热障涂层涡轮叶片失效的有限元模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热障涂层是一种主要用来起隔热作用的陶瓷涂层,通常有着比较低的导热系数,一般制备在高温金属或合金的表面,可以大幅降低被保护基底的温度,使得合金基底能使用在更高的温度条件下,从而可以提高机器的热效率并延长其寿命。热障涂层的应用非常广泛,如航空航天飞行器的热端部件、化学化工行业、冶金工业以及能源工业等诸多领域。在实际的应用过程中,热障涂层系统的结构与使用环境往往都非常复杂,使得热障涂层系统在服役过程中的应力演化与寿命预测成为热障涂层相关研究工作的重点与难点问题。因此本文研究工作的重点是分析和预测热障涂层涡轮叶片系统在热循环过程中的应力演化及其关键的影响因素,探索热障涂层寿命预测的理论与实验方法。本论文的主要研究内容如下:
     第一,本文首先基于Fourier热传导定律和有限元方法,分别得到了四层平板模型的热障涂层系统的稳态温度分布及其隔热效果。结果表明TBC承受了主要的温度梯度,TGO、BC、基底各层内温度梯度较小。本文模拟了陶瓷层厚度对热障涂层系统稳态温度的分布的影响,发现TBC越厚,在服役过程中基底表面的温度就越低,热障涂层系统的隔热效果越好。但TBC的厚度增加到一定的程度后,再增加TBC的厚度时,其隔热效果的增加是非常有限的。本文还考察了孔隙率对热障涂层的热传导系数的影响,发现孔隙率对热障涂层的等效热传导系数有较大的影响,孔隙率越高,陶瓷层的热传导系数就越小,其隔热效果也就越好,本文拟合得到等效热传导系数与孔隙率的关系式。
     第二,本文对四层平板模型热障涂层系统在制备过程中形成的残余应力进行了有限元模拟计算。当平板模型热障涂层系统从制备温度均匀冷却到室温后,各层均存在不均匀的残余应力,制备温度越高,TBC、TGO等层内的初始残余应力越大。TGO内的残余压缩应力特别大,是导致热障涂层系统破坏的主要原因之一;通过模拟计算发现,随着TBC层厚度的增加,TBC、TGO内的残余应力都有着逐渐减小的趋势。本文还对四层平板模型热障涂层系统在热循环过程中力学行为进行了有限元模拟,得到了系统各层应力分布及演化的规律,结果与解析结果符合得较好。
     第三,本文提出了一种适用于热障涂层涡轮叶片系统的有限元建模方法,基于有限元软件与三维建模软件,可以有效建立热障涂层涡轮叶片系统的有限元分析模型;本文还提出了两种热障涂层涡轮叶片应力演化及危险区域的预测方法,能大大降低有限元分析前处理的成本和人工操作的出错率,提高了预测结果的准确性;本文还编制了一个大数目热循环条件下热障涂层有限元分析的辅助软件,使得热障涂层涡轮叶片系统在大数目热循环的服役条件下的有限元模拟变得比较易于实现、方便快捷。
     第四,本文对热障涂层涡轮叶片系统在服役过程的应力场进行了有限元模拟,得到了系统在热循环过程中各层的三维温度场、位移场、应力应变的演化等结果,同时基于第一强度理论对陶瓷层内危险区域的分布,即对涂层内可能最先发生破坏的区域进行了分析与预测;本文还模拟了工作温度对热障涂层涡轮叶片系统应力分布及演化的影响,并对热障涂层涡轮叶片系统的寿命进行了初步的探讨。最后,我们还对热障涂层涡轮叶片系统进行了实验研究,实际测量到了系统的温度场、应变场及失效位置的分布,并把实验的结果与有限元的结果进了比较,从而对有限元模拟计算结果的可靠性进行了验证。
     总之,本论文主要基于有限元方法与实验方法,对热障涂层涡轮叶片系统在服役过程中的温度场、应力场等关键参量进行了有限元模拟与实验测量,得到一些比较有意义的结果,为热障涂层系统的优化设计以及相关制备参数的优化提供了一些参考,同时也拓宽了有限元方法的应用。
Thermal barrier coatings is usally a kind of ceramic materials, which with verylow thermal conductivity and excellent high temperature oxidation resistance, whichis deposited on the surface of high temperature resistant metal or superalloy.Thermal barrier coatings can reduce the work temperature of the protected superalloy substrate and reduce the thermal shock effectively. Furthermore, it canalleviate the cooling air and significantly improve the thermal efficiency of themachine. So thermal barrier coatings has been used in the fields of the hotsection ofearonaoutic and astronaoutics, chemistry and chemical engineering, metallurgyindustry and energy industry. Because of the complexity of thermal barrier coatingswhich are covered on the surface of turbine blade system, their structures and theseverity of operating conditions make the stress evolution and life prediction of thesystem in service process is a key and difficult issue. So the main aim of this thesisis to simulate and predict the stress field evolution and the key factors in TBCScovered turbine blade system during thermal cycles, to explore thermal barriercoating life prediction theory and experiment method. The main contents and theonnovations of this thesis are listed as follows,
     First, this paper based on Fourier law of heat transfer and the finite elementmethod, got the steady temperature distribution and heat insulation effects of thefour hot flat model of the system under different TBC surface temperature. The resultsshow that the TBC layer bear the main temperature gradient, the temperature gradientin TGO BC Substrate is small. This paper simulated the influence of coatingthickness on the temperature distribution, found that the TBC is thicker, thetemperature of the substrate in service process is lower, the heat insulation of the TBCis better. But the TBC thickness increased to a certain degree, the increase ofinsulation effect with the increase of the TBC thickness is very limited. This paperexamined the influence of the porosity on heat transfer coefficient of TBC, found thatthe porosity have a major influence on heat transfer coefficient of TBC. The porosityis higher, the heat transfer coefficient of TBC is smaller, the heat insulation of theTBC is better. The paper also fit the equation between equivalent heat transfercoefficient and the porosity.
     Secondly, this paper simulated initial residual stress field of the TBC system. When the thermal barrier coating system with flat plate sturcture cooling frompreparation temperature to room temperature, there are uneven residual stress in them,the preparation temperature is higher, initial residual stress in the system is bigger.Residual compression stress in TGO especially large. This layer exist stresssingularity which is one of the main reasons cause thermal barrier coating failure.Through the simulation found that the residual stress in TBC, TGO appear the trend toreduce along with the increase of ceramic powder coating thickness; the thickness ofthe TGO produce in the fabrication process is not obviously affect the stressdistribution in TBC and TGO. In the presence of a temperature gradient conditions tocooling, the change of initial residual stress distribution and ideology in the systemclosely related to the preparation temperature.
     Third, this paper puts forward a kind of finite element modeling methodapplicable to thermal barrier coating turbine blade system, which can be effective inestablishing the system for finite element analysis model, based on finite elementsoftware and3D modeling software; This paper also puts forward two kinds ofthermal barrier coating turbine blade stress evolution and dangerous area forecastmethod, which can reduce the pre-treatment cost and artificial processing error rateand improve the accuracy of the prediction results; This paper also creates a largenumber of support software with thermal barrier coating of the finite elementanalysis under thermal cycle conditions, which not only make the turbine bladesthermal barrier coating in the large number of thermal cycle work under thecondition of the finite element analysis quick and easy to realize.
     Fourth, in this paper, the thermal barrier coating turbine blade system in theprocess of stress fields are simulated, so we can obtain some relative results such asthe system in the process of thermal cycle about each layer of the3d temperaturefield, the displacement field and the evolution of stress and strain, and we canascertain the distribution of the danger area in the ceramic layer based on the firststrength theory, which is predicted the most likely happened first damage area. Thispaper also work to simulate the influence of working temperature to thermal barriercoating turbine blade system stress distribution and evolution, and discusses thethermal barrier coating the life of turbine blade system. Finally, we also investigatethe thermal barrier coating of turbine blade system. Through compared the results ofthe finite element with the experimental results, such as the actual measured thesystem of the temperature field, the strain field and the failure of the position, which further verified the finite element simulation of the accuracy of the results.
     In general, the thesis is based on the finite element experimental method. In theessay, we simulate the critical physical quantities of the thermal barrier coatings inthe service process, provide important reference for the designing of turbine bladesand the optimization of fabricating parameters of the thermal barrier coatings, andalso expand the application scope of the finite element method.
引文
[1]Jian C. Y. Study on Evaluation method of ceramic coating system for gas turbine rotator blades [D]. Tohoku University,1996.
    [2]Zhu D. M., Miller R. A. Thermal and environmental barrier coatings for advanced propulsion engine systems [R]. NASA Technical Memorandum,213129,2004.
    [3]周益春,刘奇星,杨丽,吴多锦,毛卫国.热障涂层的破坏机理与寿命预测[J].固体力学学报,2010,31(5):504-531.
    [4]Padture N. P., Gell M., Jordan E. H. Thermal barrier coatings for gas-turbine engine applications [J]. Science,2002,296(5566):280-284.
    [5]Miller R. A. Current status of thermal barrier coatings—an overview [J]. Surface and Coatings Technology,1987,30(1):1-11.
    [6]Meier S. M., Gupta D. K. The evolution of thermal barrier coatings in gas turbine engine applications [J]. Journal of Engineering for Gas Turbines and Power,1994,116:250-257.
    [7]Miller R. A. Thermal barrier coatings for aircraft engines:history and directions [J]. Journal of Thermal Spray Technology,1997,6(1):35-42.
    [8]周益春.热障涂层的热-力耦合破坏机制//李建保,周益春,林红,杨晓战,新材料科学及其实用技术[M].北京:清华大学出版社,2004:464-523.
    [9]周宏明,易丹青,余志明,肖来荣.热障涂层的研究现状与发展方向[J].材料导报,2006,20(3):4-8.
    [10]Hass D. D. Thermal barrier coatings via directed vapor deposition [D]. University of Virginia,2000.
    [11]郭洪波,宫声凯,徐惠彬.先进航空发动机热障涂层技术研究进展[J].中国材料进展,2009,28(9):18-26.
    [12]曹学强.热障涂层材料[M].北京:科学出版社,2007.
    [13]李美姮,胡望宇,孙晓峰,管恒荣,胡壮麒.热障涂层的研究进展与发展趋势[J].材料导报,2005,19(4):41-45.
    [14]陈强.热循环条件下热障涂层断裂韧性和残余应力的测试分析[D].湘潭大学,2010.
    [15]Cao X. Q. Application of rare earths in thermal barrier coating materials [J]. Journal of Materials Science and Technology,2007,23(1):15-35.
    [16]Ma W., Gong S., Xu H., Cao X. The thermal cycling behavior of lanthanum-cerium oxide thermal barrier coating prepared by EB-PVD [J]. Surface and Coatings Technology,2006,200(16):5113-5118.
    [17]Cao X. Q., Vassen R., Tietz F., Stoever D. New double-ceramic-layer thermal barrier coatings based on zirconia-rare earth composite oxides [J]. Journal of the European Ceramic Society,2006,26(3):247-251.
    [18]牟仁德,许振华,贺世美,何利民,曹学强.La2(Zr0.7Ce0.3)2O7--新型高温热障涂层[J].材料工程,2009,7:67-71.
    [19]Schulz U., Leyens C., Fritscher K., Peters M., Saruhan-Brings B., Lavigne O., Dorvaux J. M., Poulain M., Mevrel R., Caliez M. Some recent trends in research and technology of advanced thermal barrier coatings [J]. Aerospace Science and Technology,2003,7(1):73-80.
    [20]黄光宏.EB-PVD氧化锆纳米结构热障涂层研究[D].北京航空材料研究院,2006.
    [21]吴子健,吴朝军,曾克里,王全胜.热喷涂技术与应用[M].北京:机械工业出版社,2006.
    [22]Khan A. N., Lu J. Manipulation of air plasma spraying parameters for the production of ceramic coatings [J]. Journal of Materials Processing Technology,2009,209(5):2508-2514.
    [23]Lima R. S., Kucuk A., Berndt C. C. Bimodal distribution of mechanical properties on plasma sprayed nanostructured partially stabilized zirconia [J]. Materials Science and Engineering:A,2002,327(2):224-232.
    [24]Terry S. G. Evolution of microstructure during the growth of thermal barrier coatings by EB-PVD [D]. University of California,2001.
    [25]Wada K., Yamaguchi N., Matsubara H. Effect of substrate rotation on texture evolution in ZrO2-4mol.%Y2O3layers fabricated by EB-PVD [J]. Surface and Coatings Technology,2005,191(2-3):367-374.
    [26]Vargas Garcia J. R., Goto T. Thermal barrier coatings produced by chemical vapor deposition [J]. Science and Technology of Advanced Materials,2003,4(4):397-402.
    [27]宫声凯,邓亮.陶瓷热障涂层制备技术及发展趋势[J].材料导报,1999,13(6):31-34.
    [28]郭洪波,宫声凯.EB-PVD梯度热障涂层的制备及其热疲劳性能[J].金属学报,2000,36(7):703-706.
    [29]王宁,赵维勋,王平,王璐,贺世美,黄光宏,冯自修,魏政.纳米结构热障涂层的制备与性能研究[J].航空材料学报,2008,26(3):157-162.
    [30]牟仁德,何利民,陆峰,陶春虎.热障涂层制备技术研究进展[J].机械工程材料,2007,31(5):1-4.
    [31]王璐.等离子喷涂热障涂层的新材料新工艺[J].探索创新交流—中国航空学会青年科技论坛文集,2004.
    [32]郭洪波,彭立全,宫声凯,徐惠彬.电子束物理气相沉积热障涂层技术研究进展[J].热喷涂技术,2009,1(2):7-14.
    [33]徐惠彬,宫声凯.电子束物理气相沉积热障涂层的研究[J].航空制造工程,1995,(11):23-25.
    [34]吴多锦.热障涂层界面破坏实时测试分析及实验模拟系统的研制[D].湘潭大学,2011.
    [35]刘福顺,宫声凯,徐惠彬.大功率EB-PVD陶瓷热障涂层的研究与应用[J].航空学报,2000,21(4):30-33.
    [36]倪立勇.等离子喷涂纳米陶瓷涂层组织与性能的研究[D].山东科技大学,2008.
    [37]纪小健,李辉,栗卓新,宋永伦.热障涂层的研究进展及其在燃气轮机的应用[J].燃气轮机技术,2008,21(2):7-11.
    [38]Martena M., Botto D., Fino P., Sabbadini S., Gola M. M., Badini C. Modelling of TBC system failure:stress distribution as a function of TGO thickness and thermal expansion mismatch [J]. Engineering Failure Analysis,2006,13(3):409-426.
    [39]Evans A. G., He M. Y., Hutchinson J. W. Mechanics-based scaling laws for the durability of thermal barrier coatings [J]. Progress in Materials Science,2001,46(3-4):249-271.
    [40]Rabiei A., Evans A. G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings [J]. Acta Materialia,2000,48(15):3963-3976.
    [41]Aktaa J., Sfar K., Munz D. Assessment of TBC systems failure mechanisms using a fracture mechanics approach [J]. Acta Materialia,2005,53(16):4399-4413.
    [42]Trunova O., Beck T., Herzog R., Steinbrech R., Singheiser L. Damage mechanisms and lifetime behavior of plasma sprayed thermal barrier coating systems for gas turbines—part Ⅰ: experiments [J]. Surface and Coatings Technology,2008,202(20):5027-5032.
    [43]Strangman T., Raybould D., Jameel A., Baker W. Damage mechanisms, life prediction, and development of EB-PVD thermal barrier coatings for turbine airfoils [J]. Surface and Coatings Technology,2007,202(4-7):658-664.
    [44]Guo H., Gong S., Aik Khor K., Xu H. Effect of thermal exposure on the microstructure and properties of EB-PVD gradient thermal barrier coatings [J]. Surface and Coatings Technology,2003,168(1):23-29.
    [45]Sohn Y. H., Kim J. H., Jordan E. H., Gell M. Thermal cycling of EB-PVD/MCrAlY thermal barrier coatings:I. microstructural development and spallation mechanisms [J]. Surface and Coatings Technology,2001,146:70-78.
    [46]陈立强,宫声凯,徐惠彬.垂直裂纹对EB-PVD热障涂层热循环失效模式的影响[J].金属学报,2005,41(9):979-984.
    [47]胡传顺,王福会.热障涂层的破坏方式及影响因素[J].石油化工高等学校学报,1999,12(4):77-80.
    [48]丁艳霞.热障涂层中界面形貌对涂层系统中应力影响的研究[D].吉林大学,2007.
    [49]岳珠峰,陶仙德.热障涂层的失效机理和力学模型[J].燃气涡轮试验与研究,1998,11(4):40-44.
    [50]Sohn Y. H., Lee E. Y, Nagaraj B. A., Biederman R. R., Sisson R. D. Microstructural characterization of thermal barrier coatings on high pressure turbine blades [J]. Surface and Coatings Technology,2001,146:132-139.
    [51]陈和兴,周克崧.等离子喷涂热障涂层失效机理的研究[J].广东有色金属学报,2002,12(2):116-119.
    [52]徐惠彬,宫声凯,陈立强,张春霞.热,力耦合作用下热障涂层的失效机制[J].北京航空航天大学学报,2004,30(10):919-924.
    [53]Zhao X., Wang X., Xiao P. Sintering and failure behaviour of EB-PVD thermal barrier coating after isothermal treatment [J]. Surface and Coatings Technology,2006,200(20):5946-5955.
    [54]Krishnamurthy R., Srolovitz D. J. Sintering and microstructure evolution in columnar thermal barrier coatings [J]. Acta Materialia,2009,57(4):1035-1048.
    [55]Tsipas S. Effect of dopants on the phase stability of zirconia-based plasma sprayed thermal barrier coatings [J]. Journal of the European Ceramic Society,2010,30(1):61-72.
    [56]Li M. H., Sun X. F., Gong S. K., Zhang Z. Y, Guan H. R., Hu Z. Q. Phase transformation and bond coat oxidation behavior of EB-PVD thermal barrier coating [J]. Surface and Coatings Technology,2004,176(2):209-214.
    [57]张丹华,王璐,郭洪波,宫声凯.多元稀土氧化物掺杂二氧化锆基陶瓷材料的热物理性能[J].复合材料学报,2011,28(2):179-184.
    [58]秦庆华,杨庆生.非均匀材料多场耦合行为的宏细观理论[M].北京:高等教育出版社,2006.
    [59]Afrasiabi A., Saremi M., Kobayashi A. A comparative study on hot corrosion resistance of three types of thermal barrier coatings:YSZ, YSZ/Al2O3and YSZ/Al2O3[J]. Materials Science and Engineering:A,2008,478(1):264-269.
    [60]Wu N., Chen Z., Mao S. X. Hot corrosion mechanism of composite alumina/yttria-stabilized zirconia coating in molten sulfate-vanadate salt [J]. Journal of the American Ceramic Society,2005,88(3):675-682.
    [61]Nicholls J. R., Jaslier Y., Rickerby D. S. Erosion and foreign object damage of thermal barrier coatings [J]. Mterials Science Forum,1997,251-254:935-948.
    [62]Toriz F., Thakker A., Gupta S. Flight service evaluation of thermal barrier coatings by physical vapor deposition at5200H [J]. Surface and Coatings Technology,1989,39:161-172.
    [63]Li C. J., Yang G. J., Ohmori A. Relationship between particle erosion and lamellar microstructure for plasma-sprayed alumina coatings [J]. Wear,2006,260(11):1166-1172.
    [64]Zhu D., Miller R. A., Kuczmarski M. A. Development and life prediction of erosion resistant turbine low conductivity thermal barrier coatings [R]. NASA Technical Memorandum,215669,2010.
    [65]Wellman R. G., Nicholls J. R. Erosion, corrosion and erosion-corrosion of EB PVD thermal barrier coatings [J]. Tribology International,2008,41(7):657-662.
    [66]Chen X., Wang R., Yao N., Evans A., Hutchinson J., Bruce R. Foreign object damage in a thermal barrier system:mechanisms and simulations [J]. Materials Science and Engineering: A,2003,352(1):221-231.
    [67]Zhang D., Turso J., Pavlik W., Lopez L. Foreign object damage identification in turbine engines [R]. NASA Technical Memorandum,213588,2005.
    [68]王建平.梯度热障涂层服役条件下的蠕变响应分析[J].武汉理工大学学报,2008,29(11):31-34.
    [69]Schmidt U., Vohringer O., Lohe D. The creep damage behavior of the plasma-sprayed thermal barrier coating system NiCr22Co12Mo9-NiCoCrAlY-ZrO2/7%Y2O3[J]. Transactions of the ASME-A-Engineering for Gas Turbines and Power,1999,121(4):678-682.
    [70]Pindera M. J., Aboudi J., Arnold S. M. Analysis of spallation mechanism in thermal barrier coatings with graded bond coats using the higher-order theory for FGMs [J]. Engineering Fracture Mechanics,2002,69(14-16):1587-1606.
    [71]Hernandez M. T., Karlsson A. M., Bartsch M. On TGO creep and the initiation of a class of fatigue cracks in thermal barrier coatings [J]. Surface and Coatings Technology,2009,203(23):3549-3558.
    [72]高永栓,陈立强,宫声凯,徐惠彬.在高温蠕变环境中的热障涂层失效行为[J].航空学报,2005,26(1):1212-1214.
    [73]Zhou Y C., Hashida T. Thermal fatigue failure induced by delamination in thermal barrier coating [J]. International Journal of Fatigue,2002,24(2):407-417.
    [74]Scrivani A., Rizzi G., Bardi U., Giolli C., Miranda M. M., Ciattini S., Fossati A., Borgioli F. Thermal fatigue behavior of thick and porous thermal barrier coatings systems [J]. Journal of Thermal Spray Technology,2007,16(5):816-821.
    [75]Zhou Y C., Hashida T. Thermal fatigue in thermal barrier coating [J]. JSME International Journal Series A,2002,45(1):57-64.
    [76]Zhou Y. C., Hashida T. Delamination cracking in thermal barrier coating system [J]. Journal of Engineering for Gas Turbines and Power,2002,124(4):922-931.
    [77]郭洪波,徐惠彬,宫声凯,刘福顺EB-PVD梯度热障涂层的热循环失效机制[J].金属学报,2001,37(2):151-155.
    [78]Subanovic M., Song P., Wessel E., Vassen R., Naumenko D., Singheiser L., Quadakkers W. Effect of exposure conditions on the oxidation of MCrAlY-bondcoats and lifetime of thermal barrier coatings [J]. Surface and Coatings Technology,2009,204(6-7):820-823.
    [79]Sniezewski J., Vidal V., Lours P., Le Maoult Y. Thermal barrier coatings adherence and spallation:Interfacial indentation resistance and cyclic oxidation behaviour under thermal gradient [J]. Surface and Coatings Technology,2009,204(6-7):807-811.
    [80]Busso E. P., Evans H. E., Qian Z. Q., Taylor M. P. Effects of breakaway oxidation on local stresses in thermal barrier coatings [J]. Acta Materialia,2010,58(4):1242-1251.
    [81]Zhou Y C, Hashida T. Coupled effects of temperature gradient and oxidation on thermal stress in thermal barrier coating system [J]. International Journal of Solids and Structures,2001,38(24):4235-4264.
    [82]徐惠彬,宫声凯.电子束物理气相沉积热障涂层抗氧化行为研究[J].航空制造工程,1995,(12):18-19.
    [83]贺世美,何利民,牟仁德,陆峰EB-PVD (?)连续沉积对热障涂层热循环氧化性能的影响[J].稀有金属材料与工程,2007,36(A03):702-705.
    [84]Ranjbar-Far M., Absi J., Mariaux G., Dubois F. Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method [J]. Materials&Design,2010,31(2):772-781.
    [85]Busso E. P., Lin J., Sakurai S., Nakayama M. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system:part I:model formulation [J]. Acta Materialia,2001,49(9):1515-1528.
    [86]Liu Y, Persson C., Wigren J. Experimental and numerical life prediction of thermally cycled thermal barrier coatings [J]. Journal of Thermal Spray Technology,2004,13(3):415-424.
    [87]He M. Y, Hutchinson J. W., Evans A. G. Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling [J]. Materials Science and Engineering:A,2003,345(1):172-178.
    [88]Renusch D., Schutze M. Measuring and modeling the TBC damage kinetics by using acoustic emission analysis [J]. Surface and Coatings Technology,2007,202(4-7):740-744.
    [89]Beck T., Herzog R., Trunova O., Offermann M., Steinbrech R. W., Singheiser L. Damage mechanisms and lifetime behavior of plasma-sprayed thermal barrier coating systems for gas turbines part Ⅱ:modeling [J]. Surface and Coatings Technology,2008,202(24):5901-5908.
    [90]Wen M., Jordan E. H., Gell M. Remaining life prediction of thermal barrier coatings based on photoluminescence piezospectroscopy measurements [J]. Journal of Engineering for Gas Turbines and Power,2006,128:610-616.
    [91]Barber B., Jordan E., Gell M., Geary A. Assessment of damage accumulation in thermal barrier coatings using a fluorescent dye infiltration technique [J]. Journal of Thermal Spray Technology,1999,8(1):79-86.
    [92]Miller R. A. Oxidation-based model for thermal barrier coating Life [J]. Journal of the American Ceramic Society,1984,67(8):517-521.
    [93]Demasi J. T., Ortiz M. Thermal barrier coating life prediction model development, phase1(Final Report)[R]. NASA Technical Memorandum,23944,1989.
    [94]Meier S. M., Nissley D. M., Sheffler K. D., Cruse T. A. Thermal barrier coating life prediction model development [R]. NASA Technical Memorandum,180807,1992.
    [95]Sridharan S. Thermal cycle parameter effects on the stress state, failure mechanisms and life prediction of thermal barrier coatings [D]. University of Connecticut,2005.
    [96]Nesbitt J. A. Coatings for high-temperature structural materials:trends and opportunities [J]. Journal of the Electrochemical Society,1989,136(5):1511-1527.
    [97]Lee E. Y., Sisson R. D. The effect of bond coat oxidation on the failure of thermal barrier coatings:thermal spray industuial applications [C]. Proceeding of the7th National Thermal Spray Conference, Boston,1994,55-59.
    [98]张玉峰.特征造型技术在有限元分析建模中的应用研究[D].武汉大学,2004.
    [99]庄茁,由小川,廖剑辉.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009.
    [100]蒋丽梅.鼓泡法表征韧性膜/韧性基底界面结合能的理论模型[D].湘潭大学,2008.
    [101]彭冰川.划痕法表征薄膜材料界面结合性能[D].湘潭大学,2009.
    [102]蒋俊平.曲面结构的热障涂层系统残余应力有限元模拟分析[D].湘潭大学,2011.
    [103]王金昌,陈页开ABAQUS在土木工程中的应用[M1.杭州:浙江大学出版社,2006.
    [104]ABAQUS. ABAQUS6.5-6user's manual [M]:ABAQUS Inc.,2005.
    [105]Sadowski T., Golewski P. The influence of quantity and distribution of cooling channels of turbine elements on level of stresses in the protective layer TBC and the efficiency of cooling [J]. Computational Materials Science,2011,52:293-297.
    [106]Lugscheider E., Nickel R. Finite element simulation of a coating formation on a turbine blade during plasma spraying [J]. Surface and Coatings Technology,2003,174:475-481.
    [107]魏洪亮,杨晓光,齐红宇.等离子涂层涡轮导向叶片热疲劳寿命预测研究[J].航空动力学报,2008,23(1):1-8.
    [108]Darmofal D. L., Moeckel C. W. Probabilistic turbine blade thermal analysis of manufacturing variability and toleranced designs [D]. Massachusetts Institute of Technology,2006.
    [109]Rossette A. H., Demeulenaere A., Roque Lopez Hernandez J. The effect of start-up cycle in ceramic coating used as thermal barrier for a gas turbine bucket [J]. Applied Thermal Engineering,2009,29(14-15):3056-3065.
    [110]董曼红.带隔热涂层构件温度和应力分析边界元法及其应用[D].西北工业大学,2001.
    [111]杨晓光,耿瑞.一种简便的隔热涂层残余应力分析方法及结果讨论[J].航空动力学报,1997,12(3):239-242.
    [112]毛卫国.热-力联合作用下热障涂层界面破坏分析[D].湘潭大学,2006.
    [113]Mao W. G., Jiang J. P., Zhou Y. C., Lu C. Effects of substrate curvature radius, deposition temperature and coating thickness on the residual stress field of cylindrical thermal barrier coatings [J]. Surface and Coatings Technology,2011,205(8):3093-3102.
    [114]Teixeira V., Andritschky M., Fischer W., Buchkremer H. P., Stover D. Effects of deposition temperature and thermal cycling on residual stress state in zirconia-based thermal barrier coatings [J]. Surface and Coatings Technology,1999,120:103-111.
    [115]Ng H. W., Gan Z. A finite element analysis technique for predicting as-sprayed residual stresses generated by the plasma spray coating process [J]. Finite Elements in Analysis and Design,2005,41(13):1235-1254.
    [116]姚国凤,马红梅,王晓英,罗志久,高雪飞,陈光南.热障涂层界面形貌尺寸与残余应力的关系[J].金属热处理,2005,30(10):43-46.
    [117]王洪,张坤.界面形貌对清障涂层界面残余应力影响的数值模拟[J].金属热处理,2001,26(9):44-46.
    [118]高西亚.热循环下热障涂层残余应力及稳定性的研究[D].西北工业大学,2007.
    [119]Bednarz P. Finite element simulation of stress evolution in thermal barrier coating systems [D]. Universitatsbibliothek,2006.
    [120]Shi J., Darzens S., Karlsson A. M. Aspects of the morphological evolution in thermal barrier coatings and the intrinsic thermal mismatch therein [J]. Materials Science and Engineering:A,2005,392(1-2):301-312.
    [121]Gilbert A., Kokini K., Sankarasubramanian S. Thermal fracture of zirconia-mullite composite thermal barrier coatings under thermal shock:A numerical study [J]. Surface and Coatings Technology,2008,203(1-2):91-98.
    [122]Caliez M., Chaboche J. L., Feyel F., Kruch S. Numerical simulation of EBPVD thermal barrier coatings spallation [J]. Acta Materialia,2003,51(4):1133-1141.
    [123]Yuan H., Chen J. Computational analysis of thin coating layer failure using a cohesive model and gradient plasticity [J]. Engineering Fracture Mechanics,2003,70(14):1929-1942.
    [124]Rangaraj S. A study of thermal fracture in functionally graded thermal barrier coatings using a cohesive zone model [J]. Journal of engineering materials and technology,2004,126:103-115.
    [125]Bialas M., Majerus P., Herzog R., Mroz Z. Numerical simulation of segmentation cracking in thermal barrier coatings by means of cohesive zone elements [J]. Materials Science and Engineering:A,2005,412(1):241-251.
    [126]Bialas M. Finite element analysis of stress distribution in thermal barrier coatings [J]. Surface and Coatings Technology,2008,202(24):6002-6010.
    [127]Busso E., Wright L., Evans H., McCartney L., Saunders S., Osgerby S., Nunn J. A physics-based life prediction methodology for thermal barrier coating systems [J]. Acta Materialia,2007,55(5):1491-1503.
    [128]Evans A. G., Mumm D., Hutchinson J., Meier G., Pettit F. Mechanisms controlling the durability of thermal barrier coatings [J]. Progress in Materials Science,2001,46(5):505-553.
    [129]王勇军,王峰会,张勇.圆柱基体热障涂层制备工艺中的残余应力分析[J].应用力学学报,2008,24(2):204-207.
    [130]Xu T., He M. Y., Evans A. G. A numerical assessment of the durability of thermal barrier systems that fail by ratcheting of the thermally grown oxide [J]. Acta Materialia,2003,51(13):3807-3820.
    [131]Tsui Y. C., Clyne T. W. An analytical model for predicting residual stresses in progressively deposited coatings part1:planar geometry [J]. Thin Solid Films,1997,306(1):23-33.
    [132]Zhang X. C., Xu B. S., Wang H. D., Wu Y. X., Jiang Y Residual stress distributions within high-temperature coatings [J]. Surface and Coatings Technology,2007,201(15):6660-6662.
    [133]Shi J., Karlsson A. M., Baufeld B., Bartsch M. Evolution of surface morphology of thermo-mechanically cycled NiCoCrAlY bond coats [J]. Materials Science and Engineering: A,2006,434(1):39-52.
    [134]牟仁德.热障涂层隔热性能研究[D].北京航空材料研究院,2007.
    [135]Zhu D., Miller R. A. Influence of high cycle thermal loads on thermal fatigue behavior of thick thermal barrier coatings [R]. NASA Technical Memorandum,3676,1997.
    [136]Ghosn L. J., Raj S. V. Residual stresses in thermal barrier coatings for a Cu-8Cr-4Nb substrate system [R]. NASA Technical Memorandum,211561,2002.
    [137]Yang X. G., Geng R. The analysis of2D temperature and thermal stress of TBC-coated turbine vane [J]. Journal of Aerospace Power,2002,17(4):432-436.
    [138]Gong S. K., Deng L., Bi X. F., Xu H. Thermal barrier effect of ceramic thermal barrier coatings [J]. Acta Aeronautica at Astronautica Sinica,2000,21(164):75-79.
    [139]Soechting F. O. A design perspective on thermal barrier coatings [J]. Journal of Thermal Spray Technology,1999,8(4):505-511.
    [140]殷复振.热障涂层的数学模型建立与隔热效果研究[D].大连理工大学,2006.
    [141]杜少军.高能激光器及其发射系统的热变形研究[D].国防科技大学,2001.
    [142]Sfar K., Aktaa J., Munz D. Numerical investigation of residual stress fields and crack behavior in TBC systems [J]. Materials Science and Engineering:A,2002,333(1):351-360.
    [143]Murthy P. L. M., Brewer D., Shah A. R. Environmental thermal barrier coatings for ceramic matrix composites:thermal tradeoff studies [R]. NASA Technical Memorandum, TM-2007-214920,2007.
    [144]刘奇星,蒋俊平,毛卫国,杨丽,周益春.热循环条件下涡轮叶片热障涂层系统的有限元模拟[C].中国力学学会学术大会'2009,郑州,2009.
    [145]Bunker R. S. A review of turbine blade tip heat transfer [J]. Annals of the New York Academy of Sciences,2001,934(1):64-79.
    [146]Steffens H. D., Babiak Z., Gramlich M. Some aspects of thick thermal barrier coating lifetime prolongation [J]. Journal of Thermal Spray Technology,1999,8(4):517-522.
    [147]Wang Z., Kulkarni A., Deshpande S., Nakamura T., Herman H. Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings [J]. Acta Materialia,2003,51(18):5319-5334.
    [148]Grandjean S., Absi J., Smith D. S. Numerical calculations of the thermal conductivity of porous ceramics based on micrographs [J]. Journal of the European Ceramic Society,2006,26(13):2669-2676.
    [149]Clarke D. R. Materials selection guidelines for low thermal conductivity thermal barrier coatings [J]. Surface and Coatings Technology,2003,163:67-74.
    [150]杨定富,韩树,袁伟.基体预热温度对热障涂层热残余应力影响的研究[J].表面技 术,2004,33(2):22-23.
    [151]毛卫国,戴翠英,周益春.在制备热障涂层过程中系统内残余应力场预测[J].湘潭大学自然科学学报,2006,27(4):46-52.
    [152]李志华,李焕喜,徐惠彬,宫声凯.热障涂层的残余应力分析[J].北京航空航天大学学报,2004,30(3):272-275.
    [153]Harding J. H., Mulheran P. A., Cirolini S., Marchese M., Jacucci G. Modeling the deposition process of thermal barrier coatings [J]. Journal of Thermal Spray Technology,1995,4(1):34-40.
    [154]Teixeira V. Mechanical integrity in PVD coatings due to the presence of residual stresses [J]. Thin Solid Films,2001,392(2):276-281.
    [155]Widjaja S., Limarga A. M., Yip T. H. Modeling of residual stresses in a plasma-sprayed zirconia/alumina functionally graded-thermal barrier coating [J]. Thin Solid Films,2003,434(1):216-227.
    [156]Chen W. R., Wu X., Marple B. R., Patnaik P. C. The growth and influence of thermally grown oxide in a thermal barrier coating [J]. Surface and Coatings Technology,2006,201(3):1074-1079.
    [157]Cheruvu N. S., Chan K. S., Gandy D. W. Effect of time and temperature on thermal barrier coating failure mode under oxidizing environment [J]. Journal of Engineering for Gas Turbines and Power,2009,131:022101.
    [158]Sridharan S., Xie L., Jordan E. H., Gell M. Stress variation with thermal cycling in the thermally grown oxide of an EB-PVD thermal barrier coating [J]. Surface and Coatings Technology,2004,179(2):286-296.
    [159]Mao W. G., Zhou Y. C., Yang L., Yu X. H. Modeling of residual stresses variation with thermal cycling in thermal barrier coatings [J]. Mechanics of Materials,2006,38(12):1118-1127.
    [160]Khor K. A., Gu Y W. Thermal properties of plasma-sprayed functionally graded thermal barrier coatings [J]. Thin Solid Films,2000,372(1):104-113.
    [161]Toparli M., Sen F., Culha O., Celik E. Thermal stress analysis of HVOF sprayed WC Co/NiAl multilayer coatings on stainless steel substrate using finite element methods [J]. Journal of Materials Processing Technology,2007,190(1):26-32.
    [162]Rosler J., Baker M., Aufzug K. A parametric study of the stress state of thermal barrier coatings:part I:creep relaxation [J]. Acta Materialia,2004,52(16):4809-4817.
    [163]Rangaraj S., Kokini K. Interface thermal fracture in functionally graded zirconia-mullite-bond coat alloy thermal barrier coatings [J]. Acta Materialia,2003,51(1):251-267.
    [164]Hille T. S., Suiker A. S. J., Turteltaub S. Microcrack nucleation in thermal barrier coating systems [J]. Engineering Fracture Mechanics,2009,76(6):813-825.
    [165]Teixeira V., Andritschky M., Fischer W., Buchkremer H., Stover D. Analysis of residual stresses in thermal barrier coatings [J]. Journal of Materials Processing Technology,1999,92:209-216.
    [166]Ali M. Y, Nusier S. Q., Newaz G. M. Creep effects on early damage initiation in a TBC system [J]. Journal of materials science,2004,39(10):3383-3390.
    [167]Baker M., Rosler J., Affeldt E. The influence of axial loading on the interface stresses of thermal barrier coatings [J]. Computational Materials Science,2009,47(2):466-470.
    [168]Kitazawa R., Tanaka M., Kagawa Y., Liu Y. F. Damage evolution of TBC system under in-phase thermo-mechanical tests [J]. Materials Science and Engineering:B,2010,173(1-3):130-134.
    [169]Liu Y, Persson C., Melin S. Numerical modeling of short crack behavior in a thermal barrier coating upon thermal shock loading [J]. Journal of Thermal Spray Technology,2004,13(4):554-560.
    [170]Rosier J., Baker M., Volgmann M. Stress state and failure mechanisms of thermal barrier coatings:role of creep in thermally grown oxide [J]. Acta Materialia,2001,49(18):3659-3670.
    [171]Patterson T., Leon A., Jayaraj B., Liu J., Sohn Y H. Thermal cyclic lifetime and oxidation behavior of air plasma sprayed CoNiCrAlY bond coats for thermal barrier coatings [J]. Surface and Coatings Technology,2008,203(5-7):437-441.
    [172]南宫自军,汪亮.Neumann随机有限元法计算涡轮叶片的可靠度[J].推进技术,1998,19(2):35-37.
    [173]周益春,刘奇星,毛卫国,蒋俊平.用于涡轮叶片热障涂层系统破坏过程的有限元建模方法[P]:中国,200910085777.1.2009-05-31.
    [174]周益春,刘奇星,毛卫国.涡轮叶片热障涂层应力的预测方法[P]:中国,201010124850.4.2010-03-12.
    [175]周益春,刘奇星,毛卫国.多重循环下涡轮叶片热障涂层危险区域的预测方法[P]:中国,201010034048.6.2011-01-12.
    [176]周益春,刘奇星,毛卫国.用于热循环条件下热障涂层系统有限元模拟的辅助软件[CP].中国计算机软件著作权,2010SR018980,2010.
    [177]Qi H. Y, Li R., Yang X. G., Zhou L. Z. Thermal fatigue life of thermal barrier coatings [J]. Journal of Rare Earths,2007,25:370-374.
    [178]Liu A., Wei Y Finite element analysis of anti-spallation thermal barrier coatings [J]. Surface and Coatings Technology,2003,165(2):154-162.
    [179]Tang F., Schoenung J. M. Local accumulation of thermally grown oxide in plasma-sprayed thermal barrier coatings with rough top-coat/bond-coat interfaces [J]. Scripta Materialia,2005,52(9):905-909.
    [180]Ottens H. H. Review of aeronautical fatigue investigation in the Netherlands during the period [R]. NASA Technical Memorandum, NLR-TP-99188,1999.
    [181]Tamarin Y, International A. Protective coatings for turbine blades [M]:Asm Intl,2002.
    [182]Zhu D. M., Miller R. A. Determination of creep behavior of thermal barrier coatings under laser imposed temperature and stress gradients [J]. Journal of materials research,1999,14(1):146-161.
    [183]Kim S. S., Liu Y F., Kagawa Y Evaluation of inter facial mechanical properties under shear loading in EB-PVD TBCs by the pushout method [J]. Acta Materialia,2007,55(11):3771-3781.
    [184]袁振明,声学,马羽宽,何泽云.声发射技术及其应用[M].北京:机械工业出版社,1985.
    [185]Kucuk A., Berndt C. C., Senturk U., Lima R. S. Influence of plasma spray parameters on mechanical properties of yttria stabilized zirconia coatings. Ⅱ:Acoustic emission response [J]. Materials Science and Engineering:A,2000,284(1):41-50.
    [186]Ma X. Q., Cho S., Takemoto M. Acoustic emission source analysis of plasma sprayed thermal barrier coatings during four-point bend tests [J]. Surface and Coatings Technology,2001,139(1):55-62.
    [187]Yang L., Zhou Y. C., Mao W. G., Lu C. Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings [J]. Applied Physics Letters,2008,93:231906.
    [188]Yang L., Zhou Y C., Lu C. Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling:An acoustic emission method [J]. Acta Materialia,2011.
    [189]潘兵,吴大方,高镇同.基于数字图像相关方法的非接触高温热变形测量系统[J].航空学报,2010,31(10):1960-1967.
    [190]Peters W. H., Ranson W. F. Digital imaging techniques in experimental stress analysis [J]. Optical Engineering,1982,21(3):427-431.
    [191]Yamaguchi I. A laser-speckle strain gange [J]. Journal of Physics E:Scientific Instruments,1981,14:1270-1273.
    [192]Chao Y J., Luo P. F., Kalthoff J. F. An experimental study of the deformation fields around a propagating crack tip [J]. Experimental Mechanics,1998,38(2):79-85.
    [193]Vendroux G., Knauss W. G. Submicron deformation field measurements:Part2. Improved digital image correlation [J]. Experimental Mechanics,1998,38(2):86-92.
    [194]Smith B. W., Li M., Tong W. Error assessment for strain mapping by digital image correlation [J]. Experimental Techniques,1998,22(4):19-21.
    [195]Sun Y, Pang J. H. L. AFM image reconstruction for deformation measurements by digital image correlation [J]. Nanotechnology,2006,17:933.
    [196]Kim H. J., Walter M. E. Characterization of the degraded microstructures of a platinum aluminide coating [J]. Materials Science and Engineering:A,2003,360(1):7-17.
    [197]Eberl C., Gianola D. S., Hemker K. J. Mechanical characterization of coatings using microbeam bending and digital image correlation techniques [J]. Experimental Mechanics,2010,50(1):85-97.
    [198]Harvey M., Courcier C., Maurel V., Remy L. Oxide and TBC spallation in [beta]-NiAl coated systems under mechanical loading [J]. Surface and Coatings Technology,2008,203(5-7):432-436.
    [199]郑翔,高建和,杨福俊,阮志强,何小元.DICM在发动机模态参数识别中的试验研究[J].振动测试与诊断,2010,30(3):280-285.
    [200]Pan B., Wu D., Xia Y High-temperature deformation field measurement by combining transient aerodynamic heating simulation system and reliability-guided digital image correlation [J]. Optics and Lasers in Engineering,2010,48(9):841-848.
    [201]王怀文,亢一澜,富东慧.应用数字散斑相关技术进行薄膜材料断裂问题研究[J].烟台大学学报:自然科学与工程版,2001,14(2):100-104.
    [202]Ma X. Q., Takemoto M. Quantitative acoustic emission analysis of plasma sprayed thermal barrier coatings subjected to thermal shock tests [J]. Materials Science and Engineering:A,2001,308(1):101-110.
    [203]Chen Q., Mao W. G., Zhou Y C., Lu C. Effect of Young's modulus evolution on residualstress measurement of thermal barrier coatings by X-ray diffraction [J]. Applied SurfaceScience,2010,256(23):7311-7315.
    [204] Freborg A. M., Ferguson B. L., Brindley W. J., Petrus G. J. Modeling oxidation inducedstresses in thermal barrier coatings [J]. Materials Science and Engineering: A,1998,245(2):182-190.
    [205] Dalgleish B. J., Fakhr A., Pratt P. L., Rawlings R. D. The temperature dependence of thefracture toughness and acoustic emission of polycrystalline alumina [J]. Journal ofmaterials science,1979,14(11):2605-2615.
    [206] Zi G., Belytschko T. New crack-tip elements for XFEM and applications to cohesivecracks [J]. International Journal for Numerical Methods in Engineering,2003,57(15):2221-2240.
    [207] Chessa J., Smolinski P., Belytschko T. The extended finite element method (XFEM) forsolidification problems [J]. International Journal for Numerical Methods in Engineering,2002,53(8):1959-1977.
    [208] Michlik P., Berndt C. Image-based extended finite element modeling of thermal barriercoatings [J]. Surface and Coatings Technology,2006,201(6):2369-2380.
    [209] Schulz U., Fritscher K., Ebach-Stahl A. Cyclic behavior of EB-PVD thermal barriercoating systems with modified bond coats [J]. Surface and Coatings Technology,2008,203(5-7):449-455.
    [210] Wen M., Jordan E. H., Gell M. Analysis of localized damage in EB-PVD/(Ni, Pt) Althermal barrier coatings [J]. Surface and Coatings Technology,2006,200(18):5193-5202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700