基于认知控制和冲突监控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究拟通过对认知控制的冲突监控理论探讨方向知觉决策的认知神经机制。以往的研究显示,决策与认知控制密切相关,通过对认知控制的研究有助于解决复杂的决策问题。但是认知控制同样是复杂的,利用冲突监控假说研究认知控制,是探索认知控制的有效途径。以往对冲突监控的研究还存在许多问题,刺激冲突与反应冲突无法分开;以往的研究都存在记忆原则失误会干扰冲突加工;以往的研究多利用功能成像(fMRI)缺乏精确的时间定位分析。本研究采用内源性箭头刺激作为刺激冲突,排除了记忆原则的干扰,利用时间分辨率高的ERPs技术分析知觉决策加工机制。
     实验一:采用折线单箭头作为刺激,利用经典的知觉决策实验范式,结果显示:折线单箭头对左右位置反应P1振幅在Fz和Cz点表现为随着比值的增加,振幅增大,提示P1效应符合刺激加强或唤起假说。在到达最大振幅01点时,P1振幅没有差异,预示着P1代表在早阶段中知觉策略的转移和更快的全面信息加工,预示易化加工效应;对上下位置反应,P1振幅在01点达到最大,同时P1振幅随着不同比例折线单箭头的比值增大而减小,与折线单箭头对左右方向反应的结果相反。提示P1效应符合基线假说;N1表现为随着不同比例折线单箭头比值的增加,振幅增大;表现出N1的区分加工效应;同时表现出P1与N1功能分离,P1表现为抑制加工,而N1表现为区分加工。N2与P300振幅没有差异,提示折线单箭头不同比例的认知控制加工没有差异。
     实验二:采用折线双箭头作为刺激材料,采用实验一知觉决策实验范式,研究结果显示折线双箭头对左右方向反应P1振幅在Fz和Cz点表现为随着比值的增加,振幅增大,提示P1效应符合刺激加强或唤起假说。在到达最大振幅01点时,P1振幅没有差异,预示着P1代表在早阶段中知觉策略的转移和更快的全面信息加工,预示易化加工效应;对上下位置反应,P1振幅在Pz点差异显著,随着不同比例折线单箭头的比值增大而减小的趋势,与折线双箭头对左右方向反应的结果相反,提示P1效应符合基线假说;在01点达到最大,除5:5折线双箭头其他比例折现双箭头P1振幅没有差异。5:5折线双箭头振幅最小,且与折线双箭头振幅没有差异,提示可能5:5折线双箭头对上下位置反应易化为对左右位置反应。Nl表现为随着不同比例折线单箭头比值的增加,振幅增大;表现出N1的区分加工效应;同时表现出P1与N1功能分离,P1表现为抑制加工,而N1表现为区分加工。折线双箭头诱发N2在Fz点振幅最大,提示由于研究中仅有刺激冲突,无反应冲突,因而N2效应表示的是对反应冲突的觉察,而不是反应抑制。折线双箭头诱发P300,指向左右位置反应,P300振幅无显著差异,而指向上下位置,P300振幅存在差异,显示5:5折线双箭头振幅最小,提示由于5:5折线双箭头在决策加工初期易化为左右方向,因而在P300阶段增加认知控制从而能完成对上下位置的反应。
     实验三:协方向知觉决策研究,采用折线双箭头作为刺激材料,反应位置改为左上/右下或右上/左下对角线方向,从而引入协方向加工,同时引入反应冲突。将刺激分为五大类,六种刺激水平分别为低相关低拟合组(LL)、低相关高拟合组(LH)、高相关高拟合(HH)、高相关低拟合(HL)和自由反应组FHH和FLL。结果显示:P1的振幅出现了差异,将六种刺激水平分成了三类,高相关组与自有反应FLL,自由反应组FHH和低相关组;提示在知觉决策加工的早期阶段,视知觉就将信息进行了初步的整合,提示P1的振幅不是感觉激活的成分,而是刺激分类的证据;同时不同P1振幅高低与刺激线索本身信息特征——即线索的提示性大小有关,P1效应符合抑制性时机假说。六种刺激水平诱发N1振幅比较差异不显著。与N1有限能力的辨别加工有关。N2在Fz点诱发的振幅最大,但在Cz和Pz点也存在显著差异,Fz点自由反应折线双箭头诱发的N2振幅低于其他水平刺激的振幅,推测自由反应组需要特别的注意和自我控制;P300在Pz点差异显著,且将刺激分为3类,低相关低拟合组(LL)与高相关低拟合组(HL)的振幅最大,低相关高拟合组(LH)与自由反应组(FHH)振幅最小,高相关高拟合组(HH)与自由反应(FLL)组居中,提示P300与内源性不同的刺激分类有关,同时提示P300与反应冲突无关,而与协方向加工有关。
This study is about direction-perceptual decision making of congnitive and neural mechanism based on conflict monitoring theory of cognitive control.Previous studies suggested that there is very closely relationship between decision making and cognitive control. It is very helpful to understand complicated decision making by studing the cognitive control.However, the cognitive control is complicated. Now many researches focused on the conflict monitoring hypothesis to explore cognitive control.Maybe it is a very effective method.There are still many problems on the conflict monitoring in previous researches.The main problems:stimulus conflict and response conflict cannot be separated; principles of memory errors could interfere with the conflict processing; using functional imaging (fMRI) the lack of accurate time analysis.This study adopts the endogenous arrow stimuli as stimulus conflict, eliminate the disturbance of memory principle, using high time resolution of ERPs technology to analyze the cognitive and neural mechanism of perceptual decision making process.
     Experiment1:using the broken line single arrow as stimulus in the experimental paradigm, perceptual decision making results show:different ratios of broken line single arrow evoked amplitude of P1at Fz and Cz,as the ratio increases, amplitude increases, suggesting that P1effect with the reinforcing stimulus or arousal hypothesis. At the maximum amplitude of the O1electrode, no differences in P1amplitude, indicates that the transfer of P1on behalf of consciousness in the early stages of strategy and faster overall information processing, indicating facilitation effect; acted to the vertical direction, P1amplitude reached the maximum at O1, and the amplitude of P1decreased with different ratio of single cases of line the arrow increases, and broken arrow on the results about the direction of the opposite reaction. P1effect with the baseline hypothesis; N1showed increased with different proportion of broken arrow, ratio of amplitude increase; show differentiated processing effect of N1; at the same time showed that PI isolated to N1function, P1showed inhibitory processing, and the performance of the N1to distinguish between processing. No differences between N2and P300amplitudes, suggested line single arrow different proportions of the cognitive control process no exist.
     Experiment2:the broken line double arrow as stimuli, experiment using a perceptual decision making paradigm, research results show:when asked subjects to make decision with herizonal direction, the broken line double arrow evoked P1amplitude at Fz and Cz showed that the ratio of broken line increase, theP1amplitude increase, suggesting that P1effect explain with reinforcing stimulus or arousal hypothesis. At the maximum amplitude of the01point, no differences in P1amplitude, indicates that the transfer of P1on behalf of consciousness in the early stages of strategy and faster overall information processing, indicating facilitation effect; for the location, P1amplitude differences in Pz significantly, with increasing ratio of different proportion of line single arrow head decreases the trend line, results and the double arrow on about the direction of the opposite reaction, suggesting that P1effect with the baseline hypothesis; reach the maximum at01, in addition to the5:5line double arrow other ratio of discounted P1amplitude did not differ between the double arrow.5:5broken line double arrow minimum amplitude, and there is no difference and broken arrow amplitude, suggesting that it may be5:5line double arrow on the position response facilitation for the position of reaction. N1showed increased with different proportion of broken arrow, ratio of amplitude increase; show differentiated processing effect of N1; at the same time showed P1isolation and N1function, P1showed inhibitory processing, and the performance of the N1to distinguish between processing. The double arrow line induced by N2in Fz point of maximum amplitude, the study only stimulus conflict, no response conflict, so the N2effect on the reaction of conflict that is perceived, rather than inhibiting reaction. The double arrow line evoked P300, pointing to the position of reaction, no significant differences in P300amplitude, and pointing to the upper and lower positions, there were significant differences in P300amplitude,5:5line double arrow minimum amplitude, the5:5line double arrow facilitation for left and right direction in the decision-making process at the early stage, and in the P300phase increase cognitive control can be completed on position reaction.
     Experiment3:coherence of perceptual decision direction, the broken line double arrow as stimuli, response location to the left/right or right/left diagonal directions, thus introducing coherence direction of processing and response conflict. The stimulus is divided into five categories, six kinds of stimulation levels were low relation low fitting group (LL), low relation high fitting group (LH), high relation high fitting (HH), high relation low fitting (HL) and free responses of group FHH and FLL-The results showed:P1amplitude differences emerged, six kinds of stimulation level devided into the three type:high related group and free response FLL, free response group FHH and low relation group; in the early stages of perceptual decision making process, visual perception will be conducted the preliminary integration, suggesting that P1amplitude is not activated by the sensory,but is the evidence of classification; at the same time, different P1amplitude of stimulus cue itself-namely information with what strong feature hint cue, P1effect with inhibitory timing hypothesis. Six levels of stimulation evoked N1amplitude is the difference was not significant.The amplitude of N1represents the discrimination ability of processing the relevant. The amplitude of N2at Fz induced the largest, but also exist significant differences in Cz and Pz, N2amplitude Fz free response line double arrow induced lower amplitude levels of stimulation, speculated that the free response group requires special attention and self control; P300differences at Pz has significantly different, and divided stimulate into3group, low relation low fitting group (LL) and high relative low fitting group (HL) of the maximum amplitude,low relation high fitting group (LH) and free response group (FHH) minimum amplitude, high relation high fitting group (HH) and free response (FLL) group between them, classification of P300is related to endogenous cue different, at the same time, suggesting that P300is not represent response conflict, but is related to coherence direction processing.
引文
Ahissar, M., Nahum, M., Nelken, I., Hochstein, S., (2009). Reverse hierarchies and sensory learning. Philosophical Transactions of the Royal Society of London-Series B: Biological Sciences 364 (1515),285-299.
    Allison, T., Puce, A., McCarthy, G., (2002).Category-sensitive excitatory and inhibitory processes in human extrastriate cortex. J. Neurophysiol.88,2864-2868.
    Allison, T., Puce, A., Spencer, D.D., McCarthy, G., (1999). Electrophysiological studies of human face perception.I:potentials generated in occipitotemporal cortex by face and non-face stimuli. Cereb. Cort.9 (5),415-430.
    Anllo-Vento L. (1995) Shifting attention in visual space:the effects of peripheral cueing on brain cortical potentials. Int J Neurosci;80:353-70.
    Anllo-Vento L, Hillyard SA. (1996) Selective attention to the color and direction of moving stimuli:electrophysiological correlates of hierarchical feature selection. PerceptPsychophys;58:191-206.
    Allport, A. (1980). Patterns and actions. In G. Claxton (Ed.), Cognitive psychology: New directions (pp.26-64). London:Routledge & Kegan Paul.
    Allport, A. (1987). Selection for action:Some behavioral and neurophysiological considerations of attention and action. In H. Heuer & A. F.Sanders (Eds.), Perspectives on perception and action (pp.395-419).Hillsdale, NJ:Erlbaum.
    Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review,89, 369-406.
    Bartels A, Zeki S.(1998);The theory of multistage integration in the visual brain.Proc R Soc Lond B Biol Sci 7:2327-2332.
    Baddeley, A.,& Delia Sala, D. (1996). Working memory and executive control. Philosophical Transactions of the Royal Society of London,Series B,351,1397-1404
    Braver, T. S. (1997). Mechanisms of cognitive control:A neurocomputational control. Unpublished doctoral dissertation, Carnegie Mellon University
    Bullier J. (2001a) Integrated model of visual processing. Brain Res Rev36:96-107.
    Bullier J. (2001b) Feedback connections and conscious vision. Trends Cogn Sci;5:369-370.
    Cabeza, R.,& Nyberg, L. (1997). Imaging cognition:An empirical review of PET studies with normal subjects. Journal of Cognitive Neuroscience,9,1-26
    Casey, B. J., Trainor, R. J., Orendi, J. L., Schubert, A. B., Nystrom, L. E.,Giedd, J. N., Castellanos, F. X., Haxby, J. V., Noll, D. C., Cohen, J. D.,Forman, S. D., Dahl, R. E., & Rapoport, J. L. (1997). A developmentalfunctional MRI study of prefrontal activation during performance of ago-no-go task. Journal of Cognitive Neuroscience, 9,835-847.
    Carter, C., van Veen, V., (2007). Anterior cingulate cortex and conflict detection:an update of theory and data. Cogn. Affect.Behav. Neurosci.7 (4),367-379.
    Carter, C. S., Mintun, M., Cohen, J. D. (1995). Interference and facilitation effects during selective attention:An H2I5O PET study of Stroop task performance. Neurolmage,2,264-272.
    Chen, Y., Geisler, W.S., Seidemann, E.,2006. Optimal decoding of correlated neural population responses in the primate visual cortex. Nature Neuroscience 9(11), 1412-1420.
    Chen, Y., Geisler, W.S., Seidemann, E.,2008. Optimal temporal decoding of neural population responses in a reaction-time visual detection task. Journal of Neurophysiology 99 (3),1366-1379
    Cohen, J. D., Dunbar, K.,& McClelland, I. L. (1990). On the control of automatic processes:A parallel distributed processing account of the Stroop effect. Psychological Review,97,332-361.
    Cohen, J. D.,& Servan-Schreiber, D. (1992). Context, cortex, and dopamine:A connectionist approach to behaviour and biology in schizophrenia.Psychological Review,99,45-77.
    Cook, E.P., Maunsell, J.H.,2002. Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nature Neuroscience 5(10),985-994.
    Dahaene, S., Posner, M. I.,& Tucker, D. M. (1994). Localization of a neural system for error detection and compensation. Psychological Science,5,303-305.
    Daniel Kahneman, Amos Tversky (2000). Choice, Values, Frames. The Cambridge University Press)
    Dehaene, S.,& Naccache, L. (2001). Towards a cognitive neuroscience of consciousness:Basic evidence and a workspace framework. Cognition,79,1-37.
    Desimone, R.,& Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience,18,193-222.
    D'Esposito, M., Detre, J. A., Alsop, D. C., Shin, R. K., Atlas, S.,& Grossman, M. (1995). The neural basis of the central executive of working memory. Nature,378, 279-281.
    Di Russo, F., Martinez, A., Sereno, M.I., Pitzalis, S., Hillyard, S.A.,2002. Cortical sources of the early components of the visualevoked potential. Hum. Brain Mapp.15, 95-111.
    Donders, F. C. (1969). On the speed of mental processes (W. G. Koster,Trans.). In W. G. Koster (Ed.), Attention and performance Ⅱ(pp.412-431). Amsterdam, the Netherlands:North-Holland. (Original workpublished 1868-1869)
    Donchin E(1979).Event-related brain potentials:A tool in the study of human imformation processing.In.Evoked potentials and behaviror(H.Begleiter.ed.) pp.13-75.Plenum Press,New York.
    Donchin E(1981).Suprise!......Surprise? Psychophysiology,18,493-513.
    Danielmeier, C., Wessel, J. R., Steinhauser, M.,& Ullsperger, M. (2009). Modulation of the error-related negativity by response conflict. Psychophysiology,461288-1298.
    Egeth, H. E.,& Yantis, S. (1997). Visual attention:Control, representation,and time course. Annual Reviews Psychology,48,269-297.
    Eimer, M. (1994). "Sensory gating" as a mechanism for visuospatial orienting:electrophysiological evidence from trial-by-trial cuing experiments. Perception & Psychophysics,55,667-675.
    Eimer M. (1994a) An ERP study on visual spatial priming with peripheral onsets.Psychophysiology;31:154-63.
    Foxe JJ, Simpson GV. (2002) Flow of activation from V1 to frontal cortex in humans. A framework for defining "early" visual processing. Exp Brain Res;142:139-150.
    Friston, K. J., Frith, C. D., Liddle, P. F.,& Frackowiak, R. S. J. (1993).Functional connectivity:The principal-component analysis of large(PET) data sets. Journal of Cerebral Blood Flow and Metabolism,13,5-14.
    Frith, C. D., Friston, K. J., Liddle, P. F.,& Frackowiak, R. S. J. (1991a).A PET study of word-finding. Neuropsychologia,29,1137-1148.
    Frith, C. D., Friston, K. J., Liddle, P. F.,& Frackowiak, R. S. J. (1991b). Willed action and the prefrontal cortex in man:A study with PET. Proceedings of the Royal Society of London, Series B,244,241-246.
    Folstein, J.R., Van Petten, C., (2008). Influence of cognitive control and mismatch on the N2 component of the ERP:a review.Psychophysiology 45 (1),152-170.
    Forster, S. E., Carter, C. S., Cohen, J. D.,& Cho, R. Y. (2010). Parametric manipulation ofthe conflict signal and control-state adaptation. Journal of Cognitive Neuroscience55:241-252
    Fu S, Fan S, Chen L, Zhuo Y.(2001)The attentional effects of peripheral cueing asrevealed by two event-related potential studies. Clin Neurophysiol;112:172-85.
    Gabriel, M. (1993). Discriminative avoidance learning:A model system. In M. Gabriel & B. Vogt (Eds.), Neurobiology of cingulate cortex and limbic thalamus (pp. 478-523). Toronto, Ontario, Canada:Birkhauser.
    Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E.,& Donchin, E.(1993). A neural system for error detection and compensation. PsychologicalScience,4, 385-390.
    Gehring, W. J.,& Fencsik, D. (1999, April). Slamming on the brakes:An electrophysiological study of error response inhibition. Poster presented at the annual meeting of the Cognitive Neuroscience Society, Washington,DC.
    Gerdjikov, T.V., Bergner, C.G., Stu" ttgen, M.C., Waiblinger, C., Schwarz, C.,(2010). Discrimination of vibrotactile stimuli in the rat whisker system:behavior and neurometrics. Neuron 65 (4),530-540.
    Geisler, W.S., Albrecht, D.G.,(1997). Visual cortex neurons in monkeys and cats: detection, discrimination, and identification. Visual Neuroscience 14 (5),897-919.
    Ghose, G.M.,(2004). Learning in mammalian sensory cortex. Current Opinion in Neurobiology 14 (4),513-518.
    Gilbert, C.D., Sigman, M., Crist, R.E.,2001. The neural basis of perceptual learning. Neuron 31 (5),681-697.
    Goldman-Rakic, P. S. (1996). The prefrontal landscape:Implications of functional architecture for understanding human mentation and the central executive. Philosophical Transactions of the Royal Society of London,Series B,351,1445-1453.
    Gold, J.I., Shadlen, M.N., (2000). Representation of a perceptual decision in developing oculomotor commands. Nature 404 (6776),390-394.
    Gomez, P., Ratcliff, R.,& Perea, M. (2007). A model of the go/no-go tusk.Journal of Experimental Psychology:General,136,347-369.
    Gratton, G., Coles, M. G. H., Sirevaag, E. J., Eriksen, C. W.,& Donchin,E. (1988). Pre-and post-stimulus activation of response channels:A psychophysiological analysis. Journal of Experimental Psychology:Human Perception and Performance, 14,331-344
    Green, D.M., Swets, J.A., (1966). Signal Detection Theory and Psychophysics. John Wiley & Sons, Inc., New York.
    G omeZ CM, Clark VP, Fan S, Luck SJ, Hillyard SA. (1994) Sources of attentionsensitive visual event-related potentials. Brain Topogr;7:41-51.
    Han S, He X, Woods DL.(2000) Hierarchical processing and level-repetition effect as indexed by early brain potentials. Psychophysiology;37:817-830.
    Heekeren HR, Bandemni PA, ungerleider LG. A geneml mechanism for perceptual decision making in the human bmin [J]. Nanlre,2004,431(7010): 859-862.
    Heekeren HR, Marretts, RufrDA(2006)involvement of human left dorsolateml prefbntal cortex in perceptual decision making is independent of response modality[J]. Proc Natl Acad Sci uSA,,103(26):10023-10028.
    Henik, A., Bibi, U., Yanai, M.,& Tzelgov, J. (1997). The Stroop effect is largest during first trials. Abstracts of the Psychonomic Society,2,57.
    Hillyard SA, Luck SJ, Mangun GR. (1994)The cuing of attention to visual fieldlocations:analysis with ERP recordings. In:HeinZe HJ, Mu'nte TF,Mangun GR, editors. Cognitive electrophysiology. Boston:Birkha"user;. p.1-25.
    Hillyard SA, Vogel EK, Luck SJ. (1999)Sensory gain control (amplification) as a mechanism of selective attention:electrophysiological and neuroimaging evidence. In:1999
    HeinZe HJ, Mu'nte TF,Mangun GR, editors. Cognitive electrophysiology. Boston: Birkha"user;. p.1-25.
    Humphreys GW, Duncan J, Treisman A, editors.Attention, space and action. Studies in cognitive neuroscience. New York:Oxford University Press;, p.31-53.
    Hopf J-M, Vogel E, Woodman G, HeinZe H-J, Luck SJ. (2002)LocaliZing visual discrimination processes in time andspace.J.Neurophysiol;88:2088-95.
    Hopf J-M, Mangun GR. (2000)Shifting visual attention in space:an electrophysiological analysis using high spatial resolution mapping. Clin Neurophysiol 111:1241-1257.
    I. Sarinopoulos, D. Grupe, K. MackiewiCz, J. Herrington, M. Lor, E. Steege, J.Nitschke, (--) Uncertainty during anticipation modulates neural responses to aversion in human insula and amygdala, Cereb. Cortex 20,929-940
    Janer, K. W.,& Pardo, J. V. (1991). Deficits in selective attending following bilateral anterior cingulotomy. Journal of Cognitive Neuroscience,3,231-241.
    Jessica J. Green, Marty G. Woldorff, (2012). Arrow-elicited cueing effects at short intervals:Rapid attentional orienting or cue-target stimulus conflict?, cognition 122.96-101.
    JW,Parasuraman R, (1987). editors. Current trends in event-related potential research. Amsterdam:Elsevier; p.118-124.
    Kaernbach, C., Schoger, E., Jacobsen, T.,& Roeber, U. (1999). Effects of consciousness on human brain waves following binocular rivalry. NeuroReport, 10(1999),713-716.
    Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ:Prentice-Hall.
    Kawashima, R., Satoh, K., Itoh, H., Ono, S., Furumoto, S., Gotoh, R.,Koyoma, M., Yoshioka, S., Takahashi, T., Takahashi, K., Yanagisawa,T.,& Fukuda, H. (1996). Functional anatomy of GO/NO-GO discrimination and response selection:A PET study in man. Brain Research,728,79-89.
    Klein, S.A., (2001). Measuring, estimating, and understanding the psychometric function:a commentary. Perception & Psychophysics 63 (8),1421-1455.
    Koivisto, M.,& Revonsuo, A. (2008a). The role of selective attention in visual awareness of stimulus features:Electrophysiological studies. Cognitive,Affective,& Behavioural Neuroscience,8(2008a),195-210.
    LaBerge, D. (1990). Thalamic and cortical mechanisms of attention suggested by recent positron emission tomography experiments. Journal of Cognitive Neuroscience, 2,358-371.
    Laming, D. R. J. (1968). Information theory of choice-reaction times. London: Academic Press.
    Larson, M.J., Kaufinan, D.A.S., Perlstein, W.M., (2009). Neural time course of conflict adaptation effects on the Strooptask. Neuropsychologia 47 (3),663-670.
    Lee, B.B., Wehrhahn, C., Westheimer, G., Kremers, J.,1995. The spatial precision of macaque ganglion cell responses in relation to vernier acuity of human observers. Vision Research 35 (19),2743-2758.
    Lindsay, D. S.,& Jacoby, L. L. (1994). Stroop process dissociations:The relationship between facilitation and interference. Journal of Experimental Psychology:Human Perception and Performance,20,219-234.
    Liotti, M., Woldorff, M.G., PereZ, R., Mayberg, H.S., (2000). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia 38 (5), 701-711.
    Logan, G. D.,& Zbrodoff, N. J. (1979). When it helps to be misled:Facilitative effects of increasing the frequency of conflicting stimuli in a Stroop-like task. Memory and Cognition,7,166-174.
    Luna, R., Hernandez, A., Brody, C.D., Romo, R.,2005. Neural codes for perceptual discrimination in primary somatosensory cortex. Nature Neuroscience 8 (9), 1210-1219.
    Luria, A. R. (1973). The working brain. London:Penguin Books.
    Luck SJ, HeinZe HJ, Mangun GR, Hillyard SA. (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. II.Functional dissociation of P1 and N1 components. ElectroencephalogrClin Neurophysiol 75:528-42.
    Luck SJ, Hillyard SA, Mouloua M, Woldorff MG, Clark VP, Hawkins HL. (1994).Effects of spatial cuing on luminance detectability:psychophysical and electrophysiological evidence for early selection. J Exp Psychol Hum Percept Perform;20:887-904.
    Luck, S. J., Hillyard, S. A. (1994). Spatial filtering during visual search:Evidence from human electrophysiology. Journal of Experimental Psychology:Human Perception and Performance,20,1000-1014.
    Luck SJ. (1995) Multiple mechanisms of visual-spatial attention:recent evidence from human electrophysiology. Behav Brain Res;71:113-23.
    Luck SJ, Hillyard SA. (1995) The role of attention in feature detection and conjunction discrimination:an electrophysiological analysis. IntJ Neurosci 80:281-97.
    Macmillan, N.A., Creelman, C.D.,2004. Detection Theory:A User's Guide. Lawrence Erlbaum, Mahwah, NJ.
    Mangun GR, Hillyard SA. (1990) Electrophysiological studies of visual selective attention in humans. In:Scheibel AB, Wechsler A, editors. The neurobiological foundations of higher cognitive function. New York:Guilford Press;..271-95.
    Mangun, G. R.,& Hillyard, S. A. (1991). Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. Journal of Experimental Psychology:Human Perception and Performance,17, 1057-1074.
    Mangun GR, Hansen JC, Hillyard SA. The spatial orienting of attention:sensory facilitation or response bias?. In:Johnson R, Rohrbaugh JW,Parasuraman R, editors. Current trends in event-related potentialresearch. Amsterdam:Elsevier; 1987. p. 118-24.
    Mangun, G.R., Hopfinger, J.B., Kussmaul, C.L., Fletcher, E.M.,Heinze, H.J., (1997). Covariations in ERP and PET measures ofspatial selective attention in human extrastriate visual cortex. Hum. Brain Mapp.5 (4),273-279.
    Margaret J. Wright*a, Gina M. Geffen", Laurie B. Geffenb (1995)Event related potentialSDuring covert orientation of visual attention:effects of cue validity and directionalityBiological Psychology 41:183-202
    MariagraZia RanZini, StanislaSDehaene, Manuela PiaZZa, Edward M. Hubbard (2009) Neural mechanisms of attentional shiftSDue to irrelevant spatial and numerical cues Neuropsychologia 47:2615-2624.
    Martinez A, DiRusso F, Anllo-Vento L, Sereno MI, Buxton RB, Hillyard SA. Putting spatial attention on the map:timing and localization of stimulus selection processes in striate and extrastriate visual areas.Vis Res 2001;41:1619-1630.
    McClelland, J. (1979). On the time relations of mental processes:An examination of systems of processes in cascade. Psychological Review,86,287-330.
    McCarthy G, Nobre AC. (1993) Modulation of semantic processing by spatial selective attention. Electroencephalogr Clin Neurophysiol;88:210-9.
    Mesulam, M. M. (1981). A cortical network for directed attention and unilateral neglect. Annals of Neurology,10,309-325.
    M. Hsu, M. Bhatt, R. Adolphs, D. Tranel, C.F. Camerer, (2005) Neural systems respondingto degrees of uncertainty in human decision-making, Science 310 1680-1683.S.A. Huettel, C.J.
    Moutoussis, K.,& Zeki, S. (2002). The relationship between cortical activation and perception investigated with invisible stimuli. Proceedings of the National Academy of Sciences of the USA,99(2002) 9527-9532.
    Moutoussis, K.,& Zeki, S. (2006). Seeing invisible motion:A human fMRI study. Current Biology,16(2006),574-579,
    Mozer, M. C.,& Sitton, M. (1998). Computational modeling of spatial attention. In H. Pashler (Ed.), Attention (pp.341-393). London:UCL Press.
    Mouchetant-Rostaing Y, Giard M-H, Bentin S, Aguera P-E, Pernier J.Neurophysiological correlates of face gender processing in humans.Eur J Neurosci 2000a; 12:303-310.
    Muller, H. J.,& Rabbitt, P. M. A. (1989). Reflexive and voluntary orienting of visual attention:Time course of activation and resistance to interruption. Journal of Experimental Psychology:Human Perception and Performance,15(2),315-350.
    Navon, D.,& Miller, J. (1987). Role of outcome conflict in dual-task interference. Journal of Experimental Psychology:Human Perception and Performance,13, 435-448.
    Nikolaev AR, Gepshtein S, Kubovy M, van Leeuwen C. (2008) Discussion of early evoked cortical activity in perceptual grouping. Exp Brain Reserch 186:107-122.
    Niki, H.,& Watanabe, M. (1979). Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Research,171,213-224.
    Norman, D. A.,& Shallice, T. (1986). Attention to action:Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz,& D.Shapiro (Eds.), Consciousness and self-regulation:Vol.4. Advances in research and theory (pp. 1-18). New York:Plenum Press.
    N. Yeung, A.G. Sanfey, (2005) Independent coding of reward magnitude and valencein the human brain, J. Neurosci.24,6258-6264.
    Pardo, J. V., Pardo, P., Janer, K. W.,& Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Science, USA,87,256-259.
    Paus, T., Koski, L., Caramanos, Z.,& Westbury, C. (1998). Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex:A review of 107 PET activation studies. Neuroreport,9, R37-47.
    Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M.,& Raichle, M. E.(1989). Positron emission tomography studies of the processing of single words. Journal of Cognitive Neuroscience, I,153-170.
    Philiastides, M.G., Sajda, P.,(2006). Temporal characterization of the neural corre-lates of perceptual decision making in the human brain. Cerebral Cortex 16 (4), 509-518.
    Posner, M. I.,& Petersen, S. E. (1990). The attention system of the human brain. Annual Reviews in Neuroscience,13,25-42.
    Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology,32,3-25.
    Posner, M. I.,& Cohen, Y. (1984). Components of visual orienting. In H.Bouma & D. G. Bowhuis (Eds.), Attention and performance Xpp.531-556.
    Posner, M. I., Snyder, C. R. R.,& Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology:General,109(2),160-174.
    Pouget, A., Dayan, P., Zemel, R.S., (2003). Inference and computation with population codes. Annual Review of Neuroscience 26,381-410.
    Qing Xu, Qiang Shen, Pengshuai Chena,b, Qingguo Ma, Dian Suna,b, Yannan Pan (2011) Neuroscience Letters505200-204.
    Rabbitt, P. M. A. (1966). Errors and error-correction in choice-response tasks. Journal of Experimental Psychology,71,264-272.
    Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review,85,59-108.
    Ratcliff, R.,& Rouder, J. N. (1998). Modeling response times for two choice decisions. Psychological Science,9,347-356.
    Ratcliff, R.,& Rouder, J. N. (2000). A diffusion model account of masking in letter identification. Journal of Experimental Psychology:Human Perception and Performance,26,127-140.
    Ratcliff, R., Thapar, A.,& McKoon, G. (2001). The effects of aging on reaction time in a signal detection task. Psychology and Aging, 16,323-341.
    Ratcliff, R. (2008). The EZ diffusion method:Too EZ? Psychonomic Bulletin & Review,15,1218-1228.
    Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci 1999;2:1019-1025.
    Schneider, W.,& Detwiler, M. (1987). A connectionist/control architecture for working memory. The Psychology of Learning and Motivation,27,53-119.
    Schneider, W.,& Detwiler, M. (1988). The role of practice in dual-task performance: Toward workload modeling in a connectionist/controlarchitecture. Human Factors,30, 539-566.
    S. Doallo, L. Lorenzo-Lo'pez, C. Vizoso, S. Rodriguez Holgui'n,E. Amenedo, S. Bara', F. Cadaveira (2005) Modulations of the visual N1 component of event-related potentialsby central and peripheral cueing. Clinical Neurophysiology 116,807-820.
    Seung, H.S., Sompolinsky, H.,1993. Simple models for reading neuronal population codes. Proceedings of the National Academy Sciences of United States America 90 (22),10749-10753.
    Shaffer, L. H. (1975). Multiple attention in continuous verbal tasks. In P. M. A. Rabbitt & S. Dornic (Eds.), Attention and performance V (pp.157-167). London: Academic Press.
    Shadlen, M.N., Britten, K.H., Newsome, W.T., Movshon, J.A.,(1996). A computational analysis of the relationship between neuronal and behavioral responses to visual motion. Journal of Neuroscience 16 (4),1486-1510.
    Shiffrin, R. M.,& Schneider, W. (1977). Controlled and automatic information processing:Ⅱ. Perceptual learning, automatic attending, and a general theory. Psychological Review,84,127-190.
    Smith, P. L. (2000). Stochastic dynamic models of response time and accuracy:A foundational primer. Journal of Mathematical Psychology,44,408-463.
    Smith, P. L.,& Ratcliff, R. (2009). An integrated theory of attention and decision making in visual signal detection. Psychological Review,116,283-316.
    Smith, P. L., Ratcliff, R.,& Wolfgang, B. J. (2004). Attention orienting and the time course of perceptual decisions:Response time distributions with masked and unmasked displays. Vision Research,44,1297-1320.
    S. Nieuwenhuis, G. Aston-Jones, J.D. Cohen, (2005) Decision making, the P3, and the locus coeruleus-norepinephrine system, Psychol. Bull.131:510-532.
    Sperling, G. (1984). A unified theory of attention and signal detection. In R. Parasuraman & D. R. Davies (Eds.), Varieties of attention (pp.103-181). Orlando,FL: Academic Press.
    Sperling, G.,& Dosher, B. A. (1986). Strategy and optimization in human information processing. In K. Boff, L. Kaufman,& J. Thomas (Eds.). Handbook of perceptionand performance (Vol.1, pp.2.1-2.65). New York:Wiley
    Sternberg, S. (1969). The discovery of processing stages:Extensions of Donder's method. In W. G. Koster (Ed.), Attention and performance II (pp.276-315). Amsterdam, the Netherlands:North-Holland
    Stowe, E.M. Gordon, B.T. Warner, M.L. Platt, (2006)Neural signatures of economic preferences for risk and ambiguity, Neuron 49 765-775.
    Stu ttgen, M.C., Schwarz, C., Ja kel, F., (2011.) Mapping spikes to sensations. Frontiers in Neuroscience 5,125.
    Sugita Y. (1999)Grouping of image fragments in primary visual cortex. Nature;401:269-273.
    Taylor, S. F., Kornblum, S., Minoshima, S., Oliver, L. M.,& Koeppe, R. A.(1994). Changes in medial cortical blood flow with a stimulus-responsecompatibility task. Neuropsychologia,32,249-255.
    Taylor MJ, Khan SC. Top-down modulation of early selective attention processes in children. Int J Psychophysiol 2000;37:135-147.
    Taylor MJ, Chevalier HA, Lobaugh NJ. ERP measures of feature and conjunction processing. Psychophysiology 1999;36(Suppl 1):58.
    Taylor MJ, Chevalier H, Lobaugh NJ. (2001a)Discrimination of single features and conjunctions by children. NeuroImage;13:S949.
    Taylor MJ, Chevalier H, Lobaugh NJ. ERP measures of early processing in feature and conjunction search:increased speed with increased array size. Psychophysiology 2001b;38(Suppl 1):S94
    Thompson-Schill, S. L., D'Esposito, M., Aguirre, G. K.,& Farah, M. J.(1997). Role of left inferior prefrontal cortex in retrieval of semanticknowledge; A reevaluation. Proceedings of the National Academy ofSciences, USA,94,14792-14797.
    Turken, A. U.,& Swick, D. (1999). Response selection in the human anterior cingulate cortex. Nature Neuroscience,2,920-924.
    Treisman, A. (1988). Features and objects:The Fourteenth Bartlett Memorial Lecture. Quarterly Journal of Experimental Psychology,40,201-237.
    Usher, M.,& McClelland, J. L. (2001). The time course of perceptual choice:The leaky, competing accumulator model. Psychological Review,108,550-592.
    Vickers, D. (1978). An adaptive module of simple judgments. In J. Requin(Ed.), Attention and Performance VII (pp.599-618). Hillsdale, NJ:Erlbaum.
    Vogt, B. A., Finch, D. M.,& Olson, C. R. (1992). Functional heterogeneity in cingulate cortex:The anterior executive and posterior evaluative regions. Cerebral Cortex,2,435-443.
    Vogels, R., Orban, G.A., (1990). How well do response changes of striate neurons signal differences in orientation:a study in the discriminating monkey. Journal of Neuroscience 10 (11),3543-3558.
    Vogel EK, Luck SJ. (2000)The visual N1 component as an index of a discrimination process. Psychophy siology37:190-203.
    Warburton, E., Wise, R., Price, C. J., Weiller, C., Hadar, U., Ramsay, S.,& Frackowiak, R. S. J. (1996). Noun and verb retrieval by normal subjects:Studies with PET. Brain,119,159-179.
    West, R., (2003). Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks.Neuropsychologia 41 (8),1122-1135.
    West, R., Bowry, R., McConville, C., (2004). Sensitivity of medial frontal cortex to response and nonresponse conflict.Psychophysiology 41 (5),739-748
    Wolfe JM, Cave KR, Franzel SL. (1989) Guided search:an alternative to the feature integration model for visual search. J Exp Psycho115:419-433.
    Wolfgang Klimesch (2011) Evoked alpha and early access to the knowledge system: The P1 inhibition timing hypothes Brain Research1408:52-71.
    Wright, R. D.,& Ward, L. M. (2008). Orienting of attention. New York:Oxford University Press.
    Wutte, M.G., Smith, M.T., Flanagin, V.L., Wolbers, T.,2011. Physiological signal variability in hmt+ reflects performance on a direction discrimination task. Frontiers in Psychology 2,185.
    Yeung, N., Nieuwenhuis, S., (2009). Dissociating response conflict and error likelihood in anterior cingulate cortex. J. Neurosci.29 (46),14506-14510.
    Yotsumoto, Y., Sasaki, Y, Chan, P., Vasios, C.E., Bonmassar, G., Ito, N., et al., (2009). Location-specific cortical activation changes during sleep after training for perceptual learning. Current Biology:CB 19 (15),1278-1282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700