神经网络内电振荡活动特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同步电振荡活动是神经系统中普遍存在的一种现象,对同步电振荡活动的研究,是理解大脑非凡计算能力形成的基础,也有助于解释神经疾病的发病机理,辅助脑电科学诊断疾病,同步电振荡活动产生的起源和机制是什么?其作用是什么?这些问题已引起人们极大关注,成为神经科学领域研究的热点。
     基于统计理论的广义噪声在生物体内部普遍存在,它从不同的方面影响神经元的动力学活动以及神经电信号的传递。噪声如何影响神经信号的发生?噪声和突触如何协同工作来影响神经信号的转导、传递?这些问题引起了神经科学工作者、生物电磁学工作者以及物理学工作者的极大兴趣。
     在上述双重意义的鼓舞下,本工作系统分析了噪声对单个神经元触发动作电位的影响、噪声和耦合对两个神经元频率同步活动的影响、噪声和电突触耦合如何协同影响有限多个神经元组成的神经网络的精确同步活动和触发动作电位时间精确性、以及它们对神经元群体之间信号传递的影响。对神经网络内电振荡活动特性的研究做了有益的探索。本文的主要成果是:
     1、对于单个神经元而言,随着噪声强度的增加,其触发动作电位的频率也随之增加,这恰恰为噪声可以诱发神经元同步振荡活动的基础;
     2、按照频率编码的思想,精确分析了噪声和耦合对两个神经元同步活动的影响:噪声强度和耦合强度对神经元的同步活动起着相互补充的作用,绘制了同步活动和噪声强度、耦合强度的三维关系图;
     3、采用动力学平均场近似理论和群体编码的思想,对个FitzHugh-Nagumo神经元网络的精确同步活动和触发动作电位时间精确性进行分析,其结果为:(1)噪声增加神经元活动的随机性,减小神经元活动的关联性,降低系统的同步活动,膜电位的分布展宽,触发动作电位时间精确性降低;(2)耦合强度可以提高神经元的同步活动,抑制系统内部局域的波动,膜电位分布变窄,触发动作电位时间精确性提高;(3)非常值的重视的是与化学突触相比较,在相同的耦合强度下,电突触能够极大地提高神经元的同步振荡活动和触发动作电位时间精确性。N
     4、建立了FitzHugh-Nagumo神经元群体模型,计算了影响两个群体之间信号传递的噪声强度和耦合强度的阈值。
Electrical synchronous oscillation activities are ubiquitous phenomenon in neural systems. The study about synchronization is the basis of understanding the form of the huge computational ability of the brain. It is helpful to explain the mechanism of neural diseases and to assist to diagnose brain diseases by electroencephalogram, and it is What are the origin and the mechanism of synchronization and what is its effect, which have excited the huge attention of many researchers and are the focus for study.
     Noises are ubiquitous in vivo and can alter the response of neurons and the signal propagation in various ways. However, how does noise affect the origination of neural signal and how do noise and synapse alter the propagation of the signal jointly? These issues have stimulated interest of many biologists、bioelectromagnetics scientists and physicists..
     By inspiring of the above-mentioned sense, our work has studied in detail the effects of noise on the action potential of a single neuron, the noise intensity and the coupled strength on frequency locking, the noise intensity and the coupling strength on the synchronization, the spike timing precision and the signal propagation between the two neuronal ensembles. By rigorous numerical simulation, the work makes a valuable exploration in the propagation of neural signal. The major original results in the thesis are summarized as follows:
     1. For a single neuron, the spike rate increases with the noise intensity, which is the basis of the noise-induced frequency locking between neurons.
     2. Rate synchronization of two coupled neurons is studied. The noise intensity and the coupled strength play a complementary role on neuronal synchronous activity: A three-dimensional diagram is plotted to show the synchronization regime.
     3. Adopting the dynamical mean-field approximation theory and population code, it is discussed by numerical simulation that the effects of noise intensity and the coupling strength on the synchronization and the spike timing precision, and some new results are gotten: (1) Noise increases the randomness of the neuron response and decreases the correlation and the synchronization, and the distribution of the membrane voltage broadens, the spike timing precision decreases; (2) Coupling among neurons works to improve the synchronous dynamics and to suppress local fluctuations, and the distribution of the membrane voltage become narrower, the spike timing precision increases; (3) Compared with the chemical synapse, the electrical synapse can enhance the synchronization and the spike timing precision largely for the same coupling, which is significative.
     4. The FitzHugh-Nagumo neuron ensembles are constructed, and they are calculated that the thresholds of the noise intensity and the coupling strength affecting the signal propagation.
引文
1. 许科. 神经生物纲要. 科学出版社. 2003.
    2. Gray C M, Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. U. S. A.,1989, 86:1698-1702.
    3. Vonder Malsberg C. In: Palm, G & Aertsen, A. (eds), Brain Theory, Springer-Verlag, Berlin, 1986:161-176.
    4. Riehle A etal. Spike synchronization and rate modulation differentially involved in motor cortical function. Science, 1997, 278: 1500-1503.
    5. Carlen PL, Perez-Velazquez JL, Valiante TA, et al. Ellectric coupling in epileptogenesis. In Spray DC, Dermietzel R. Gap junction in the nervous system [C]. Austin: R. G. Landes Publisher, 1996, 132-140
    6. Laurent, G. Dynamical representation of odors by oscillating and evolving neural assemblies. Trends Neurosci., 1996, 19: 489-496
    7. Desmaison, D., Vincent, J.-D. and Liedo, P.-M. Control of action potential timing by intrinisic subthreshold oscillations in olfactory bulb output neurons. J. Neurosci., 1999, 19:10727-10737
    8. Abarbanel H D I, Rabinovich M I, Selverson A, Bazhenov M V, Huerta R, Sushchik M, Rubchinskii L L. The synchronization of Neural Assemblies,Usp.Fiz.Nauk.,1996,166:1-28.
    9. Kuramoto Y. Rhythms and turbulence in populations of chemical oscillators, Physica A, 1981, 106:128-143.
    10. Kuramoto Y, Nishikawa. Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities I., J.Stat.Phys,1987, 49: 569-605.
    11. Bonilla L L, Casado J M, Morillo M. Self-synchronization of populations of nonlinear oscillators in the thermodynamic limit, J.Stat.Phys , 1987,48: 571-591.
    12. Daido H. Lower Critical Dimension for Populations of Oscillators with Randomly Distributed Frequencies: A Renormalization-Group Analysis, Phys.Rev.Lett.,1998, 61:231-234.
    13. Kurrer C, Schulten K. Effect of noise and perturbations on limit cycle systems, Phys.Rev.E,1995, 50: 311-320.
    14. Sherman A, Rinzel J. Rhythmogenic effects of weak electrotonic coupling in neuronal models, Proceedings of the National Academy of Sciences, 1992, 89: 2471-2474.
    15. Casado J M, Baltanás J P. Phase switching in a system of two noisy Hodgkin-Huxley neurons coupled by a diffusive interaction, Phys. Rev. E, 2003, 68: 061917.
    16. Riehle A, Grum S, Diesmann M, Aertsen A. Spike synchronization and rate modulation differentially involved in motor cortical function, Science, 1997, 278:1950-1953.
    17. 寿天德. 神经生物学. 高等教育出版社. 2001:15-16.
    18. Hodgkin A L, Huxley A F. Currents carried by sodium and potassium ions through the membran of the giant axon of logigo. J Physiol, 1952, 116: 449-472.
    19. Hodgkin A L, Huxley A F. The components of membrane conductance in the giant axon of loligo. J Physiol, 1952, 116: 473-496.
    20. Hodgkin A L, Huxley A F. The dual effect of membrane potential on sodium conductance in the giant axon of loligo. J Physiol, 1952, 116: 497-506.
    21. Huguenard J, McCormick D A. Electrophysiology of the neuron. Oxford Univ. Press, New York. 1994.
    22. John H Byrne, James L Roberts. From molecules to networks: an introduction to celluar and molecular neuroscience. Elesvier Academic Press. 2004: 125.
    23. Hodgkin A L, Huxley A F, Katz B. Measurements of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol.(London), 1952, 116: 424-448.
    24. Hodgkin A L, Huxley A F. A quantitative desctiption of membrane current and its application to conduction and excitation in nerve. J Physiol.(London), 1952, 117: 500-544.
    25. Huxley A F. Excitation and conduction in nerve Quantitative analysis. Science, 1964, 145: 1154-1159.
    26. FitzHugh R. Thresholds and plateaus in the Hodgkin-Huxley equations. J. Gen. Physiol., 1960, 43:867-896.
    27. Krinskii V I, Kokoz Y M. Analysis of equations of excitable membranes. I. Reduction of the Hodgkin-Huxley equations to a second order system. Biofizika, 1973, 18:506-511.
    28. Rinzel J. Excitation dynamics: Insights from simplified membrane models. Fed. Proc. 1985, 44: 2944-2946.
    29. Abbot L F. Single neuron dynamics: An introduction. In “Neural Modeling and Neural Networks” (F. Ventriglia, ed.). Pergamon Press, New York. 1994: 57-78.
    30. Butera R J. Multirhythmic butsting. Chaos, 1998, 8: 274-284.
    31. Kocak H. differential and Difference Equations through Computer Experiments. 2nd ed. Springer-Verlag, New York, 1999.
    32. Gall W G, Zhou Y. An organizing center for planar neural excitability. Neurocomp. 2000, 32/33:
    757-765.
    33. Hoppensteade F, Izhikevich E. Canonical neural models.In “Brain Theory and Neural Networks”(M. A. Arbib, Ed.), MIT Press, Cambridge, MA, 2001: 1-7.
    34. Canavier C C, Baxter D A, Byrne J H. Repetitive action potential firing. Im” Encyclopedia of Life Sciences” (N. P. Group Ed.), on line (http://www.els.net). Grove’s Dictionaries, New York.
    35. Wulfram G, Werner M K. Spiking neuron model, Cambridge University Press, 2002:70.
    36. Kepler T B., Abbott, L. F., and Marder, E. Reduction of conductance-based neuron models, Biol. Cybern., 1992, 66: 381-387.
    37. Wulfram G, Werner M K. Spiking neuron model, Cambridge University Press, 2002:72-74.
    38. FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J., 1961, 1: 445-466.
    39. Nagumo J S, Arimato S, Yoshizawa S. An active pulse transmission line simulating a nerve axon. Proc. IRE. 1962, 50: 2061-2070.
    40. Lindner B, Ph.D.thesis, coherence and stochastic resonance in nonlinear dynamical systems, Humboldt University at Berlin (Logos Verlag, Berlin), 2002.
    41. Longtin A. Nonlinear forecasting of spike trains from sensory neurons. Int. J. Bifurc. Chaos, 1993, 3: 651-661.
    42. http://www.scholarpedia.org/article/FitzHugh-Nagumo_Model
    43. van Vreeswijk C, Sompolinsky H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 1996, 274:1724-1726.
    44. Grinnell A D. Electrical interaction between antidromically stimulated frog motoneurones and dorsal root afferents: enhancement by gallamine and TEA. J. Physiol. 1970, 210:17-43.
    45. Baker R, Llinás R. Electrotonic coupling between neurones in the rat mesencephalic nucleus. J. Physiol. 1971, 212:45-63.
    46. MacViar B A, Dudek F E. Electrotonic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices. Science, 1981, 213:782-785.
    47. McMahon D G. Modulation of electrical synaptic transmission in zebrafish retinal horizontal cells. J. Neurosci. 1994, 14:1722-1734.
    48. 丘冠英, 彭银祥. 生物物理学. 武汉大学出版社. 2001: 251-253.
    49. Frank E. Synapse Elimination--For Nerves It's All or Nothing. Science, 1997, 275:324-325.
    50. Balenzuela P, García-Ojalvo J. Role of chemical synapses in coupled neurons with noise. Phys. Rev. E., 2005, 72: 021901.
    51. Destexhe A, Mainen Z F, Sejnowski T J. An efficient method for computing synaptic conductances based on a kinetic model of receptor binding. Neural Comput.,1994, 6: 14-18.
    52. Hasegawa, H. Dynamical mean-field theory of spiking neuron ensembles: Response to a single spike with independent noises. Phys. Rev. E., 2003, 67: 041903
    53. Brindley G S. The Classification of Modifiable Synapses and Their Use In Models For Conditioning. Proc.Roy.Soc., 1967, B168:361-376.
    54. Bear M F. A synaptic basis for memory storage in the cerebral cortex. Proc. Natl. Acad. Sci. USA, 1996, 93: 13453-13459.
    55. Wang X J, Rinzel J. Aternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Computat., 1992, 4: 84-97.
    56. Anderson P A. Physiology of a bidirectional, excitatory, chemical synapse. J. Neurophysial., 1985, 53:821-835.
    57. Anderson P A, Grunert U. Three-dimensional structure of bidirectional, excitatory chemical synapse in jellyfish Cyanea capillata. Synapse, 1988, 2: 606-613.
    58. Wulfram G, Werner M K. Spiking neuron model, Cambridge University Press, 2002:146.
    59. Bryant H L, Segundo J P. Spike initiation by transmembrane current: a white-noise analysis. J. Physiol. (Lond.), 1976, 260: 279-314.
    60. Mainen Z F, Sejnowski T J. Reliability of spike timing in neocortical neurons. Science, 1995, 268:1503-1506.
    61. Berry M J, Warland D K, Meister M. The structure and precision of retinal spike trains. Proc. Natl.Acad. Sci. USA, 1997, 94:5411-5416.
    62. de Ruyter van Steveninck R R, Lowen G D, Strong S P, Koberle R, Bialek W. Reproducibility and variability in neural spike trains. Science, 1997, 275:1805.
    63. Bair W, Koch C. Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comput., 1996,8:1185-1202.
    64. Softky W, Koch C. The highly irregular firing pattern of cortical cells is inconsistent with temporal integration of random epsps. J . Neurosci., 1993,13:334-350.
    65. Shadlen M N, Newsome W T. Noise, neural codes and cortical organization. Curr. Opin. Neurobiol., 1994, 4:569-579.
    66. Manwani A,Koch C. Detecting and estimating signals in noisy cable structures, I: Neuronal noise sources. Neural Comput., 1999, 11:1797-1829.
    67. Schneidman E, Freedman B, Segev I. Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput., 1998,10:1679-1703.
    68. White J A, Rubinstein J T, Kay A R. Channel noise in neurons. Trends Neurosci., 2000,23:131-137.
    69. Hessler N A, Shirke A M, Malinow R. The probability of transmitter release at a mammalian central synapse. Nature, 1993, 366:569-572.
    70. Tsodyks M V, Sejnowski T. Rapid state switching in balanced cortical networks. Network, 1995,
    6:111-124.
    71. Brunel N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci., 2000, 8:183-208.
    72. Nützel K, Kien J, Bauer K, Altman J S, Krey U. Dynamics of diluted attractor neural networks with delays. Biol. Cybern., 1994, 70:553-561.
    73. Gammaitoni L, H?nnggi P, Jung P, Marchesoni F. Stochastic resonance. Rev. Mod. Phys., 1998,
    70:223-287.
    74. Anishchenko V S, Neiman A B, Moss F, Schimansky-Geier L. Stochastic Resonance: Noise - enhanced order. Usp. Fiz. Nauk., 1999, 169:7-36.
    75. Pribram K. Brain and Self Orignization. Lawrence Erlbaum, Mahwah, NJ, 1994:199-331.
    76. Tanabe S, Sato S, Pakdaman K. Response of an ensemble of noisy neuron models to a single input. Phys. Rev. E.,1999, 60: 7235-7238.
    77. Tanabe S, Pakdaman K. Noise-induced transition in excitable neuron models. Biol. Cybern., 2001, 85:269-280.
    78. Tanabe S, Pakdaman K. Noise-enhanced neuronal reliability. Phys. Rev. E.,2001, 64: 041904.
    79. Adrian E D. The impulses produced by sensory nerve endings: Part i. J. Physiol. (London), 1926, 61:49-72.
    80. Rieke F, Warland D, Steveninck R, Bialek W. Exploring the Neural Code, Schiller, MIT Press, Cambridge, MA, 1996.
    81. deCharms R C. Information coding in the cortex by independent or coordinated populations. Proc. Natl. Acad. Sci. U. S. A., 1998, 95:15166-15168.
    82. Eggermont J J,Is There a Neural Code? Neurosci. Biobehav Rev., 1998, 22: 355-370.
    83. Ursey W M, Reid R C. Synchronous activity in the visual system. Annu. Rev. Physiol. 1999, 61:435-456.
    84. deCharms R C, Zador A. Neural representation and the cortical code. Annu. Rev. Neurosci. 2000, 23: 613-647
    85. Pouget A, Dayan P, Zemel R. Information processing with population codes. Nat. Neurosci., 2000, 1:125-132.
    86. Kandel E C, Schwartz J H. Principles of Neural Science. Elsevier, New York, 3rd edition.1991.
    87. Oram M W, Wiener M C, Lestienne R, Richmond B J. Stochastic nature of precisely timed spike patterns in visual system neuronal responses. J. Neurophysiol., 1999, 81:3021-3033.
    88. Thorpe S, Fize D, Marlot C. Speed of processing in the human visual system, Nature (London), 1996, 381: 520-530.
    89. Werner G, Mountcastle V B. The variability of central neural activity in a sensory system, and its implications for the central reflection of sensory events. Journal of Neurophysiology, 1965, 26:
    958-977.
    90. Tomoko G, Grapper D. Neuronal variability: non-stationary responses to identical visual stimuli. Brain Res. 1974, 79: 405-418.
    91. Snowden R J, Treue S, Andersen R A. The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns. Experimental Brain Research, 1992, 88: 389-400.
    92. Britten K H, Shadlen M, Newsome W T, Movshon J A. Response of neurons in macaque MT to stochastic motion signals. Visual Neuroscience. 1993, 10: 1157-1169.
    93. Gur M, Beylin A, Snodderly D M, Response variability of neurons in primary visual cortex (V1) of alert monkeys. Journal of Neuroscience Methods, 1993, 63: 43-54.
    94. Softky W, Koch C. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 1993, 13: 334—350.
    95. Konig P, Engel A K, Singer W. Integrator or coincidence detector? The role of the cortical neuron revisited. Trends Neurosci., 1996, 19:130--137.
    96. Stevens C F, Zador A M. Input synchrony and the irregular firing of cortical neurons. Nat.Neurosci. 1998, 1:210-217.
    97. Abbott L, Sejnowski T J. Neural Codes and Distributed Representations, MIT Press, Cambridge, MA, 1998.
    98. Hopfield J J. Pattern recognition computation using action potential timing for stimulus representation. Nature. 1995, 376: 33-36.
    99. Horn D, Levanda S. Fast Temporal Encoding and Decoding with Spiking Neurons. Neural Computation, 1998, 10: 1705--1720.
    100. Van Rullen R, Thorpe S. Rate Coding versus temporal order coding: What the Retinal ganglion cells tell the visual cortex. Neural computation, 2001, 13: 1255-1283.
    101. Gray C M, Singer W. Stimulus-Specific Neuronal Oscillations in Orientation Columns of Cat Visual Cortex. Proc. Natl. Acad. Sci. U. S. A., 1989, 86: 1698-1702.
    102. deCharms RC, Merzenich M M. Primary cortical representation of sounds by the coordination ofaction- potential timing. Nature, 1996, 381:610--613.
    103. Collins J J, Chow C C, Imhoff T T. Stochastic resonance without tuning. Nature (London), 1995, 376: 236-238.
    104. Gluckman B J, Netoff T I, Neel E J, Ditto W L, Spano M L, Schiff S J. Stochastic Resonance in a Neuronal Network from Mammalian Brain, Phys. Rev. Lett., 1996, 77: 4098-4101.
    105. Pei X, Wilkens L, Moss F. Noise-mediated spike timing precision from aperiodic stimuli in an array of Hodgkin-Huxley-Type neurons, Phys. Rev. Lett., 1996, 77: 4679-4682.
    106. Yu Y G, Liu F, Wang J, Wang W. Spike timing precision for a neuronal array with periodic signal, Phys. Lett. A, 2001, 282: 23-31.
    107. Rokem A, Watzl S, Gollisch T, Stemmler M, Andreas V M Herz, Inés Samengo. Spike-Timing Precision Underlies the Coding Efficiency of Auditory Receptor Neurons, J. Neurophysial., 2006, 95: 2541-2552.
    108. van Rossum M C W, O’Brien B J and Smith R G. Effects of noise on the spike timing precision of retinal ganglion cells, J. Neurophysial., 2003, 89:2406-2419.
    109. Stiber M. Spike Timing Precision and Neural Error Correction: Local Behavior, Neural Computation, 2005, 17: 1577-1601.
    110. Hasegawa H. Augmented moment method for stochastic ensembles with delayed couplings. I. Langevin model, Phys. Rev. E, 2004, 70: 021911.
    111. Rodriguez R, Tuckwell H C. Statistical properties of stochastic nonlinear dynamical models of single spiking neurons and neural networks, Phys. Rev. E, 1996, 54:5585-5590.
    112. Tuckwell H C, Rodriguez R. Analytical and simulation results for Stochastic Fitzhugh-Nagumo neurons and neural network, J. Comput. Neurosci., 1998, 5:91-113.
    113. Tanabe S and Pakdaman K Dynamics of moments of FitzHugh-Nagumo neuronal models and stochastic bifurcations, Phys. Rev. E, 2001, 63: 031911.
    114. Rose J E, Brugge J F, Anderson D J and Hind J E 1967 J. Neurophysiol. 30 769

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700