城市生活垃圾焚烧飞灰熔融特性及重金属赋存迁移规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾焚烧电厂产生的焚烧飞灰中含有大量毒性重金属及其化合物,且具有高浸出率,属于危险废物,飞灰熔融处理技术可有效地控制焚烧飞灰中重金属污染,是焚烧飞灰无害化处理的主要技术之一。本文系统地研究了垃圾焚烧飞灰的基本特性、在高温管式炉和旋风熔融炉中的熔融特性及重金属的行为特性,并分析探讨了流化床煤气化-旋风熔融集成处理系统的各种因素对焚烧飞灰中重金属行为的影响。
     本文选取我国华东地区三个典型城市正在运行的垃圾焚烧发电厂的布袋除尘器飞灰作为研究对象,系统地分析了它们的化学组成特性、物理特性、微观形貌、矿物组成特性、浸出特性等,结果表明,垃圾焚烧飞灰的成分相当复杂,其主要成分是SiO_2、CaO、Al_2O_3和Fe_2O_3,其次为Na_2O、K_2O、MgO、氢氧化物、氯化物,还有少量重金属,如Cd、Cr、Cu、Pb、Zn等,其中Pb、Zn等重金属严重超出危险废物鉴别标准;三种飞灰粒径呈近似的正态分布,飞灰粒径的主要范围在10-100μm之间;焚烧飞灰熔融处理过程为吸热过程,包括晶体物相转变阶段和熔融阶段。各阶段的温度范围、吸收热量及熔融反应的起始温度与飞灰成分有着密切关系,其熔点受成分的影响最为显著,SiO_2+Al_2O_3含量的高低直接影响飞灰的熔点,三种飞灰的熔点由高到低依次为:FA3>FA2>FA1。焚烧飞灰由大量的不规则状结晶相和非晶相组成,外观上较为松散,呈球状、椭球状或片状层叠在一起,孔隙率较高,比表面积较大。焚烧飞灰是高浸出毒性的危险废弃物,其中Cd、Cr、Pb、Cu、Zn的质量分数均比土壤中高出很多,三种飞灰中Pb、Cr,FA1和FA2中的Zn的浸出值均超过标准值,须对焚烧飞灰进行稳定化、无害化处理。三种飞灰浸出前后溶液的pH值的变化规律较接近,浸出液的pH值以5.3为分界点,分界点之前浸出液的pH值上升较快,之后变化明显减慢。
     在掌握了焚烧飞灰基本特性基础上,采用高温管式电炉对焚烧飞灰进行静态熔融试验,研究了飞灰熔融前后试样的微观形貌、矿物特性、重金属分布、浸出毒性、添加剂对熔融特性的影响,并探讨了熔融温度、熔融时间、碱基度、添加剂、气氛等多种因素变化对飞灰熔融过程中重金属的固溶、挥发特性的影响。研究表明:1400℃时试样已完全熔融,熔融体表观结构平整光滑,具有较高的硬度,其断面具有光泽且无明显孔隙产生;熔融体呈结晶状态,且结晶相数量随着温度的升高呈增加趋势;熔融产物中Zn、Cr、Pb、Cu、Cd、Hg等重金属浸出率均非常低;在空气气氛下熔融时,SiO_2、CaO、Al_2O_3三种添加剂对熔融效果的影响次序:SiO_2>CaO>Al_2O_3。熔融温度对重金属的行为影响显著;熔融时间对各种重金属的固溶挥发行为影响差异较大;碱基度变化对重金属的固溶率影响显著。熔融过程中适当地掺入SiO_2有利于重金属固溶率提高。氧化气氛下,Cr、Ni、Cu、As的固溶率随其熔沸点的升高而依次升高,低沸点金属Pb、Cd、Hg、Zn在熔融过程中挥发性较高;还原气氛下,Ni、Cr大部分固溶在熔渣中,还原性气氛有利于Ni、Cr、Cu和As的固溶,而Hg、Cd、Zn更容易挥发,熔融温度对它们挥发率影响较小,但还原性气氛对Pb的挥发有抑制作用。
     根据垃圾焚烧飞灰管式熔融炉熔融特性和重金属行为特性的试验研究结果,提出了一种新型工艺——煤气化-旋风熔融集成处理工艺,自行设计建造了处理能力为6kg·h-1的试验系统,首先采用燃油作为热源对旋风熔融炉进行了焚烧飞灰动态熔融试验,研究了熔融温度、CaO、SiO_2和MgO添加剂对焚烧飞灰熔融特性及重金属赋存迁移规律的影响,获得了焚烧飞灰动态熔融处理特性及重金属赋存迁移规律。结果表明,在1400℃条件下,飞灰试样在旋风炉中也可完全转化为玻璃态;在飞灰中掺入CaO、SiO_2和MgO,同样可有效地改进焚烧飞灰熔融特性:CaO可有效地控制飞灰熔点,CaO对焚烧飞灰的助熔作用应根据飞灰的成分进行适当的调整;添加SiO_2有利于降低飞灰的熔点,随着SiO_2添加量的增加,熔渣稳定性增强;MgO对飞灰中硅酸盐或硅铝酸盐中的网状结构有破坏作用,MgO添加量>5%时,对试样达到较好的熔融效果具有促进作用。在1250-1400℃范围内,Ni、Cr、Cu、Co、Mn的固溶率随熔融温度的升高而缓慢增长,熔融温度变化对As、Pb、Cd、Zn的固溶率有显著影响,对Hg的挥发影响甚微;CaO的添加对Cr、Cu、Mn、As、Zn、Pb的固溶有抑制作用;添加SiO_2对重金属的固溶率有促进作用;MgO的添加有利于重金属的固溶,尤其是对于Zn、As、Cd、Pb的固溶率提高更为显著;三种添加剂对重金属的固溶作用:MgO最好,SiO_2次之,CaO较差。在不同熔融温度下,烟气中挥发性重金属对熔融温度较敏感,随温度增加呈先减后增的趋势;CaO添加量为5%时可减少熔融过程中挥发性重金属的排放,继续增加CaO将对重金属固溶产生负面影响;烟气挥发性重金属含量随SiO_2添加量的增加而减少;MgO的介入对烟气中重金属含量有显著影响。
     最后将流化床煤气化炉和旋风熔融炉联接起来进行集成试验,研究了空气-煤质量比、蒸汽-煤质量比、床层温度、添加剂种类等因素对焚烧飞灰熔融过程中重金属元素赋存迁移规律的影响。结果表明:在不同空煤比条件下,Ni、Cr的固溶率最高,Cu、Mn、Co的固溶率随空煤比增加呈缓慢上升的趋势;挥发性重金属的固溶率随空煤比的增加基本呈上升趋势。固溶率超过30%的重金属主要有As和Zn;Hg的固溶率随空煤比的变化基本维持不变。随着汽煤比的增加,Co、Cr、Cu、Mn、Ni的固溶率及挥发性重金属的固溶率均呈先增后减的趋势,且在汽煤比为0.41kg·kg-1时,固溶率达到最高,Cr、Ni的固溶率在不同工况下均大于90%;当床层温度在860-920℃之间时,Mn的固溶率随床温的升高略有降低,Co、Cr、Cu、Ni的固溶率与床层温度呈正相关,固溶率大小依次为:Ni>Cr>Cu>Mn>Co;Zn的固溶率与床层温度呈反比,Pb、Cd的固溶率随床层温度的升高而升高;Hg的固溶率随床温变化不明显。添加MgO对Ni、Cr固溶较为有利;CaO、SiO_2、MgO的添加对于Mn的固溶率均无明显提高;对于Cu,SiO_2的固溶效果最好,MgO次之,CaO稍差;添加MgO时Co的固溶率最高,SiO_2次之,CaO最差;MgO、SiO_2的添加相对无添加剂时重金属的固溶率提高较为明显。对于As、Zn、Cd、Pb,MgO的效果优于SiO_2、CaO;三种添加剂对飞灰熔融过程中重金属固溶率提高的次序依次为:MgO>SiO_2>CaO。
     在试验研究的基础上,基于重金属元素在熔融过程中挥发特性,建立了重金属的挥发扩散模型及重金属元素从飞灰颗粒内释放模型,模型中考虑了气固反应、颗粒间传热传质、重金属的扩散等因素的影响,并对不同熔融温度下焚烧飞灰中重金属的固溶率进行了数值模拟,总体模拟结果与实验结果,趋势一致,数值相近。
Fly ashes from municipal solid waste (MSW) incinerator contain a great deal of toxic heavy metals and their compounds. They are defined as hazardous waste because these fly ashes in having high leaching ratios of heavy metals. Melting technology can effectively control emission of heavy metals in fly ashes from MSW incinerator. It is one of the major techniques of fly ashes innocent treatment. The basic properties of fly ashes from MSW incinerator are systematically investigated. The fly ashes are carried out the melting characteristics and the behavior of heavy metals in fixed tube furnace and swirling furnace. At the same time, the factors of the system on coal gasification and fly ashes melting are explored.
     The fly ashes of bag filters from three typical running municipal solid waste powder plants in east China were studied to explore the chemical composition, physical properties, changes of microstructure, mineralogical composition, leaching characteristics of fly ashes samples. The results show that the compositions of fly ashes are very complexes. The major components contain silicon dioxide, calcium oxide, alumina, ferric oxide, hydrate, and chloride. There are a small amount of heavy metals, such as cadmium, chromium, copper, lead, zinc and so on. The content of zinc and lead are grievously outside of the identification standard for hazardous wastes. The particles size distributions of three fly ashes are approximately normal school. The primary range of particles sizes is 10 to 100 micron. The melting process of fly ash is an endothermic process. It is comprised materials phases transformation and melting reaction. The temperature range, endothermic amount and initiative temperature of melting reaction in each process rest with the compositions of fly ashes. The melting points of fly ash are distinctly affected by the compositions. The temperature of melting point is determined by the content of silicon dioxide and alumina in fly ash. The order of melting point on three fly ashes is FA3> FA2> FA1. The major constitutes of fly ash are composed by plentiful crystal and amorphous materials. They have higher porosity and BET. The fly ash is higher leaching rate of hazardous waste. The mass fractions of cadmium, chromium, lead, copper, zinc are higher than these of soil. The leaching rates of lead, chromium in three fly ashes and zinc in FA1, FA2 go beyond the values of standards. Therefore, it is obligatory for fly ash to immobilize and detoxify. The change rules of pH values in leachate of before and after three fly ashes are very analogical. The pH value of leachate in 5.3 is a critical point. When pH value is less than 5.3, it would sharply raise. On the contrary, the change of leachate pH value becomes smooth. These conclusions will provide the important theory bases for the farther research treatment harmlessly of fly ashes.
     The fly ashes from MSW incinerator were conducted in a tube melting furnace in this study. The changes of microstructure, mineralogical composition, heavy metals distribution, leaching characteristics of samples before and after melting treatment were explored. The emphasis is on the effects additives on the melting characteristics and heavy metals distribution. Simultaneity, influences of melting temperature, melting time, basicity, additives, different atmosphere on the immobility and volatilization behavior of heavy metals during melting process. The results show that the melting temperature is an important factor on the melting treatment of fly ashes from MSW incinerator. At 1400℃, the molten sample became full smooth, much hard in surface structure, while the section of the molten sample had lustrous or no apparent aperture, the sample fly ash had completely melted. The slag melted is crystalloid. The amounts of crystalsincrease with the melting temperature elevation. The leaching rates of zinc, chromium, lead, copper, cadmium, mercury was very low in the products melted. The gaseous volatile of mercury, cadmium and lead is captured. The effect of heavy metals immobility was in sequence of silicon dioxide>calcium oxide>alumina. Melting temperature has an important impact on the behavior of heavy metals. There is a great difference for the behavior of immobility and volatilization of various heavy metals. The changes of basicity will give birth to the marked influence on the fixation rate of heavy metals. The proper additive rate of silicon dioxide will be propitious to enhance the fixation rate on the heavy metals. The fixation rates of chromium, nickel, copper and arsenic in melted samples would increase with the elevation of their melting point and boiling point at oxidizing atmosphere. The volatilization rates of lead, cadmium and mercury with low boiling points are very high during melting process. The reducing atmosphere would be propitious to enhancing the fixation rates of chromium, nickel, copper and arsenic. It is confirmed that mercury, cadmium, and zinc are more easily vaporized under reducing atmosphere, but the volatilization rate of lead would be inhibited at the same condition.
     Based on the previous experimental results, the different fly ashes were melted in the self-developed swirling melting furnace system. The melting characteristics and behavior of heavy metals of fly ashes were investigated in detail under different operation runs. Influences of melting temperature, calcium oxide, silicon dioxide, magnesia additional reagent on the melting characteristics and behavior of heavy metals were studies during fly ashes melting process. The dynamic melting treatment characteristics and occurrence and transference of heavy metals in samples were concluded. Experimental results indicate that the fly ashes will transform into vitrification state at 1400℃. The higher melting temperature will redound to fly ashes melting treatment. There are marked differences on the influences of calcium oxide, silicon dioxide, magnesia additional reagent on the melting characteristics. Adding calcium oxide may effectively control melting point of fly ash. If adding less than 15 percent, it would be propitious to melting treatment. The melting-aid effect of calcium oxide should appropriately adjust base on composition of fly ash. Adding silicon dioxide in fly ash would redound to reducing the melting point of fly ash and advance the liquidity of sample. With the adding amount increasing of silicon dioxide, the glassy amorphous materials in the melted sample would enhance. The higher adding amount of silicon dioxide, the better is the stability of melted slag. The netlike structures of silicates in fly ash would be destroyed by the adding magnesia. The glutinosity of melted sample reduces with increasing adding amount of magnesia. The sample would achieve the better melting effect when the adding amount is less than 5 percent in fly ash sample. The glassy materials in slag would enhance and the crystal phases take place transform with adulterating magnesia. The crystals in sample are enveloped by the amorphous slag. The fixation rates of nickel, chromium, copper, cobalt, and manganese in slag increase with melting temperature heightening between 1250 and 1400 degree centigrade. With the exception of mercury, the change of melting temperature would markedly affect on the fixation rates of arsenic, lead, cadmium, zinc. The fixation rates of chromium, copper, manganese are decreased by adding calcium oxide during melting process. The lower is the fixation rate of arsenic, zinc, and lead, the more is adding calcium oxide. It is beneficial for the improvement fixation rate of heavy metals to add silicon dioxide. With the exception of mercury, the fixation rates of residual heavy metals would improve with adding amount increasing. The fixation rates of zinc, arsenic, cadmium, and lead would distinctly enhance. Adding amount being controlled at 10 percent for FA3 would achieve the optimal fixation effect. The volatile heavy metals are sensitive to melting temperature. With melting temperature increasing, the content of them takes on the increasing first and after reducing in flue gas. When calcium oxide adding amount is 5 percent, the content of volatile heavy metals would lessen in flue gas of melting treatment. It would give birth to negative effect for fixation heavy metals once calcium oxide adding exceeding 5 percent. With the increasing of silicon dioxide adding amount, the content of heavy metals in flue gas would reduce, but the content of mercury is ruleless. The adding magnesia in flyash has remarkable influence on the content of heavy metals in flue gas.
     At last, the gas products of coal gasification were used as the substitutive fuel on melting treatment of fly ashes. The fly ashes were conducted in the experimental system associating coal gasification with melting treatment. The effects of air/coal ratio, steam/coal ratio, bed temperature and additives on the occurrence and transference of heavy metals during melting process on swirling furnace was systemically investigated. The fixation rates of nickel and chromium achieve the maximal value above 90 percent at different air/coal ratio condition. With increasing air/coal ratio, the fixation rates of copper, manganese, and cobalt enhance steadily, the fixation rates of volatile heavy metals take on the ascending. The fixation rates of arsenic and zinc is above 30 percent in slag, the fixation rate of cadmium becomes increasing first and after reducing in slag. That of mercury keeps stable. The fixation rates of cobalt, chromium, copper, manganese, nickel and volatile heavy metals increase first then reduce in slag with increasing steam/coal ratio, and fixation rates of them achieve the maximum at steam/coal ratio 0.41 kg·kg-1, those of chromium and nickel is above 90 percent. With the exception of manganese, the fixation rates of cobalt, chromium, copper, and nickel enhance with increasing bed temperature. The order of fixation rate is Ni>Cr>Cu>Mn>Co. With bed temperature increasing, the fixation rates of lead and cadmium aggrandize, the fixation rate of zinc is reductive, mercury keep stable. The adding magnesia in sample would conduce to increasing the fixation rate of nickel and chromium. The adding calcium oxide, silicon dioxide, magnesia would not be helpful to fixation of manganese. For copper, the fixation effect of silicon dioxide is the best, the magnesia is the better, calcium oxide is the worse. For cobalt, the order of fixation effect is magnesia>silicon dioxide>calcium oxide. The fixation rates of heavy metals would remarkably enhance when adding magnesia and silicon dioxide. For the volatile heavy metals such as arsenic, zinc, cadmium, and lead, the fixation effect of magnesia is better than that of silicon dioxide and calcium oxide. The fixation rates order of heavy metals is magnesia>silicon dioxide>calcium oxide. These conclusions will offer the experimental bases and theoretic references for further comprehending the melting treatment technology of fly ash.
     Based on the experimental results and existent states of heavy metals in fly ashes and slag, the gas-solid reaction theory during the melting process, heat and mass transfer of particles in fly ashes, chemical dynamics theory such as volatile heavy metals diffuseness, the plentiful experimental datum were analyzed. The melting reaction model and the volatility model of heavy metals in particles during fly ashes melting process have been constructed. The results simulated from the predicted model are basically consistent with the measured values of experiments.
引文
[1] 张 益, 赵由才. 生活垃圾焚烧技术[M]. 北京, 化学工业出版社 环境科学与工程中心, 2001.
    [2] 张 益, 陶 华. 垃圾处理处置技术及工程实例[M]. 北京:化学工业出版,2002.
    [3] 高 亮, 周 立, 吴树桐, 等. 赴欧洲垃圾焚烧厂考察报告[J]. 环境卫生工程, 2001, 9(2):84-88.
    [4] Renbi Bai, Mardina Sutanto. The practice and challenges of solid waste management in Singapore[J]. Waste Management, 2002, 22: 557-567
    [5] He Dewen, Chai Liyuan. Progress on energy and pollution control of municipal solid waste by incineration technology[C]. In: Proceedings of International Symposium on Solid Waste Incineration and Flue Gas Cleaning Technologies. The Chinese Society of Environmental Sciences, Fuzhou, China,2002. 39-43
    [6] 王 伟. 垃圾发电带来和谐发展新模式[N]. 中国电力报,2005-5-26.
    [7] 徐 科,吴 立,陈德珍. 采用螯合剂稳定垃圾焚烧飞灰中的重金属[J]. 能源研究与信息,2005,21(2): 82-89.
    [8] EER. Updated guidance on metals interpolation and extrapolation for hazardous waste combustors[R], Draft Report. Prepared for EPA Office of Solid, 1996a.
    [9] EER. Updated guidance on metals surrogates for hazardous waste combustors[R], Draft Report. Prepared for EPA Office of Solid, 1996b.
    [10] 林国旋.重金属于焚化炉中之动态评估[J]. 技术与训练,1992, 17(2): 44-58.
    [11] Klein D H, Andren A W, Lawasani M H, et al. Environmental Science & Technology, 1976, 9: 862-869.
    [12] Lide, D. CRC Handbook of Chemistry and Physics[M]. 75th Ed. CRC Press, 1995.
    [13] P H Lee, I Delay, V Nasseradeh, et al. Characterization decontamination and health effects of fly ash from waste incinerators[J]. Environment Progress, 1998, 17(4): 261-269.
    [14] 李建新,严建华,池 涌,等. 垃圾焚烧过程中重金属迁移及控制[J]. 电站系统工程,2004,20(1): 9-12.
    [15] Pacyna, J. M., and Ottar, B. Control and metal emissions from waste incinerators[J]. Control and Fate of Atmospheric Trace Metals, 1989, 1: 33-45.
    [16] Tchobanoglous G, Theisen M, Vigil S. Integrated solid waste management engineering principles and management issues[M]. McGraw-Hill, Inc., Singapore, l993.
    [17] Paasivirta J. Chemical Ecotoxicology[M]. Lewis Publishers, Inc., 1991.
    [18] 赵由才, 蒲 敏,黄仁华. 危险废物处理技术[M]. 北京, 化学工业出版社, 环境科学与工程中心, 2003.
    [19] 馆正知. 重金属中毒及其防止对策[J]. 工业安全卫生,1991, 21: 24-30.
    [20] Mathews A P. Chemical Equilibrium Analysis of Lead and Beryllium Speciation in Hazardous Waste Incinerators[C], Proceedings of the Second International Symposium on Metals Speciation, Separation and Recovery II, 1989, 73-83.
    [21] T Matsumoto, M Hasegawa, J Nishino, et al. Slagging system for incinerator ash by DC joule-heating furnace[J]. IHI Engineering Review, 1997, 30(1): 1-5.
    [22] S Sakai, S Urano, H Takatsuki. Leaching Behavior of PCBs and PCDDs/DFs from Some Waste Materials[J]. Waste Management, 2000, 20: 241-247.
    [23] M Takaoka, N Takeda, S Miura. The Behavior of Heavy Metals and Phosphorus in an Ash Melting Process[J]. Water Science Technology, 1997, 36(11): 275-282.
    [24] 吴祯芬,胡建吭,王 华. 城市生活垃圾焚烧飞灰熔融处理的进展[J].云南环境科学,2004,23(增刊 1):29-32.
    [25] 新井纪男,三浦隆利,宫前茂广. 燃烧生成物的发生与抑制技术[M]. 北京:科学出版社,2001.
    [26] 严建华,马增益,彭 雯,等. 沥青固化城市生活垃圾焚烧飞灰的实验研究[J]. 环境科学学报,2004,24(4): 730-733.
    [27] 蒋建国,王伟,李国鼎,等. 重金属螯合剂处理焚烧飞灰的稳定化技术研究[J].环境科学,1999,20(3):13-17.
    [28] 张瑞娜,赵由才,许 实. 生活垃圾焚烧飞灰的处理处置方法[J].苏州科技学院学报(工程技术版),2003, 16 (1):22-29.
    [29] Zhao Youcai, Song Lijie, Li Guojian. Chemical stabilization of MSW incinerator fly ashes[J]. Journal of Hazardous Materials, 2002, B95: 47-63.
    [30] Chan Chris C Y, Kirk Donald, Behavior of metals under the conditions of roasting MSW incinerator fly ash with chlorinating[J]. Journal of Hazardous Materials, 1999, 64(1): 75-89.
    [31] 王鲲生,彭竟凯,江康钰,等. 垃圾焚化飞灰成形烧结处理特性之研究. 第十届废弃物处理技术研讨会论文集[C]. 台南,1995:371-377.
    [32] Skrifvars B J, Hupa M, Backman R, et al. Sintering mechanisms of FBC ashes[J]. Fuel, 1994, 73(2): 171-176.
    [33] Chun Sung Ho. The current development of ash melting technologies[J]. Bulletin of the College Engineering, N.T.U., 2002, 84(2):137-152.
    [34] Kuen-Sheng Wang,Chang-Jung Sun,Chung-Yu liu. Effect of the sintering atmosphere on the chromium leachability of thermal-treated municipal solid waste incinerator fly ash[J]. Waste Management, 2001, 21: 85-91.
    [35] Chris C. Y. Chan, Donald W. Kirk,Hilary Marsh. The behavior of Al in MSW incinerator fly ash during thermal treatment[J]. Journal of Hazardous Materials, 2000, 76(1): 103-111.
    [36] H Marsh, D W Kirk, C Chan. Chromium behavior during treatment of MSW fly ash[J]. Journal of Hazardous Materials, 2002, 90(1): 39-49.
    [37] Winter R M, Mallepalli R R, Belle m K P. Determination of As, Cd, Cr, and Pb species form in a combustion environment[J]. Combustion Science Technology, 1994, 101: 45-58.
    [38] Chan Chris, Jia Charles Q, Graydon, John W, et al. The behavior of selected heavy metal in MSW incineration electrostatic precipitator ash during roasting with chlorination agents[J], Journal of Hazardous Materials, 1996, 50, (1): 1-13.
    [39] Nishigaki M, Reflecting surface-melt furnace and utilization of the slag[J]. Waste management, 1996, 16: 445-452.
    [40] Park Young Jun,Heo Jong. Vitrification of fly ash from municipal solid waste incinerator[J]. 2002,91, (1-3): 83-93.
    [41] Jakob A, Stucki S, Kuhn P. Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash[J], Environmental Science & Technology, 1995, 29(9): 2429-2436.
    [42] Pelino M, Karamanov A, Pisciella P, et al. Vitrification of electric arc furnace dusts[J]. Waste Management, 2002, 22 (8): 945-949.
    [43] Jakob A, Stucki S, R P W J, Complete heavy metal removal from fly ash by heat treatment: influence of chlorides on evaporation rates[J], Environmental Science & Technology, 1996, 30(11): 3275-3283.
    [44] Stucki S, Jakob A. Thermal treatment of incinerator fly ash: factors influencing the evaporation of ZnCl2[J]. Waste Management, 1998, 17 (4): 231-236.
    [45] Kirk Donald W, Chan Chris C Y, Marsh Hilary. Chromium behavior during thermal treatment of MSW fly ash[J]. Journal of Hazardous Materials, 2002, 90, (1): 39-49.
    [46] Ecke H, Sakanakura H, Matsuto T, et al. State-of-the-art treatment processes for municipal solid waste incineration residues in Japan[J]. Waste Management & Research, 2000, 18(1): 41-51.
    [47] Yoshiie Ryo, Nishimura Makoto, Moritomi Hiroshi. Influence of ash composition on heavy metal emissions in ash melting process[J]. Fuel, 2002, 81(10): 1335-1340.
    [48] Masaki Takaoka, Nobuo Takeda, Satoshi Miura. The behavior heavy metals and phosphorus in an ash melting process[J]. Water Science Technology, 1997, 36(11): 275-282.
    [49] Wang Kuen-Sheng, Chiang Kung-Yuh, Lin-shang-Ming, et al. Effect of chlorides on emissions of toxic compounds in waste incineration: study on partitioning characteristics of heavy metal[J]. Chemosphere, 1999, 38 (8): 1833-1849.
    [50] Masahide Nishigaki. Reflecting surface-melt furnace and utilization of the slag[J]. Waste Management, 1996, 16(5-6): 431-443.
    [51] 岳 鹏,施惠生,舒新玲. 城市生活垃圾焚烧灰渣胶凝活性的初步研究[J]. 水泥,2003,5: 13-15.
    [52] 阎常峰,林伯川,陈恩鉴,等. 垃圾焚烧灰渣的成分分析及其熔融特性[J]. 热能动力工程,17(100): 356-433.
    [53] 王 华,胡建杭,何 方,等. 无害化城市生活垃圾直接气化熔融焚烧技术的试验研究[J]. 工业加热,2004,33(4): 16-19.
    [54] 严建华,李建新,池 涌,等. 不同渗滤条件下垃圾焚烧飞灰中重金属的渗滤特性[J]. 环境科学,2004,25(4): 139-142.
    [55] 李建新,严建华,池 涌,等. 垃圾焚烧飞灰重金属含量与渗滤特性分析[J]. 环境科学学报,2004,24(1): 168-170.
    [56] 严建华,彭 雯,李晓东,等. 城市生活垃圾焚烧飞灰重金属的浸出特性[J]. 燃料化学学报,2004,32(1): 65-68.
    [57] 李建新,严建华,金余其,等. 生活垃圾焚烧飞灰重金属特性分析[J]. 浙江大学学报(工学版),2004, 38(4): 490-494.
    [58] 李建新,严建华,倪明江,等. 垃圾焚烧飞灰中重金属稳定化处理[J]. 热力发电,2003,12:64-68.
    [59] 严建华,李建新,池 涌,等. 垃圾焚烧飞灰重金属蒸发特性试验分析[J]. 环境科学,2004,25(2): 170-173.
    [60] 李建新,严建华,池 涌,等. 垃圾焚烧氯对重金属迁移特性的影响[J]. 燃料化学学报,2003,31(6): 579-583.
    [61] 李润东,池 涌,李水清,等. 城市垃圾焚烧飞灰熔融 DSC-DTA实验研究[J]. 环境科学,2002,23(4): 113-117.
    [62] 李润东,池 涌,王 雷,等. 城市垃圾焚烧飞灰熔融动力学研究[J]. 浙江大学学报(工学版),2002, 36(5): 498-503.
    [63] 李润东,聂永丰,王 雷,等. 垃圾焚烧飞灰中重金属和二噁英等痕量污染物分析[J]. 燃烧科学与技术,2004,10(6): 479-483.
    [64] 袁 玲,施惠生. 焚烧灰中重金属溶出行为及水泥固化机理[J]. 建筑材料学报,2004,7(1): 76-80.
    [65] 万 晓,王 伟,等. 垃圾焚烧飞灰中重金属分布与性质[J]. 环境科学,2005,26(3): 172-175.
    [66] 陈德珍,龚佰勋,姜宗顺,等. 绿矾处理垃圾焚烧灰渣过程中重金属的同时稳定化研究[J]. 环境科学学报,2005,25(1): 128-134.
    [67] 何品晶,章 骅,曹群科,等. 上海浦东垃圾焚烧发电厂飞灰性质研究[J]. 环境化学,2004,23(1): 28-42.
    [68] 王 华. 二噁英零排放化城市生活垃圾焚烧技术[M].北京:冶金工业出版社,2001.
    [69] Shin-ichi Sakai, Masakatsu Hiraoka. Municipal solid waste incinerator recycling by thermal processes[J]. Waste Management, 2000, 20(2-3): 249-258.
    [70] Koichiro Kinto. Ash melting system and reuse of products by arc processing[J]. Waste Management, 1996, 16(5-6): 423-430.
    [71] Koutaro Katou, Tomonori Asou, Yoshihito Kurauchi, et al. Melting municipal solid waste incineration residue by plasma melting furnace with a graphite electrode[J]. Thin Solid Films, 2001, 386(2): 183-188.
    [72] Sei-ichi Abe, Fumiaki Kambayashi, Masaharu Okada. Ash melting treatment by rotating type surface melting furnace[J]. Waste Management, 1996, 16(5-6): 431-443.
    [1] 陈德珍,张鹤声,龚佰勋. 垃圾焚烧炉飞灰的低温玻璃固化初步研究[J]. 上海环境科学,2002, 21(6): 344-349.
    [2] 尤孝方,李晓东,陆胜勇,等. 垃圾与煤混烧 PAM 排放特性研究[J]. 燃料化学学报,2002, 30(2): 130-135.
    [3] Krby C S,Rimstidt J D. Mineralogy and surface properties of municipal solid waste ash[J]. Environmental Science & Technology, 1993, 27(4): 652-660.
    [4] Young Jun Park,Jong Heo. Vitrification of fly ash from municipal solid waste incinerator[J]. Journal of Hazardous Materials, 2002, B91: 83-93.
    [5] Richer U, Birnbaum L. Detailed investigation of filter ash from municipal solid waste incineration[J]. Waste Management Research, 1998, 16(2): 190-197.
    [6] Le Forestier, Libourel G. Characterization of flue gas residues from municipal solid waste combustors[J]. Environmental Science & Technology, 1998, 32(15): 2250-2256.
    [7] Akiko kida,Yukio Noma,Teruji Imada. Chemical speciation and leaching properties of elements in municipal incinerator ashes[J]. Waste Management, 1996, 16(5-6): 527-536.
    [8] Stegemann J A, Buenfeld N R. Prediction of leachate pH for cement paste containing pure metal compounds[J]. Journal of Hazardous Materials, 2002, 90(2): 169-188.
    [9] Li X D, Poon C S, Sun H, et al. Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials[J]. Journal of Hazardous Materials, 2001, 82(3): 215-230.
    [10] Lundtorp K, Jensen D L, Sorensen M A, et al. On-site treatment and landfilling of MSWI air pollution control residues[J] . Journal of Hazardous Materials, 2003, 97(1): 59-70.
    [11] Tay J H, Goh ATC. Engineering properties of incinerator reside[J]. J Environ. Eng. ASCE, 1991, 117(2): 224-235.
    [12] 美国环境保护局固体废弃物办公室编. 固体废弃物试验分析评价手册[M]. 中国环境检测总站, 中国科学院生态环境研究中心, 北京: 中国环境科学出版社, 1992.
    [13] GB5086.2-1997,危险废物鉴别标准[S].
    [14] Jakob A, Stucki S, R P W J, Complete heavy metal removal from fly ash by heat treatment: influence of chlorides on evaporation rates[J], Environmental Science & Technology, 1996, 30(11): 3275-3283.
    [15] Ryo Yoshiie. Influence of ash composition on heavy metal emissions in ash melting process[J]. Fuel 2002, 81: 1335-1340.
    [16] J W Graydon, D W Kirk. in: J.P. Hager (Ed.), Proceedings of EPD Congress[M]. 1992.
    [17] 张木彬, 任传雄, 郭运昌, 等. 都市垃圾焚化炉重金属排放系数之初步探讨, 台北市政府环境保护局内湖垃圾焚化厂委托计划[M]. 1997.
    [18] Hwa Tay Joo, S Jeyaseelan. Conditioning of oily sludge with municipal solid wastes incinerator fly ash[J]. Water Science Technology, 1997,(35): 231-238.
    [19] Derie R. A new way to stabilize fly ash from municipal incinerator[J]. Waste Management, 1996,(16): 711-716.
    [20] Andac Muberra, Fredrik Paul Glasser. Long-term leaching mechanisms of Portland cement-stabilized municipal solid waste fly ash in carbonated water[J]. Cement and Concrete Research, 1999, 29(2): 179-186.
    [21] Eighmy T T, Eusden J D, Krzanowski J E, et al. Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipitator ash[J]. Environmental Science & Technology, 1995, 29(5): 629-646.
    [22] Ryo Yoshiie, Megumi Kawaguchi, Makoto Nishimura. Experimental analysis of heavy metal emission in melting treatment of incinerator ash[J]. Journal of Chemical Engineering of Japan, 2000, 33(3):551-554.
    [23] Kwinam Park, Jangsoo Hyun, Sanjeev Maken, et al. Vitrification of municipal solid waste incinerator fly ash using brown’s gas[J]. Energy & Fuels, 2005, 19(1):258-282.
    [24] Ontiveros J T, Clapp T L, Kosson D S. Physical properties and chemical species distributions within municipal waste combuster ashes[J]. Environmental Progress, 1989, 8(3): 200-206.
    [25] Katsunori N, Yoshikazu N, Hitoshi O. Melting and stone production using MSW incinerated ash[J]. Waste Management, 2001, 21(5): 443-449.
    [26] Vogg H, Braun H. The specific role of cadmium and mercury in municipal solid waste incineration[J]. Waste Management & Research, 1985, 4(1): 65-74.
    [27] 李润东,聂永丰,李爱民,等. 垃圾焚烧飞灰理化特性研究[J]. 燃料化学学报,2004,32(2): 175-179.
    [28] 阎常峰,林伯川,陈恩鉴,等. 垃圾焚烧灰渣的成分分析及其熔融特性[J]. 热能动力工程,2002, 17(4): 356-359.
    [29] 李润东,池 涌,李水清,等. 城市垃圾焚烧飞灰熔融 DSC-DTA实验研究[J]. 环境科学,2002,23(4): 113-117.
    [30] 岑可法, 樊建人,池作和,等. 锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M]. 北京:科学出版社, 1994.
    [31] 张祖恩,魏玉麟, 王鸿博, 等. 焚化灰渣物化特性及其溶出毒性之调查研究[C]. 第十四届废弃物处理技术研讨会论文集, 中华民国环境工程学会. 1999, 6: 20-23.
    [32] Min Li, Song Hu, Jun Xiang, et al. Characterization of fly ashes two Chinese municipal solid waste incinerators[J]. Energy & Fuels, 2003, 17(2): 1487-1491.
    [33] Hasan Belevi, Madeleine Langmeier. Factors determining the element behavior in municipal solid waste incinerators. 2. laboratory experiments[J]. Environ. Sci. Technol., 2000, 34(12): 2507-2512.
    [34] M A Fernandez, L Martinez, M Segarra, et al. Behavior of heavy metals in combustion gases of urban waste incinerators[J]. Environmental Science & Technology, 1992, 26(5): 1040-1047.
    [35] James A Mulholland, Adel F Sarofim. Mechanisms of inorganic particle formation during suspension heating of simulated aqueous wastes[J]. Environ. Sci. Technol., 1991, 25(2): 268-274.
    [36] T W Cheng. Effect of additional materials on the properties of glass-ceramic produced from incinerator fly ashes[J]. Chemosphere, 2004, 56(2): 127-131.
    [37] 李润东,聂永丰,王 雷,等. 垃圾焚烧飞灰中重金属和二噁英痕量污染物分析[J]. 燃烧科学与技术,2004,10(6): 479-483.
    [38] GB5085.3-1996, 危险废物鉴别标准[S].
    [39] Akiko Kida, Yukio Noma, Teruji Imada. Chemical specification and leaching properties of elements in municipal incinerators ashes[J]. Waste Management, 1996, 16(5,6): 527-536.
    [40] 严建华,彭 雯,李晓东,等. 城市生活垃圾焚烧飞灰重金属的浸出特性[J]. 燃料化学学报,2004,32(1): 65-68.
    [41] 李建新,严建华,金余其,等. 生活垃圾焚烧飞灰重金属特性分析[J]. 浙江大学学报(工学版),2004, 38(4): 490-494.
    [42] 何品晶,章 骅,曹群科,等. 上海浦东垃圾焚烧发电厂飞灰性质研究[J]. 环境化学,2004,23(1): 28-42.
    [43] S Iretskaya, A Nzihou, C Zanraoui, et al. Metal leaching from MSW fly ash before and after chemical and thermal treatments[J]. Environmental Progress, 1999, 18(2): 144-148.
    [44] Hidehiro Kaneko, Minoru Yamaguchi. Extraction conditions and the amount of heavy metals released from municipal solid waste incinerator fly ash[J]. J. of the Japan Society of Waste Management Experts, 1994, 5(2): 45-53 (in Japanese).
    [45] Akiko Kida. The pH of incineration ash and leaching of metals from there[J]. Proceedings of the 4thAnnual Conference of the Japan Society of the Waste Management Experts, 1993, 965-968 (in Japanese).
    [46] Shi-chi Sakai, Satoshi Mizutani, Hiroshi Takatsuki, et al. Study about the leaching of test for the waste-availability test and pH-dependent test[J]. J. of the Japan Society of Waste Management Experts, 1995, 6(6): 225-234(in Japanese).
    [47] Satoshi Mizutani, Tsuneyuki Yoshida, Shin-ichi Sakai, et al. Release of metals from MSWI fly ash and availability in alkali condition[J]. Waste Management, 1996, 16(5-6): 537-544.
    [1] 张 益,赵由才. 生活垃圾焚烧技术[M]. 北京, 化学工业出版社 环境科学与工程中心, 2001.
    [2] Chun Sung Ho. The Current Development of Ash Melting Technologies[J],Bulletin of the College of Engineering, N.T.U., 2002, 84(2): 137-152.
    [3] A Jakob. Complete heavy metal removal from fly ash heat treatment: influence of chlorides on evaporation rates[J]. Environmental Science & Technology, 1996, 30: 3275-3283.
    [4] Ryo Yoshiie. Influence of ash composition on heavy metal emissions in ash melting process[J]. Fuel 2002, 81: 1335-1340.
    [5] J W Graydon, D W Kirk. in: J.P. Hager (Ed.), Proceedings of EPD Congress[M]. 1992.
    [6] 张木彬, 任传雄, 郭运昌, 等. 都市垃圾焚化炉重金属排放系数之初步探讨, 台北市政府环境保护局内湖垃圾焚化厂委托计划[M]. 1997.
    [7] Hwa Tay Joo, S Jeyaseelan. Conditioning of oily sludge with municipal solid wastes incinerator fly ash[J]. Water Science Technology, 1997, (35): 231-238.
    [8] Derie R. A new way to stabilize fly ash from municipal incinerator[J]. Waste Management, 1996,(16): 711-716.
    [9] Andac Muberra, Fredrik Paul Glasser. Long-term leaching mechanisms of Portland cement-stabilized municipal solid waste fly ash in carbonated water[J]. Cement and Concrete Research, 1999,(29): 179-186.
    [10] 美国环境保护局固体废弃物办公室编. 固体废弃物试验分析评价手册. 中国环境检测总站, 中国科学院生态环境研究中心, 北京市环境检测中心译. 北京: 中国环境科学出版社, 1992.
    [11] 岑可法, 樊建人,池作和,等. 锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M]. 北京:科学出版社, 1994.
    [12] 高瑞平,李晓光,施剑林, 等. 先进陶瓷物理与化学原理及技术[M]. 北京:科学出版社,2001.
    [13] A Steiner, R G C Beerkens. Phase separation during melting of fly ashes[J]. Klei, Glas en Keramiek, 2001, 22 (3): 6-9.
    [14] Bethanis S, Cheeseman C R, Sollars C J. Properties and microstructure of sintered incinerator bottom ash[J]. Ceramics International, 2002, 28(8): 881-886.
    [15] 江康钰, 王鲲生. 污泥熔融处理及资源再利用技术[J].工业污染防治, 1997, 64: 156-188.
    [16] Wang Kuen-Sheng, Sun Chang-Jung, Liu Chung-Yu, et al. Effects of the type of sintering atmosphere on the chromium leachability of thermal-treated municipal solid waste incinerator fly ash[J]. Waste Management, 2001, 21(1): 85-91.
    [17] Meij R. Sampling method based on activated carbon for gaseous mercury in ambient air and flue gases[J]. Water, Air and Soil Pollution, 1991, 56(4): 117-129.
    [18] Chris C Y Chan,Donald W Kirk,Behavior of metals under the conditions of roasting MSW incinerator fly ash with chlorinating[J]. Journal of Hazardous Materials, 1999, B 64: 75-89.
    [19] A Polettini, R Pomi, L Trinci, A Muntoni, et al. Engineering and environmental properties of thermally treated mixtures containing MSWI fly ash and low-cost additives[J]. Chemosphere, 2004, 56(10): 901-910.
    [20] Mizutani Satoshi, Yoshida Tsuneyuki, Sakai Shin-ichi, et al. Release of metals from MSW I fly ash and availability in alkali condition[J]. Waste Management, 1996, 16(5-6): 537-544.
    [21] M A Fernandez, L Martinez, M Segarra, et al. Behavior of heavy metals in combustion gases of urban waste incinerators[J]. Environmental Science & Technology, 1992, 26(5): 1040-1047.
    [22] Durlak, Susan K, Biswas Pratim, et al. Equilibrium analysis of the affect of temperature, moisture and sodium content on heavy metal emissions from municipal solid waste incinerators[J]. Journal of Hazardous Materials, 1997, 56(1-2): 1-20
    [23] Meij R. The fate of mercury in coal-fired power plants and the influence of wet flue-gas desulphurization[J]. Water, Air and Soil Pollution, 1991, 11: 21-56.
    [24] 李建新,严建华,池 涌,等. 异重流化床垃圾与煤混烧重金属的排放特性[J]. 中国电机工程学报. 2003, 23(12):179-183.
    [25] 孙路石,陆继东,李 敏,等. 垃圾焚烧中 Cd, Pb, Zn 挥发行为的研究[J]. 中国电机工程学报. 2004, 24(8): 157-161.
    [26] 陈尚兵,金保升,金 浩,等.城市垃圾焚烧处理中重金属和有机氛化物的二次污染与防治[J]. 环境导报,1998, 6: 7-10.
    [27] Vassilev S Y Braekman-Danheux C, Lauren Ph, et al. Capture and inertization of some trace elements during combustion of refuse-derived char from municipal solid waste[J]. Fue1, 1999, 78(10): 1131-1145.
    [28] Yoshiie Ryo, Nishimura Makoto, Moritomi Hiroshi. Influence of ash composition on heavy metal emissions in ash melting process[J]. Fue1, 2002, 81(10): 1335-1340.
    [29] M Romero, R D Rawlings, J M Rincon. Development of a new glass-ceramic by means of controlled vitrification and crystallisation of inorganic wastes from urban incineration[J]. Journal European Ceramic Society, 1999, 19(12): 2049-2058.
    [30] Chris C Y Chan, Donald W Kirk, Hilayr Marsh. The behavior of Al in MSW incinerator fly ash during thermal treatment[J]. Journal of hazardous materials, 2000, B76(1): 103-111.
    [31] 黄亚继, 金保升, 仲兆平, 等. 痕量元素在煤粉炉中排放特性的研究[J]. 中国电机工程学报. 2003, 23(11): 205-210.
    [32] A Jakob, S Stucki, P Kuhn. Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash [J]. Environ Sci Technol, 1995, 29(9): 2429-2436.
    [33] Hirth M, Jochum J, Jodeit H, et al. In Proceedings of Enviotech[M]. Amsterdam: Elsevier Science Publishers, 1989. 267-281.
    [34] Kjell E. Haugsten, Bengt Gustavson. Environmental properties of vitrified fly ash from hazardous and municipal waste incineration[J]. Waste Management, 2000, 20(2): 167-176.
    [35] Young Jun Park, Jong Heo. Vitrification of fly ash from municipal solid waste incinerator[J]. Journal of Hazardous Materials, 2002, B91(1-3): 83-93.
    [36] Park K, Hyun J, Maken S et al. Vitrification of Municipal Solid Waste Incinerator Fly Ash Using Brown's Gas[J].Energy & Fuels, 2005, 19(1): 258-262.
    [37] Sukrut S Thipse, Edward L Dreizin. Metal partitioning in products of incineration of municipal solid waste[J]. Chemophere, 2002, 46(6): 837-849.
    [1] L-E Amand, H Miettinen-Westberg, M Karlsson, et al. Co-Combustion of dried sewage sludge and coal-the fate of heavy metals[C]. In: Proceeding of 16th International Conference on Fluidized Beds Combustion. Reno. Nevada, 2001.
    [2] 王 伟,万 晓. 垃圾焚烧飞灰中重金属的存在方式及形成机理[J]. 城市环境与城市生态,2003,16(8): 7-9.
    [3] Floyd Hasselriis, Anthony Licata. Analysis of heavy metal emission data from municipal waste combustion[J]. Journal of Hazardous Materials, 1996, 47: 77-102.
    [4] Sukrut S Thipse, Mirko Schoenitz, Edward L Dreizin. Morphology and composition of the fly ash particles produced in incineration of municipal solid waste[J]. Fuel Processing Technology, 2002, 75: 179-184.
    [5] 李润东,池 涌,王 雷,等. 城市垃圾焚烧飞灰熔融动力学研究[J]. 浙江大学学报(工学版),2002,36(5): 498-503.
    [6] 岑可法,樊建人,池作和,等. 锅炉和热交换器的积灰、结渣、磨损和磨蚀的防止原理与计算. 北京:科学出版社,1994.
    [7] J 塞克利,J W 埃文斯,H Y 索恩. 气-固反应[M]. 北京:中国建筑工业出版社,1986.
    [8] 王永华、刘文荣. 矿物学. 北京:地质出版社,1985.
    [9] Durlak S K, Biswas P, Shi J. Equilibrium analysis of the affect of temperature, moisture and sodium content on heavy metal emission from municipal solid waste incinerators[J]. Journal of Hazardous Materials, 1997, 56(1-2):1-20.
    [10] Verhulst D, Buekens A. Thermodynamic behavior of metal chlorides and sulfates under the conditions of incineration furnaces[J]. Environmental Science & Technology, 1996, 30(1): 50-56.
    [11] Masaki Takaoka, Nobuo Takeda, Satoshi Miura. The behavior of heavy metals and phosphorus in an ash melting process[J]. Water Science Technology, 1997, 36(11): 275-282.
    [12] 熊 毅,等. 土壤胶体[M]. 北京:科学出版社,1981.
    [13] Jakob A, Stucki S, R P W J, Complete heavy metal removal from fly ash by heat treatment: influence of chlorides on evaporation rates[J], Environmental Science & Technology, 1996, 30(11): 3275-3283.
    [14] E G Eddings, J S Lighty, J A Kozinski, Determination of metal behavior during the incineration of contaminated montmorillonite clay[J]. Environmental Science & Technology, 1994, 28: 1791-1800.
    [15] Stephane Abanades, Gilles Flamant, Daniel Gauthier. Kinetics of heavy metal vaporization from model wastes in a fluidized bed[J]. Environmental Science & Technology, 2002, 36(17): 3879-3884.
    [16] A Jakob, S Stucki, P Kuhn. Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash[J]. Environmental Science & Technology, 1995, 29(9): 2429-2436.
    [17] 新井纪男,三浦隆利,宫前茂广. 燃烧生成物的发生与抑制技术[M]. 北京:科学出版社,2001.
    [1] 周浩生,陆继东,刘德昌,等. 循环流化床稀相区流动结构的实验研究[J]. 燃烧科学与技术,1998,4(4): 391-395.
    [2] 岑可法,倪明江,骆仲泱,等. 循环流化床锅炉理论设计与运行[M]. 北京:中国电力出版社,1998.
    [3] 周宏仓. 流化床煤部分气化/半焦燃烧多环芳烃生成与排放特性的研究[D]: [博士学位论文]. 东南大学,2005.
    [4] 沙兴中,杨南星. 煤的气化与应用[M]. 上海:华东理工大学出版社,1995.
    [5] A Ocampoa, E Arenasb, F Chejne, et al. An experimental study on gasification of Colombian coal in fluidised bed[J]. Fuel, 2003, 82: 161-164.
    [6] Jiejie Huang, Yitian Fang, Hanshi Chen, et al. Coal gasification characteristic in a pressurized fluidized bed[J]. Energy & Fuels, 2003, 17: 1474-1479.
    [7] Lawrence J Shadle, Esmail R Monazam, Michael L Swanson. Coal gasification in a transport reactor[J]. Ind. Eng. Chem. Res. 2001, 40: 2782-2792.
    [8] 彭万旺,陈家仁. 加压流化床粉煤气化工艺特性研究[J]. 煤炭学报,1994,19(3):315-323.
    [9] 龚家强. 重庆矿区、六盘水矿区煤中微量元素特征研究[D]: [硕士学位论文]. 中国地质大学, 2001.
    [10] 郭英廷,侯慧敏,李 娟,等. 煤中砷、氟、汞、铅、镉在灰化过程中的逸散规律[J]. 中国煤田地质,1994,6(4): 54-56.
    [11] Mercedes Diaz-Somoano, M R Martinez-Tarazona. Retention of trace elements using fly ash in a coal gasification flue gas[J]. Journal of Chemical Technology and Biotechnology, 2002, 77: 396-402.
    [12] Stanislav V Vassilev, Greta M Eskenazy, Christina G Vassileva. Behavior of elements and minerals during preparation and combustion of the pernik coal, buglaria[J]. Fuel Processing Technology, 2001, 72: 103-129.
    [13] A H Clements, L F Damiano, D Gong, et al. Partitioning behavior of some toxic volatile elements during stoker and fluidized bed combustion of alkaline sub-bituminous coal[J]. 1999, 78: 1379-1385.
    [14] A H Clements, J M Deely, D Gonga, et al. Partitioning behavior of some toxic trace elements during coal combustion-the influence of events occurring during the deposition stage[J]. Fuel, 2000, 79: 1781-1784.
    [15] 黄亚继. 煤燃烧和气化过程中微量元素赋存、迁移规律的研究[D]:[博士学位论文]. 东南大学,2004.
    [16] 肖 睿. 煤加压部分气化试验研究与数值模拟[D]:[博士学位论文]. 东南大学,2005.
    [17] 谢克昌. 煤的结构与反应性[M]. 北京:科学出版社. 2002.
    [18] 黄亚继,金保升,仲兆平,等. 空煤比对煤气化过程中痕量元素迁移规律的影响[J].热能动力工程,2004,19(4):402-408.
    [19] C Franco,F Pionto,I Gulyurtlu,et al. The study of reactions influencing the biomass steam gasification process[J]. Fuel, 2003, 82: 835-842.
    [20] 肖  睿,金保升,欧阳嘉,等. 空气鼓风流化床煤部分气化炉煤气成分与热值试验[J]. 动力工程,2004,24(3):416-420.
    [21] Rizeq R G, Hansell D W, Seeker W R. Predictions of metals emissions and partitioning in coal-fired combustion systems[J]. Fuel Processing Technology, 1994, 39(1-3): 219-236.
    [22] Jong W, Unal O, Andries J, et al. Thermochemical conversion of brown coal and biomass in a pressurized fluidized bed gasifier with hot gas filtration using ceramic channel filters: measurements and gasifier modeling[J]. Applied Energy,2003,74: 425-437.
    [23] Yitian Fang,Jiejie Huang,Yang Wang,Bijiang Zhang. Experiment and mathematical modeling of abench-scale circulation fluidized bed gasification [J]. Fuel Processing Technology,2001,69:29-44.
    [24] 刘桂建,彭子成,杨 萍,等. 煤中微量元素在燃烧过程中的变化[J]. 燃料化学学报,2001,29(2): 119-123.
    [25] Uberoi M, Shadman F. Aluminosilicates As potential sorbents for controlling metal emissions[J]. Acs Symposium Series, 1993, 515: 214-222.
    [26] Uberoi M, Shadman F. High-temperature removal of cadmium compounds using solid sorbents[J]. Environmental Science & Technology, 1991, 25(7): 1285-1289.
    [27] Uberoi M, Shadman F. Sorbents for removal of lead compounds from hot flue-gases[J]. AICHE Journal, 1990, 36(2): 307-309.
    [1] 陈义胜,贺友多,陈春元, 等. 单颗粒煤粉燃烧数学模型[J]. 钢铁研究学报,1997,9(3): 1-5.
    [2] W P Linak, J O L Wendt. Toxic metal emissions from incineration: mechanisms and control[J]. Prog. Energy Combust. Sci., 1993, 19: 145-185.
    [3] L S Morf, P H Brunner, S Spaun. Effect of operating conditions and input variations on the partitioning of metals in a municipal solid waste incinerator[J]. Waste Manage. Res., 2000, 18: 4-15.
    [4] T C Ho, H T Lee, C C Shiao, J R. Hopper, W.D. Bostick, Metal behavior during fluidized bed thermal treatment of soil[J]. Waste Management, 1995, 15(5-6): 325-334.
    [5] J 塞克利,J W 埃文斯,H Y 索恩. 气-固反应[M]. 北京:中国建筑工业出版社,1986.
    [6] T K 修五德,R L 皮克福特等,传热学[M]. 北京:化学工业出版社,1988.
    [7] 陶文铨. 数值传热学[M]. 西安:西安交通大学出版社, 1995.
    [8] H Y Sohn等. 提取冶金速率过程[M]. 北京:冶金工业出版社,1984.
    [9] 杨世铭,陶文铨. 传热学[M]. 北京:高等教育出版社,1998.
    [10] H.Zhou, S.Abanades, G.Flamant, et al. Simulate of heavy metal vaporization dynamics in a fluidised bed [J]. Chemical engineering science, 2002, 57: 2603-2614.
    [11] 王乃忠,滕兰珍. 水处理理论基础[M]. 成都:西南交通大学出版社,1988.
    [12] 寇 公.煤炭气化工程[M].北京:机械工业出版社,1992.
    [13] [美]T K 修五德,R L 皮克福特,C R 威尔基. 传质学[M]. 北京:化学工业出版社,1988.
    [14] Sennior C L, Helble J J, Sarofim A F. Emissions of mercury, trace element, and fine particles from stationary combustion sources[J]. Fuel Processing Technology, 2000, 65: 263-288.
    [15] Hultgren R, Desai P D, Hawkins D T, et al. Selected values of the thermodynamic properties of the elements[J]. American Society for metals, Metal Park, OH, 1973.
    [16] R J Quann, A F Sarofim. Vaporization of refractory oxides during pulverized coal combustion[C]. 19th symposium international on combustion, 1982: 1429-1440.
    [17] 程俊峰. 燃煤锅炉痕量元素释放、分布与排放研究[D]. [博士学位论文]. 华中科技大学,2002. 
    [18] 孙 康. 宏观反应动力学及其解析方法[M]. 北京:冶金工业出版社,1998. 
    [19] 韩其勇. 冶金过程动力学[M]. 北京:冶金工业出版社,1983. 
    [20] 华一新. 冶金过程动力学[M]. 北京:冶金工业出版社,2004.
    [21] S Abanades, G Flamant, D Gauthier. Modeling of heavy metal vaporization from a mineral matrix[J]. Journal of Hazardous Materials, 2001, 88(1): 75-94.
    [22] T C Ho, H T Lee, C C Shiao et al. Metal behaviour during fluidised bed thermal treatment of soil[J]. Waste Management,1995, 15(5-6): 325-334.
    [23] [美]E L 柯斯乐. 扩散流体系统中的传质[M]. 北京:化学工业出版社,2002.
    [24] 印永嘉. 大学化学手册[M]. 济南:山东科学技术出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700