19]Simal F, Wlodarczak L, Democeau A, et al. New, high efficient catalyst precursors for kharasch addition RuCl(Cp)(PPh3)2 and [RuCl(Ind)(PPh)3]2[J]. Eur. J. Org. Chem.,2001, 2689-2695
    [20]Deng Q H, Xu H W, Yuen A W H, et al. Ruthenium-catalyzed one-pot carbenoid N-H insertion reactions and diastereoselective synthesis of pralines[J]. Org. Lett.,2008,10(8): 1529-1532
    [21]Kitamura M, Lee D, Hayashi S, et al. Catalytic Leuckart-Wallach-Type reductive amination of ketones[J]. J. Org. Chem.,2002,67:8685-8687
    [22]Schwab P, Grubbs R H, Ziller J W. Synthesis and application of RuCl2(=CHR')(PR3)2:the influence of the alkylidene moiety on metathesis activity[J]. J. Am. Chem. Soc,1996,118:100-110
    [23]Gesler S, Randl S. Synthesis and metathesis reactions of a phosphine free dihydroimidazole carbine ruthenium complexe[J]. Tetrahedron lett.,2000,41:9973-9976
    [24]Rio I D, Koten G V. Ring-opening metathesis polymerization of norbornene catalyzed by a Ru(II)-vinylidene complex[J]. Tetrahedron Lett.,1999,40: 1401-1404
    [25]Yigit M, Yigit B, Ozdemir I. Active ruthenium-(N-heterocyclic carbene) complexes for hydrogenation of ketones[J]. Appl. Organometal. Chem.,2006,200:322-327
    [26]熊伟,杨朝芬,袁茂林,等.水有机两相中体系中钌磷配合物催化苯乙酮及其衍生物的不对称加氢反应[J].催化学报,2005,26(12):1093-1098
    [27]王祥智,陈华,黎耀忠.两相催化体系中α,β-不饱和醛的选择性加氢反应研究[J].分子催化,1995,9(3):207-213
    [28]Parmar D U, Bhatt S D, Bajaj H C. Hydrogenation of alkenes and aromatic hydrocarbons using water-soluble RuCl2(TPPTS)3 in aqueous medium[J]. J. Mol. Catal. A,2003,202:9-15
    [29]Bennett M A, Huang T W, Turney T W. Dinuclear arene hydrido-complexes of ruthenium(II):reaction with olefins and catalysis of homogeneous hydrogenation of arenas[J]. J. C. S. Chem. Comm.,1979,312-314
    [30]Faure M, Jahcke M, Neels A. Cluster build-upin aqueous solution:synthesis, structure, protonation and catalytic properties of the triuclear cation [(η6-C6H6)(η6-C6Me6)2 Ru3 (μ2-H)3(μ3-O)]+[J]. Polyhedron,1999,18:2679-2685
    [31]Keim W, Vogt D, Waffenschmidt H, et al. New method to recycle homogeneous catalysts from monophasic reaction mixtures by using an ionic liguid exemplified for the Rh-catalysed hydroformylation of methyl-3-petenoate[J]. J. Catal.1999, 186:481-486
    [32]Boxwell C J, Dyson P J, Ellis D J, et al. A highly selective arene hydrogenation catalyst that operates in ionic liquid[J]. J. Am. Chem. Soc,2002,124:9334-9335
    [33]Dyson P J, Ellis D J, Henderson W A.A comparison of ruthenium-catalysed arene hydrogenation reactions in water and l-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids[J]. Adv. Synth. Catal.,2003,345:216-221
    [34]Dyson P J, Ellis D J, Gabor L. Minor modifications to the ligands surrounding a ruthenium complex lead to major differences in the way in which they catalyze the hydrogenation of arenas[J]. Adv. Syn. Catal.,2003,345:211-215
    [35]Wilkinson G, Rosenblum M, Whitting M C, et al. The structure of iron bis-cyclopentadienyl[J]. J. Am. Chem. Soc.,1952,74(8):2125-2126
    [36]Rausch M D, Fischer E O, Grubert H. The aromatic reactivity of ferrocene, ruthenocene and osmocene[J]. J. Am. Chem. Soc,1960,82(1):76-82
    [37]Fischer, E O, Elschenbroich. Uber diaromaten-Komplexe des rutheniums(II) und ruheniums(0) mit benzol und hexamethylbenzol[J]. Chem. Ber.,1970,103:162-172
    [38]Bennett M A, Smith A K. Arene ruthenium(II) complexes formed by dehydrogenation by cyclohexadienes with ruthenium(III) trichloride[J]. J. Chem. Soc, J. Chem. Soc. Dalton Trans.,1974,2:233-241
    [39]Bennett M A, Huang T N, Smith A K, et al. A Arene hydrido-complex of ruthenium(II) as catalyst for the homogeneous hydrogenation of benzene and olefins[J]. J. Chem. Soc. Chem. Comm.,1978,7:582-583
    [40]Bennett M A, Huang T N, Turney T W. Dinuclear arene hydrido-complexes of ruthenium(II):reactions with olefins and catalysis of homogeneous hydrogenation of arenas[J]. J. Chem. Soc. Chem. Comm.,1979,7:312-314
    [41]Bennett M A, Matheson T W, Robertson G B, et al. High fluxional arene cyclooctatetraene complexes of zerovalent iron, ruthenium, and osmium. Single-crystal X-ray study of (cyclooctatetraene)(hexamethylbenzene)ruthenium(0), Ru(η6-HMB)(1-4-η-COT)[J]. Inorg. Chem.,1980,19:1014-1021
    [42]Therrien B. Functionalised η6-arene ruthenium complexes[J]. Coord. Chem. Rev.,2009, 253:493-519
    [43]Bennett M A, Matheson T W. A simple preparation of bis-arene-ruthenium cationic complexes, including those containing different arenes[J]. J. Organometal. Chem.,1979, 175:87-93
    [44]Bennett M A, Matheson T W, Robertson G B, et al. Isolation of a coordinated ketol intermediate in the hydrolysis of PF6-initiated by the labile cations [Ru(η6-arene)(acetone)3]2+; X-ray crystal structure of acetone(4-hydroxy-4-methylpentan-2-one)(6-mesitylene)ruthenium bistetrafluoroborate[J]. J. Chem. Soc. Chem. Comm.,1979,1:32-33
    [45]Huttner G, Lange S. Acta. Crystallogr., Sect. B 1972, B28:2049
    [46]何仁,陶晓春,张兆国.金属有机化学[M].上海:华东理工大学出版社,2007,102
    [47]Laganis E D, Voegeli R H, Swann T, et al. A study of the synthesis and properties of ruthenium complexes of [2n] cyclophanes[J]. Orgaometallics,1982,1(11):1416-1420
    [48]Daresbourg M Y, Muetterties E L. Arene-transition metal complexes.1. site exchange and chemical characteristics of (n6-HMB)(η4-HMB)Ru(0)[J]. J. Am. Chem. Soc,1978, 100(23):7425-7427
    [49]Tebbe, F N. Lewis acidic metal alkyl-transition metal complex interactions. I. Niobium and tantalum hydrides[J]. J. Am. Chem. Soc,1973,95(16):5412-5414
    [50]Spillane C B, Smith J A, Buck D P, et al. Dinuclear ruthenium(II) complexes as potential probes for RNA bulge sites[J]. J. C. S. Dalton Transactions,2007,5290-5296
    [51]Scolaro C, Chaplin A B, Christian G, et al. Tuning the hydrophobicity of ruthenium(II)- arene (RAPTA) drugs to modify uptake, biomolecular interactions and efiicacy[J]. J. C. S. Dalton Transactions,2007,5065-5072
    [52]Bergamoa A, Sava G. Ruthenium complexes can target determinants of tumour malignancy[J]. J. C. S. Dalton Transactions,2007,1267-1272

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700