生物质高温气流床气化制取合成气的机理试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质能的开发和利用可缓解当今常规能源短缺和环境污染所带来的压力,如何能有效地使生物质转化成高品位的液体燃料成为目前研究的焦点。本文基于国内外在生物质间接液化制取液体燃料领域已经开展的研究工作,对生物质定向气化大规模制取合成气技术路线进行了理论探讨,并对生物质气流床气化进行了深入的试验研究和动力学分析。
     本文首先介绍了研究背景。在着重对比分析几种主要的生物质液化技术基础之上,得出了生物质间接液化在制取液体燃料过程中的优势。生物质间接液化的关键在于合成气的制取,于是从生物质气化工艺出发,结合煤基合成气气化技术,总结出生物质气流床气化在大规模制取合成气过程中具有广阔的发展前景。然后,对生物质气流床气化制取合成气的研究进行了综述,并得出生物质气流床气化的技术难点主要是:灰的特性、颗粒研磨、原料给料和系统高效加压。为了系统地开展相关领域的试验及理论研究,根据气流床气化原理,自行设计与搭建了一套小型生物质高温气流床气化试验台,对其进行了介绍。
     为了研究生物质在气流床气化过程中的气化特性及残炭特性,利用小型气化系统对木屑进行了气化试验,主要考查了反应温度和氧气/生物质比对煤气组分、碳转化率、气化产物分布以及残炭特性的影响。结果表明,生物质气流床气化具有合成气含量高,碳转化率高,煤气产率高,CH_4和焦油含量少的优点。为了正确地解释上述试验数据,综合分析了气流床气化炉内的流动和加热特性,从基本的微分方程入手,用数值方法对生物质单颗粒在气流床内的气化过程进行数值模拟。结果显示,该数值计算能够较好地模拟生物质单颗粒在气流床气化过程中的加热过程、停留过程和质量变化过程,并能与试验结果较好吻合。
     针对碱金属及其相关无机元素在生物质气流床气化中的挥发问题,进行了木屑在不同反应温度下和不同氧/生物质配比下的气化试验,对其残炭进行了收集,并通过ICP及EDX-SEM仪器对残炭灰成分和残炭形态进行分析,得出了无机元素在生物质气流床气化过程中析出挥发规律。然后,采用三种不同的助熔剂,分别以不同的比例添加到稻壳和水曲柳两种生物质中,再吹入到气流床中进行气化,来考查助熔剂在生物质气流床气化过程中对生物质碱金属及其相关元素的固留影响,最后选出了合适的助熔剂及添加比例。
     为了考查气化参数对生物质气流床气化过程的影响,利用小型生物质气流床气化系统对生物质的热解及气化特性进行了试验研究。研究了反应温度、氧气/生物质比率(O/B)、水蒸汽/生物质比率(S/B)以及停留时间对不同生物质气流床气化合成气组分的影响。研究表明,反应温度是影响生物质热解和气化最重要因素;生物质在常压气流床气化生成合成气最佳O/B范围为0.2~0.3(1300℃);高温气化时合成气中CH_4含量很低:停留时间为1.6s时其气化反应基本完毕;加大水蒸气含量可增加H_2/CO比率,但水蒸汽的过多引入会影响煤气产率。
     为了给生物质气流床气化反应过程和最终状态进行系统详尽地描述,为此,综合考虑平衡模型和动力学模型的优点,结合生物质半焦与水蒸汽及CO_2气化反应动力学的试验数据,建立了一个全面描述生物质气流床气化过程的动力学模型。并从系统反应进程和最终煤气组分两方面与生物质小型气流床气化试验进行对比验证,确认了该动力学模型的可靠性。表明所建模型可以用于预测气化参数对生物质气流床气化的影响特性。
     为了考查烘焙预处理对生物质固体产率、能量产率、颗粒研磨及在气流床气化过程中总体效率的影响,本文在一套小型烘焙试验台上,对四种不同种类的生物质进行烘焙试验,并对研磨过的固体产物进行粒径分析,最后在小型生物质气流床上进行了气化试验。结果表明,生物质的能量密度随着烘焙温度的提高而升高,其中,中温烘焙(~250℃)能获得较好的固体和能量产率,减少能量损失;烘焙温度是烘焙过程中最重要的影响因素:烘焙能够减少生物质研磨的耗电量,同时能够破坏生物质内部的纤维结构,变得易磨;气流床气化过程中,烘焙生物质能够改善煤气成分,提高气化的总体效率。因此,在生物质气流床气化过程中,烘焙预处理能为生物质的粒径减小和随后的粉体气力输送提供了一个良好的解决途径。
The exploitation and utilization of biomass energy is an effective method for relieving the pressures of conventional energy resources shortage and serious environment pollution. How to effectively convert low quality biomass to higher quality liquid fuel has attracted more and more attention of the whole world. On the basis of the investigation of biomass indirect liquefaction to synthesize liquid fuel, technology options available on large scale to produce syngas from biomass by directional gasification have being discussed extensively, and a systematic research on both experimental and kinetic was performed on the biomass entrained flow gasification.
     The research background was introduced at the beginning of this paper. Based on the comparison among the several major biomass liquefaction technologies, the advantages of the biomass indirect liquefaction to synthesize liquid fuel were obtained. The key of biomass indirect liquefaction is the production of syn-gas. So focusing on the process of the biomass gasification combined with coal-based gasification technology, it summarizes that biomass entrained flow gasification for synthesizing the syn-gas on large scale is heading for a great future. Then an extensive review was made on the development of the technologies of biomass entrained flow gasification. From the analysis, it is shown that ash behavior, particle milling, feedstock feeding and system pressuring have been said to be the major hurdle if biomass is converted in a entrained flow gasifier. For developing a systematic experimental research on biomass entrained flow gasification, a lab-scale entrained flow reactor was designed and put up on the basic principle of the entrained flow gasification. Furthermore, the component and performance of the gasification system were introduced.
     In order to investigate the characteristics of biomass gasification in an entrained flow reactor, a lab-scale biomass entrained flow gasification system was characterized and was used to test sawdust gasification including gas composition, carbon conversion, products distribution and solid residue behavior with different reaction temperatures and oxygen/biomass ratio. The results reveal that syn-gas content increases and CH_4 content decreases with increasing reaction temperature; tar content can be considered very low; the carbon conversion rate and gas yield rate increase to a maximum value at high reaction temperature. In addition, a finite difference model was employed to simulate the fluidynamics, the energy balance and the mass transfer during the partial oxidation of biomass particles. The application of this model allows the residence time, the thermal history and the mass conversion of the particle inside the reactor to be estimated. The experimental and model results are in agreement.
     Considering the critical role of inorganic elements in biomass utilization, experiments of the sawdust gasification were done for studying emission behavior of inorganic elements with different reaction temperatures. The contents of different residues captured by cyclone and filter were measured. The composition and morphology of the residue ash were analyzed using ICP and EDX-SEM. The major emission mechanisms of inorganic elements at different temperatures were obtained.This work is very helpful to understand the inorganic elements transformation during biomass entrained flow gasification or combustion, as well as to find the solution of alkali problems.
     In order to investigate the influence of gasifying parameters in an entrained flow gasification, the effects of reaction temperature, oxygen/biomass (O/B) ratio, steam/biomass (S/B) ratio and residence time on gasification performance including gas composition, carbon conversion, H_2/CO ratio and CO/CO_2 ratio were tested in a lab-scale biomass entrained flow gasification system with rice husk, manchurian pine, korean pine and camphorwood as feed-stocks respectively. The results reveal that the reaction temperature is the most important effect in biomass entrained flow gasification. The optimum O/B ratio is in the range 0.2~0.3 at the gasification condition of 1300℃and atmospheric pressure, there is little CH_4 in the syngas at high reaction temperature and syngas composition becomes uniform while residence time exceed 1.6s. The H_2/CO ratio can increase with steam injected, and exceed 1 when S/B is more than 0.8. The steam injection affects the gasification efficiency but has little impact on the carbon conversion.
     A kinetic biomass gasification model combining chemical equilibrium was developed to evaluate and optimize gasifying parameters in entrained flow bed gasification. Model calculating results are in good agreement with the measurement data from previous gasification tests in entrained flow reactor. Model simulations of biomass gasification processes in entrained flow reactor were found to be reasonable. It implies the established model may be used to predict the effects of operation parameters on biomass entrained flow gasification.
     In order to research the torrefaction influence for biomass solid yield, energy yield, size reduction and overall efficiency during the gasification process, torrefaction experiments were carried out in a lab-scale reactor using four biomass feed-stocks. This paper also studied the size reduction and gasification characteristics of torrefied biomass experimentally. The results reveal that torrefaction can be applied with high biomass to solid energy yield with increasing the temperature and reaction time. The torrefaction temperature is more influential than the reaction time on the characteristics of torrefaction. Torrefaction can lead to a great decrease in power consumption since the destruction of fibrous structure and lead to a very substantial improvement of the grindability behavior. Torrefaction also can increase the overall efficiency of the gasification system. It therefore provides a solution to the problems concerned with entrained flow gasification related to size reduction of biomass and the subsequent pneumatic transport of the powder.
引文
[1].昌金铭.加快发展浙江省可再生能源的建议.杭州:海峡两岸能源与可持续发展研讨会,2005
    [2].霍雅勤.中国能源现状及可持续利用对策.中国能源,1999,2:42-44
    [3].张雷.中国能源供应战略的调整.中国能源,1999,3:12-14
    [4].杨立忠,杨钧锡,别义勋.新能源技术.中国科学技术出版社,1994
    [5].曹湘洪.我国生物能源产业健康发展的对策思考.化工进展,2007,26(7):905-913
    [6]. Boyle, Godfrey. Renewable Energy, Power for a Sustainable Future. Oxford: Oxford University Press, 1996:1-480
    [7].石元春.新兴的生物质产业:农业的结构革命.杭州:石元春院士生物质利用报告会,2006
    [8].阴秀丽,吴创之,徐冰嬿等.生物质气化对减少CO2排放的作用.太阳能学报,2000,21(1):40-44
    [9].陈文七.中国新能源和可再生能源投资市场及其发展.中国能源,1997,3:45-48
    [10]. X. Wang, Z. Feng. A survey of rural energy in the developed region of china. Energy, 1997, 22 (5): 511-514
    [11]. D. G Streets, S. T. Waldhoeff. Biofuel use in asia and acidifying emissions. Energy, 1998, 23(12): 1029-1042
    [12].别如山,鲍亦令,杨励丹等.燃生物质流化床锅炉.节能技术,1997,2:5-7
    [13]. D. O. Hall. Biomass energy in industrialized countries-a view of future. Forest Ecology and Management, 1997, 91: 17-45
    [14]. A. J. Ragauskas, C. K. Williams, et al. The path forward for biofuels and biomaterials. Science, 2006, 311 : 483-489
    [15].彭锦星,邵千钧.生物质废弃物液化转化燃油技术的研究现状与展望.生物质化学工程,2006,40(4)
    [16]. G. Maschio, C. Koufopanos, A. Lucchesi. Pyrolysis, a promising route for biomass utilization. Bioresource technology, 1992, 42:219-231
    [17]. D. S. Scott, J. Piskorz. The flash pyrolysis of aspen-poplar wood. Canadian journal of chemical engineering, 1982, 60:666-674
    [18]. E. J. Soltes, A. T. Wiley, S. C. K. Lin. Biomass pyrolysis-towards an understanding of its versatility and potentials. Biotech & bioengineering symposium, 1981, 11:125-136
    [19]. A. V. Bridgwater, M. L. Cottam. Opportunities for biomass pyrolysis liquids production and upgrading. Energy and fuels, 1992, 6 (2): 113-120
    [20]. I. S. Goldstein. Organic chemicals from biomassFlorida: CRC Press, Inc. 1981
    [21]. A. V. Bridgwater. Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catalysis Today, 1996, 29(1-4): 285-295
    [22]. A. V. Bridgwater, D. Meier, D.Radlein. An overview of fast pyrolysis of biomass. Organic Geochemistry, 1999, 30: 1479-1493
    [23]. F. Ates, Putune, A. E. Putun. Fast pyrolysis of sesame stalk: yields and structural analysis of bio-oil. Journal of Analytical and Applied Pyrolysis, 2004, 71: 779-790
    [24].刘荣厚.生物质闪速热裂解特性及闪速热裂解试验研究.沈阳农业大学博士学位论文,1997
    [25]. P.T. Williams, P.A. Horne. Analysis of aromatic hydrocarbons in pyrolytic oil derived from biomass. Journal of Analytica and Applied Pyrolysis, 1995, (31): 15-37
    [26]. Y. Lin, S. Tanaka. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol, New York: Springer-Verlag, 2005
    [27].刘娜,石淑兰.木质纤维素转化为燃料乙醇的研究进展.现代化工,2005,25(3):19-24
    [28].杜凤光,史吉平等.纤维质生产燃料乙醇产业化研究进展.中国林业科学,2007,29(增刊):72-74
    [29].周良虹,黄亚晶.国外生物柴油产业与应用状况.可再生能源,2005,(4):62-67
    [30].史修启,孙永强.生物柴油及其面临的挑战.日用化学品科学,2007,30(1):11-13
    [31]. Kindler Klaus, Puhl Hubert. Method for separating a C4-hydrocarbonmixture. US Pat Appl, US 6337429. 2002
    [32]. Bohner Gerd, Kindler Klaus. Method for recovering crudel, 3-butadiene by extractive distillation from a C4 cut. EP Pat Appl, EP 1366065.2002
    [33].阴秀丽,常杰等.由生物质气化方法制取甲醇燃料.煤炭转化,2003,26(4):26-30
    [34].王铁军,常杰等.生物质间接液化一步法合成燃料二甲醚.煤炭转化,2003,26(4):21-25
    [35].王铁军,常杰等.生物质热化学转化合成二甲醚.过程工程学报,2005,5(3):278-281
    [36]. H. E.M. Stanssen, W. Prins, W.P.M van, Swaaij. Thermal conversion of biomass into secondary products-case of gasification and pyrolysis. BTG Biomass Technology Group b. v., University of Twente, The Netherlands
    [37]. Yuanji Dong, Meyer Steinberg. HYNOL-an economical process for methanol production from biomass and natural gas with reduced CO_2 emission. Int. J. Hydrogen Energy, 1997, 22(1011): 971-977
    [38]. A. van der Drift, H. Boerrigter, B. Coda, M. K. Cieplik and K. Hemmes. Entrained flow gasification ofbiomass; ash behaviour, feeding issues, and system analyses. ECN, Petten, The Netherlands, ECN-C-04-039 2004
    [39]. H. Boerrigter, A. van der Drift. Large-scale production of Fischer-Tropsch diesel from biomass: optimal gasification and gas cleaning systems. ECN, Pet-ten, The Netherlands, 2004
    [40]. Mark J. Prins, Krzysztof J. Ptasinski, Frans J. J. G. Janssen. More efficient biomass gasification via torrefaction. Energy, 2006, 31:3458-3470
    [41]. M. K. Cieplik, B. Coda, H. Boerrigter, A. van der Drift, J. H. A. Kiel. Characterization of slagging behaviors of wood ash upon entrained-flow gasification conditions. ECN, Petten, The Netherlands, ECN-C-04-016, 2004
    [42]. J.H.A. Kiel, S. Eenkhoorn, EG.T. Heere. Ash behaviors in entrained flow gasification: preliminary studies. ECN, Petten, The Netherlands, ECN-C-99-037, 1999
    [43]. P. J. Dacombe, J. M. Jacobs, J.H.A. Kiel. Ash formation in entrained-flow co-gasification of coal and biomass. ECN, Petten, The Netherlands, ECN-CX-03-033, 2003
    [44]. F. Garcia-Pena, A. Munoz-Mozos, P. Casero-Cabezon. MBM (meat and bone meal) co-gasification in IGCC technology. 2002
    [45]. The rotating cone reactor. Ph.D. Thesis, University of Twente, The Netherlands, Thesis, 1994
    [46]. W. R. Chan, M. Kelbon, B. Krieger-Brockett. Modeling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel, 1985, 64 (11): 1505-1513
    [47]. Personal communication with Sascha Kersten. Twente University, The Netherlands, 2003
    [48]. E. Gjernes, J. Fjellerup, L. K. Hansen, el al. Theoretical and experimental investigation of coal and biomass combustion and gasification properties at high pressure and temperature. Final Report, Riso, National Laboratory, Roskilde, Denmark, Riso-R-859(EN), 1995
    [49]. R. Pruschek, D. Jansen, R. v. Ree, et al. Advanced cycle technologies, Improvement of IGCC's starting from the state-of-the-art(Puertollano). ECN, Petten, The Netherlands, ECN-RX-98-063, 1998
    [50]. R. Korbee, S. Eenkhoorn, P. G. Th. Heere et al. Co-gasification of coal and biomass waste in entrained-flow gasifiers; phase 2: exploratory lab-scale experimentation. ECN, Petten, The Netherlands, ECN-C-98-056, 1998
    [51]. L. A. Hansen, P. Hald, E. Gjernes, et al. Task 5: PEFR experiments for evaluating the effect of fuel type (size) on carbon conversion and burnout time, Combustion and gasification of coal and straw under pressurized conditions. Riso-R-813(EN), 1995
    [52]. D. Kunii, O. Levenspiel. Fluidization Engineering, Butterworth Heinemann, Stoneham, 1991
    [53]. Personal communication with Thomas Koch (director of TKE, Gadstrup, Denmark)during several occasions, 2003
    [54]. The effect of pressure on char characteristics, burnout and ash formation in entrained flow gasifiers. IFRF Combustion Journal Ar. Number 200105, 2001
    [55]. K. E. Benfell, G. S. Liu, D. G. Roberts, et al.. Proceeding of the Combustion Institute, 2000, 28:2233-2241
    [56]. Maniatis K, Baeyens J, Peeters H, Roggeman G. The Egemin flash pyrolysis process: commissioning and results. In: Bridgwater AV, editor. Advances in Thermochemical Biomass Conversion, Blackie, 1993, 1257-1264
    [57]. Maniatis K, Baeyens J, Roggeman G, Peeters H. Flash pyrolysis of biomass in an entrained bed reactor. Final report of EEC Contract JOUB 0025, 1993
    [58]. Knight J.A. Pyrolysis of pine sawdust. Thermal Uses and Properties of Carbohydrates and Lignins. New York: Academic Press, 1976, 159-173
    [59]. Knight J.A., Gorton C.W., Kovac R.J., Elston L.W. Oil production via entrained flow pyrolysis of biomass. In: Proceedings of the 13th Biomass Thermochemical Conversion Contractors' Meeting, Arlington, Virginia, 1981, p. 475
    [60]. Knight J.A., Gorton C.W., Kovac R.J., Elston L.W. Entrained flow pyrolysis of biomass. In: Proceedings of the 14th Biomass Thermochemical Conversion Contractors' Meeting, Arlington, Virginia, 1982, p. 250
    [61]. Knight J. A., Gorton C. W., Kovac R. J., Elston L. W. Entrained flow pyrolysis of biomass. In: Proceedings of the 15th Biomass Thermochemical Conversion Contractors' Meeting, Arlington, Virginia, 1983, p. 409
    [62]. Knight J.A., Gorton C.W., Kovac R.J., Elston L.W. Entrained flow pyrolysis of biomass. In: Proceedings of the 16th Biomass Thermochemical Conversion Contractors' Meeting, Arlington, Virginia, 1984, p. 287
    [63]. Knight J.A., Gorton C.W., Kovac R.J, Newman C.W. Entrained flow pyrolysis of biomass. In: Proceedings of the 1985 Biomass Thermochemical Conversion Contractors' Meeting, Minneapolis, Minnesota, 1985, p. 99
    [64]. Kovac R.J., Gorton C.W., O'Neil D.J., Newman C.J. Low pressure entrained flow pyrolysis of biomass to produce liquid fuels. In: Proceedings of the 1987 Biomass Thermochemical Conversion Contractors' Review Meeting, Atlanta, Georgia, 1987, p. 23
    [65]. Kovac R.J., O'Neill D.J. The Georgia Tech entrained flow pyrolysis process. Pyrolysis and Gasification. Elsevier Applied Science, 1989, 169-179
    [66]. R. H. Venderbosch, W. Prins. Entrained flow gasification of bio-oil for synthesis gas. BTG Biomass Technology Group b.v.University of Twente, The Netherlands
    [67]. E. Biagini. PhD thesis in Chemical Engineering-University of Pisa, Italy, 2003
    [68]. E. Biagini, Fantozzi C, Tognotti L. Combust Sci Technol 2004, 176:685-703
    [69]. E. Biagini, M. Cioni, L. Tognotti. Development and characterization of a lab-scale entrained flow reactor for testing biomass fuels. Fuel, 2005, 84:1524-1534
    [70]. Ligang Wei, Shaoping Xu, et al. Steam gasification of biomass for hydrogen-rich gas in a free-fall reactor. International Journal of Hydrogen Energy, 2007, 32:24-31
    [71].朱慧.生物质在落下床中热解和气化制富氢气体.大连理工大学硕士学位论文,2005
    [72]. Donald S. Scott, Jan Piskorz. Low rate entrainment feeder for fine solids. Ind. Eng. Chem. Fundam., 1982, 21: 319-322
    [73]. R.J. Flaxman, W.L.H. Hallett. Flow and particle heating in an entrained flow reactor. Fuel, 1987, 66:607-611
    [74].易维明,柏雪源,等.玉米秸秆粉末闪速加热挥发特性的研究.农业工程学报,2004,20(6):246-250
    [75].陈彩霞,孙学信,等.层流曳带流反应器内流动和温度特性的数值模拟.华中理工大学学报,1994,22(3):30-35
    [76]. Mohamed Kanniche, Chakib Bouallou. CO_2 capture study in advanced integrated gasification combined cycle. Applied Thermal Engineering, 2007, 27(16): 2693-2702
    [77]. Mario Amelio, Pietropaolo Morrone, Fausto Gallucci, et al. Integrated gasification gas combined cycle plant with membrane reactors: Technological and economical analysis. Energy Conversion and Management, 2007, 48(10): 2680-2693
    [78]. Antonio Valero, Sergio Uson. Oxy-co-gasification of coal and biomass in an integrated gasification combined cycle (IGCC) power plant. Energy, 2006, 31 (10-11): 1643-1655
    [79]. James S. Rhodes, David W. Keith. Engineering economic analysis of biomass IGCC with carbon capture and storage. Biomass and Bioenergy, 2005, 29(6): 440-450
    [80]. Kari Salo. Kotka ecopower IGCC-project, the attempt to transfer the biocycle project to finland. Biomass and Bioenergy, 1998, 15(3): 225-228
    [81]. Krister Stahl, Magnus Neergaard. IGCC power plant for biomass utilisation, varnamo, Sweden. Biomass and Bioenergy, 1998, 15(3): 205-211
    [82]. Andrea Corti, Lidia Lombardi. Biomass integrated gasification combined cycle with reduced CO_2 emissions: Performance analysis and life cycle assessment (LCA). Energy, 2004, 29 (12-15): 2109-2124
    [83]. Wiebren de Jong, Jans Andries, Klaus R. G. Hein. Coal/biomass co-gasification in a pressurised fluidised bed reactor. Renewable Energy, 1999, 16(1-4): 1110-1113
    [84]. S. F. Wu, R. McKinsey. Performance prediction of a repowering application derived from a high-performance power system (HIPPS). Energy Conversion and Management, 1997, 38(10-13): 1275-1282
    [85]. L. A. Ruth. The U.S. Department of Energy's Combustion 2000 program: Clean, efficient electricity from coal. Energy Conversion and Management, 1997, 38(10-13): 1249-1257
    [86].吴学成,王勤辉,骆仲泱,等.气化参数影响气流床煤气化的模型研究(Ⅰ)-模型建立及验证.浙江大学学报:工学版,2004,38(10):1361-1365
    [87].吴学成,王勤辉,骆仲泱,等.气化参数影响气流床煤气化的模型研究(Ⅱ)-模型预测及分析.浙江大学学报:工学版,2004,38(11):1483-1489
    [88]. Shiro K, Nobuyuky S, Masami A, et al. CO_2 gasification rate analysis of coal char in entrained flow coal gasifier. Fuel, 2006, 85(2): 163-169
    [89]. Andrew C, Don M, Ray A. Determination of pneumatic transport capabilities of dry pulverised coal suitable for entrained flow processes. Fuel, 2005, 84 (17): 2256-2266
    [90]. Kajitani S, Hara S, Matsuda H. Gasification rate analysis of coal chars with a pressurized drop tube furnace. Fuel, 2002, 81(5): 539-546
    [91]. Patterson J. H., Hust H. J. Ash and slag qualities of Australian bituminous coals for use in slagging gasifiers. Fuel, 2000, 79(13): 1671-1678
    [92]. Robert J. Flaxman, William L. H. Hallett. Flow and particle heating in an entrained flow reactor. Fuel, 1987, 66(5): 607-611
    [93]. Ming-Shing Shen, Lawrence J. Shadle, John J. Kovach, et al. Kinetic studies of rapid oil shale pyrolysis: Ⅰ. Temperature characterization and flow visualization in a laminar flow entrained reactor. Thermochimica Acta, 1989, 154(2): 355-365
    [94]. Ming-Shing Shen, Alain P. Lui, Lawrence J. Shadle, et al. Kinetic studies of rapid oil shale pyrolysis : 2. Rapid pyrolysis of oil shales in a laminar-flow entrained reactor. Fuel, 1991, 70(11): 1277-1284
    [95]. R. W. J. Westerhout, J. A. M. Kuipers, W. P. M. Van Swaaij. Development, modelling and evaluation of a (laminar) entrained flow reactor for the determination of the pyrolysis kinetics of polymers. Chemical Engineering Science, 1996, 51 (10): 2221-2230
    [96]. Christopher R. Shaddix, Paul J. Tennison. Effects of char content and simple additives on biomass pyrolysis oil droplet combustion. Symposium (International) on Combustion, 1998, 27(2): 1907-1914
    [97]. V. Sricharoenchaikul, A. L. Hicks, W. J. Frederick. Carbon and char residue yields from rapid pyrolysis of kraft black liquor. Bioresource Technology, 2001., 77(2): 131-138
    [98]. Fernando Rubiera, Ana Arenillas, Borja Arias, et al. Modification of combustion behaviour and NO emissions by coal blending. Fuel Processing Technology, 2002, 77-78(20): 111-117
    [99]. Viboon Sricharoenchaikul, Wm. James Frederick, Pradeep Agrawal. Carbon distribution in char residue from gasification of kraft black liquor. Biomass and Bioenergy, 2003, 25(2): 209-220
    [100]. Xiu Shuangning, Yi Weiming and Baoming Li. Flash pyrolysis of agricultural residues using a plasma heated laminar entrained flow reactor. Biomass and Bioenergy, 2005, 29(2): 135-141
    [101]. Xiu Shuangning, Li Zhihe, Li Baoming, et al. Devolatilization characteristics of biomass at flash heating rate. Fuel, 2006, 85(5-6): 664-670
    [102]. Dollimore D, Brown W. E, Galway A. K. Comprehensive chemical kinetics. Amsterdam: Elsevier Science, 1980
    [103]. Guo J, Lua A. C. Kinetic study on pyrolytic process of oil-palm solid waste using two-step consecutive reaction model. Biomass Bioenergy, 2001, 20:223-33
    [104]. Maloney D.J., Jenkins R. G, Coupled heat and mass transport and chemical kinetic rate limitations during coal rapid pyrolysis. 20th Symposium on Combustion, 1986, 1435-1443
    [105]. Hornbeck R.W. Laminar flow in the entrance region of a pipe. Appl. Sci. Res., 1965, 13(1): 224-232
    [106]. Manohar R. Analysis of laminar-flow heat transfer in the entrance region of circular tubes. Int. J. Heat. Mass Transfer., 1969, 12(1):15-22
    [107].鲁丁格G气体颗粒流基础.张远君译.北京:国防工业出版社,1980
    [108].岑可法,樊建人.燃烧流体力学.水利电力出版社,1991
    [109].岑可法,姚强,骆仲泱,等.高等燃烧学.浙江大学出版社,2002
    [110]. Turnbull E., Davidson J. F. Fluidized combustion of char and volatiles from coal. AIChE Journal. 1984, 30(6): 881-889
    [111]. Grace J. R., Avidan A. A., Knowlton T. M. Circulating Fluidized Beds. Blackie Academic & Professional, London. 1997
    [112]. Ross I.B., Patel M.S., Davidson J. F. The temperature of burning carbon particles in fluidized beds. Trans. Inst. Chem. Eng. 1981, 59:83-88
    [113]. Kulasekaran S., Linjewile T. M., Agarwal P. K., et al. Combustion of a porous char particle in an incipiently fluidized bed. Fuel. 1998, 77(14): 1549-1560
    [114]. P. L. Walker, Jr. F. Rusinko, L. G Austin. Gas reaction of carbon. Adv. Catal, 1959, 11: 133-221
    [115].余春江.生物质热解机理和工程应用研究.杭州:浙江大学博士学位论文,2000
    [116]. Scott Q. T, Charles M. K, Darren M. I. Removal of inorganic constituents of biomass feedstocks by mechanical dewatering and leaching. Biomass and Bioenergy, 1997, 12 (4): 241-252
    [117]. Ross A. B, Jones J. M, Chaiklangrnuang S, et al. Measurement and prediction of the emission of pollutants from the combustion of coal and biomass in a fixed bed furnace. Fuel, 2002, 81(5): 571-582
    [118]. Ayhan Demirbas. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress in Energy and Combustion Science, 2005, 31(2): 171-192
    [119]. Vamvuka D, Troulinos S, Kastanaki E. The effect of mineral matter on the physical and chemical activation of low rank coal and biomass materials. Fuel, 2006, 85:1763-1771
    [120]. Liao Cuiping, Wu Chuangzhi, Yan Yongjie. The characteristics of inorganic elements in ashes from a 1 MW CFB biomass gasification power generation plant. Fuel Processing Technology, 2007, 88(2): 149-156
    [121]. Fernandez L. M. J, Murillo L. J. M, Escalada C. R. Ash behaviour of lignocellulosic biomass in bubbling fluidised bed combustion. Fuel, 2006, 85(9): 1157-1165
    [122]. Fernandez L. M. J, Escalada C. R. Influence of the amount of bed material on the distribution of biomass inorganic elements in a bubbling fluidised bed combustion pilot plant. Fuel, 2007, 86(5-6): 867-876
    [123].随建才,徐明厚,丘纪华,等.煤粉燃烧过程中矿物质气化影响因素的模拟研究.中国电机工程学报。2005,25(14):78-83
    [124].王泉斌,徐明厚,夏永俊.煤与生物质混烧时可吸入颗粒物中的矿物质元素演变研究.中国电机工程学报,2006,26(16):103-109
    [125].王泉斌,徐明厚,姚洪,等.生物质与煤的混烧特性及其对可吸入颗粒物排放的影响.中国电机工程学报,2007,27(5):7-12
    [126]. Baxter L.L. Ash deposition during biomass and coal combustion: A mechanistic approach. Biomass Bioenergy, 1993, 4 (2): 85-102
    [127]. Robinson A.L., Junker H., Baxter L.L. Pilot-scale investigation of the influence of coal-biomass cofiring on ash deposition. Energy Fuels, 2002, 16 (2): 343-1355
    [128]. Valmari T., Lind T.M., Kauppinen E.I., et al. Field study on ash behavior during circulating fluidized-bed combustion of biomass: 2. Ash deposition and alkali vapor condensation. Energy Fuels, 1999, 13(2): 390-395
    [129]. Wang B.Q. Erosion-corrosion of coatings by biomass-fired boiler fly ash. Wear, 1995, 188(122): 40-48
    [130]. Olofsson G, Ye Z., Bjerl E. I., et al. Bed agglomeration problems in fluidized-bed biomass combustion. Ind. Eng. Chem. Res, 2002, 41(12): 2888-2894
    [131]. Kurkela E., Stahlberg P. Removal of particulate and alkali metals for the product gas of a pressurized fluidized bed gasifier. Proceedings of the international Filtration and Separation Conference. Karlsruhe Germany, The Filtration Society, 1991:449-467
    [132]. Ohman M., Nordin A. Bed agglomeration characteristics during fluidized bed combustion of biomass fuels. Energy & Fuels, 2000, 14 (1): 169-178
    [133]. Loffier G., Wargadalam V. J., Winter F. Catalytic effect of biomass ash on CO, CH4 and HCN oxidation under fluidized bed combustor conditions. Fuel, 2002, 81(6): 711-717
    [134]. Collot A.G, Zhuo Y., Norton G. Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidized bed reactors. Fuel, 1999, 78(6): 667-679
    [135]. Krister S., Chen G. Properties of char produced by rapid pressurized pyrolysis of peat. Ind. Eng. Chem. Res, 1990, 29(5): 892-895
    [136]. Demirbas A. Desulfurization of coal using biomass ash. Energy Sources, 2002, 24(12): 1099-1105
    [137]. Brown A. L, Dayton D. C, Nimlos M. R, et al. Design and characterization of an entrained flow reactor for the study of biomass pyrolysis chemistry at high heating rates. Energy & Fuels 2001, 15:1276-1285
    [138]. Lee J. G, Kim J. H. Characteristics of entrained flow coal gasification in a drop tube reactor. Fuel, 1996, 75: 1035-1042
    [139].慕成功,郑义,吴建国,等.钾素营养及施肥技术.北京:中国农业科技出版社,1995
    [140]. Olsson, John G, Jaglid U, et al. Alkali metal emission during pyrolysis of biomass. Energy & Fuel, 1997, 11: 779-784
    [141]. E. Bjorkman, B. Stromberg. Release of chlorine from biomass at pyrolysis and gasification conditions. Energy & Fuel, 1997, 11:1026-1032
    [142]. Michelsen H. P., Flemming F., Kim D. J., et al. Deposition and high temperature corrosion in a 10 MW straw fired boiler. Fuel. Proc. Tech, 1998, 54:95-108
    [143]. Ingwald O., Friedrich B., Walter W., et al. Concertrations of inorganic elements in biomass fuels and recovery in the different ash Fractions. Biomass and Bioenergy, 1997, 3:211-224
    [144].曹小伟.生物质气流床气化特性及半焦气化动力学研究.杭州:浙江大学硕士学位论文, 2007
    [145]. Kazuhiro Kumabe, Toshiaki Hanaoka, Shinji Fujimoto, et al. Co-gasification of woody biomass and coal with air and steam. Fuel, 2007, 86(5-6): 684-689
    [146]. Keiichi Tomishige, Mohammad Asadullah, Kimio Kunimori. Syngas production by biomass gasification using Rh/CeO_2/SiO_2 catalysts and fluidized bed reactor. Catalysis Today, 2004, 89(4): 389-403
    [147]. Ki-Won Jun, Hyun-Seog Roh, Kyong-Su Kim, et al. Catalytic investigation for Fischer-Tropsch synthesis from bio-mass derived syngas. Applied Catalysis A: General, 2004, 259(2): 221-226
    [148]. D. J. Wilhelm, D. R. Simbeck, A. D. Karp, R. L. Dickenson. Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel Processing Technology, 2001, 71(1-3): 139-148
    [149]. Mohammad Asadullah, Shin-ichi Ito, Kimio Kunimori, et al. Biomass Gasification to Hydrogen and Syngas at Low Temperature: Novel Catalytic System Using Fluidized-Bed Reactor. Journal of Catalysis, 2002, 208(2): 255-259
    [150].王铁军,常杰.生物质合成气的化学当量比调整.太阳能学报,2005,26(4):533-537
    [151].阴秀丽,常杰,汪俊锋,等.生物质合成气合成甲醇.太阳能学报,2005,26(4):518-522
    [152].赵先国,常杰,吕鹏梅,等.生物质富氧-水蒸气气化制氢特性研究.太阳能学报,2006,27(7):677-681
    [153].吕鹏梅,熊祖鸿,王铁军,等.生物质流化床气化制取富氢燃气的研究.太阳能学报,2003,24(6):758-764
    [154]. G Maschio, C. Koufopanos, A. Lucchesi. Pyrolysis, a promising route for biomass utilization. Bioresource technology, 1992, 42:219-231
    [155]. D. S. Scott, J. Piskorz. The flash pyrolysis of aspen-poplar wood. Canadian journal of chemical engineering, 1982, 60:666-674
    [156]. E.J. Soltes, A. T. Wiley, S. C. K. Lin. Biomass pyrolysis-towards an understanding of its versatility and potentials. Biotech & bioengineering symposium, 1981, 11:125-136
    [157]. I. S. Goldstein. Organic chemicals from biomassFlorida: CRC Press, Inc. 1981
    [158]. R. K. Sharma, N. N. Bakhshi. Catalytic upgrading of fast pyrolysis oil over HZSM-5. Canadian journal of chemical engineering, 1993, 71:383-391
    [159]. D. G. Streets, S. T. Waldhoff. Biofuel use in asia and acidifying emissions. Energy, 1998, 23 (12): 1029-1042
    [160]. T. R. Rao, A. Sharma. Pyrolysis rates ofbiomass materials. Energy, 1998, 23 (11): 973-978
    [161]. C. D. Blasi. Kinetic and heat transfer control in the slow and flash pyrolysis of solids. Ind. Eng. Chem. Res. 1996, 35:37-46
    [162]. K. Raveendran, A. Ganesh, K. C. Khilar. Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 1995, 74 (12): 1812-1822
    [163]. A. V. Bridgwater, M. L. Cottam. Opportunities for biomass pyrolysis liquids production and upgrading. Energy and fuels, 1992, 6(2): 113-120
    [164]. M. Steinberg, P. T. Fallon, M. S. Sundaram. Flash pyrolysis of biomass with reactive and non-reactive gas. Biomass, 1986, 9:293-315
    [165]. Alexander L. Brown, David C. Dayton, et al, Design and characterization of an entrained flow reactor for the study of biomass pyrolysis chemistry at high heating rates. Energy&Fuels, 2001, 15:1276-1285
    [166]. Mark S.Bohn, Biomass Pyrolysis with an Entrained Flow Reactor. Ind. Eng. Chem. Process Des. Dev, 1984, 23: 355-363
    [167].秦育红,冯杰.生物质气化影响因素分析.节能技术,2004,22(126)
    [168]. Zanzi, R. Pyrolysis of biomass. PhD thesis in Stockholm: Royal Institue of Technology, 2001
    [169]. Nick Syred, Katon Kurniawan, Tony Griffiths, et al. Development of fragmentation models for solid fuel combustion and gasification as subroutines for inclusion in CFD codes. Fuel, 2007, 86(14): 2221-2231
    [170]. Shinji Fujimoto, Takahiro Yoshida, Toshiaki Hanaoka, et al. A kinetic study of in situ CO_2 removal gasification of woody biomass for hydrogen production. Biomass and Bioenergy, 2007, 31(8): 556~562
    [171]. Youjun Lu, Liejin Guo, Ximin Zhang, Qiuhui Yan. Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water. Chemical Engineering Journal, 2007, 131 (1-3): 233-244
    [172]. Pier Ugo Foscolo, Antonio Germana, Nader Jand, et al. Design and cold model testing of a biomass gasifier consisting of two interconnected fluidized beds. Powder Technology, 2007, 173(3): 179-188
    [173]. B. V. Babu, Pratik N. Sheth. Modeling and simulation of reduction zone of downdraft biomass gasifier: Effect of char reactivity factor. Energy Conversion and Management, 2006, 47(15-16): 2602-2611
    [174]. Alvaro Sanz, Jose Corella. Modeling circulating fluidized bed biomass gasifiers. Results from a pseudo-rigorous 1-dimensional model for stationary state. Fuel Processing Technology, 2006, 87(3): 247-258
    [175]. Jose Corella, Alvaro Sanz. Modeling circulating fluidized bed biomass gasifiers. A pseudo-rigorous model for stationary state. Fuel Processing Technology, 2005, 86(9): 1021-1053
    [176]. Francisco Jurado, Antonio Cano, Jose Carpio. Modelling of combined cycle power plants using biomass. Renewable Energy, 2003, 28(5): 743-753
    [177]. D. L. Giltrap, R. McKibbin, G. R. G. Barnes. A steady state model of gas-char reactions in a downdraft biomass gasifier. Solar Energy, 2003, 74(1): 85-91
    [178].王勤辉.循环流化床锅炉总体数学模型及其性能测试.杭州:浙江大学博士学位论文,1997
    [179]. D. F. Fletcher, B. S. Haynes, F. C. Christo, S. D. Joseph. A CFD based combustion model of an entrained flow biomass gasifier. Applied Mathematical Modelling, 2000, 24(3): 165-182
    [180]. D. F. Fletcher, B. S. Haynes, J. Chen, S. D. Joseph. Computational fluid dynamics modelling of an entrained flow biomass gasifier. Applied Mathematical Modelling, 1998, 22(10): 747-757
    [181]. C. W. Gorton, R. J. Kovac, J. A. Knight, T. I. Nygaard. Modeling pyrolysis oil production in an entrained-flow reactor. Biomass, 1990, 21(1): 1-10
    [182].米铁,陈汉平,唐汝江,等.生物质半焦气化的反应动力学.太阳能学报,2005,(26)6:766-771
    [183]. Alejandro Molina, Fanor Mondragon. Reactivity of coal gasification with steam and CO_2. Fuel, 1998, 77(15): 1831-1839
    [184]. F. F. Peng, I. C. Lee, R. Y. K. Yang. Reactivity of in situ and ex situ coal chars during gasification in steam at 1000-1400℃. Fuel Processing Technology, 1995, (41): 233-251
    [185]. O. Levenspiel. Chemical Reaction Engineering. 3th ed. 1999, New York: John-Wiley
    [186].米铁.生物质气化过程的综合实验研究.华中科技大学博士学位论文,2002
    [187]. Adanez J, Dediego R F. Reactivity of lignite chars with CO_2: Influence of the mineral matter. International Chemical Engineering, 1993, 33(4): 656-622
    [188]. Govind R, Shan J. Modeling and simulation of an entrained flow coat gasifier. AICHE Journal, 1984, 30(1): 79-92
    [189]. David M. Mathematical models of the thermal decomposition of coal. Fuel, 1983, 62:534-539
    [190]. Osvalda Senneca. Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Processing Technology, 2007, 88:87-97
    [191].金燕,郑洽余,刘信刚.循环流化床锅炉焦炭粒子的燃烧特性及其改进措施.中国电机工程学报,1998,18(4):234-236
    [192]. J. Adanez, L. F. de Diego, P. Gayan, et al. A model for prediction of carbon combustion efficiency in circulating fluidized bed combustors. Fuel, 1995, 74(7): 1049-1056
    [193]. N. La, R.D. Fundamentals of coal combustinn in fluidized beds. Chemical Engineering Research and Developments, 1985, 63:3-33
    [194].岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论、设计与运行.北京:中国电力出版社,1998
    [195].李政,王天骄,韩志明,等.Texac煤气化炉数学模型的研究-建模部分.动力工程,2001,21(2):1161-1165
    [196]. Watkinson A. P., Lucas J.P., Lim C. J. A prediction of performance of commercial coal gasifiers. Fuel, 1997, 70: 519-527
    [197]. Li X., Grace J. R., Watkinson A. P, et al. Equilibrium modeling of gasification: A free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel, 2001, 80:195-207
    [198]. D. F. Fletcher, B.S. Haynes, F.C. Christo, et al. A CFD based combustion model of an entrained-flow biomass gasifier. Applied Mathematical Modelling, 2000, 24:165-182
    [199].朱锡锋,陆强,郑冀鲁,等.生物质热解与生物油的特性研究.太阳能学报,2006,27(12):1286-1290
    [200].陈冠益,高文学,马文超.生物质制氢技术的研究现状与展望.太阳能学报,2006,27(12):1276-1285
    [201].崔小勤,常杰,王铁军,等.生物质燃气催化重整净化的特性研究.太阳能学报,2006,27(7):666-671
    [202]. P.C. A. Bergman, M.J. Prins, A. R. Boersma, et al. Torrefaction for entrained-flow gasification of biomass. ECN, Petten, The Netherlands, ECN-C-05-067, 2005
    [203]. Pentananunt R, Mizanur Rahman ANM, Bhattacharya S. Upgrading of biomass by means of torrefaction. Energy, 1990, 15(12):1175-1179
    
    [204].Bourgois J, Guyonnet R. Characterization and analysis of torrefied wood. Wood Sci Techn 1988, (22):143-155
    [205].Pach M, Zanzi R, Bjornbom E. Torrified biomass a substitute for wood and charcoal. In: sixth Asia-Pacific international symposium on combustion and energy utilization, Kuala Lumpur, 2002, 20-22
    [206].Girard P, Shah N. Recent developments on torrefied wood, an alternative to charcoal for reducing deforestation. REUR Techn Ser, 1991, (20):101-114
    
    [207]. A. F. Drummond, I. W. Drummond. Pyrolysis of sugar cane bagasse in a wire-mesh reactor. Ind. Eng. Chem. 1996, 35: 1263-1268
    
    [208]. A. G W. Bradbury, Y. Sakai, F. Shafizadeh. A kinetic model for pyrolysis of cellulose. Journal of applied polymer science, 1979,23:3271-3280
    
    [209].M. J. Antal, Jr., G. Varhegyi. Cellulose pyrolysis kinetics: the current state of knowledge. Ind. Eng. Chem. Res. 1995,34:703-717
    
    [210].M. J. Antal, Jr. Effects of reactor severity on the gas-phase pyrolysis of cellulose- and Kraft lignin- derived volatile matter. Ind. Eng. Chem. Prod. Res. Dev.1983, 22: 366-375
    
    [211].P. T. Williams, S. Besler. The pyrolysis of rice husks in a thermogravimetric analyser and static batch reactor. Fuel, 1993,72: 151-159
    
    [212].D. P. Koullas, E. Lois, E. G Koukios. Effect of physical pretreatment on the prepyrolytic behaviour of lignocellulosics. Biomass and bioenergy, 1991, 1 (4): 199-206
    
    [213].T. R. Nunn, J. B. Howard, J. P. Longwell, W. A. Peters. Product compositions and kinetics in the rapid pyrolysis of milled wood lignin. Ind. Eng. Chem. Process, 1985, 24: 844-852
    [214]. Simbeck D.R., Dickenson R.L., Oliver E.D. Coal gasification systems: a guide to status, application and economics. Report AP-3109. Palo Alto, CA: EPRI; 1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700