铁氧体基电磁波吸收材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波吸收材料是一种重要的功能材料,它在军事技术、信息和环保科学领域获得广泛的应用和发展。近年来,随着电子技术的迅速发展,电磁波辐射的危害性越来越得到人们的高度重视,因此如何有效防止电磁波辐射的干扰,已经成为人们关心的问题。
     铁氧体具有优良的吸波性能,作为微波吸收材料能够减少目标物对雷达的散射,目前,吸波材料的研究正朝着吸收率高、涂层薄、吸收频带宽、质量轻、抗磨蚀及成本低的方向发展。通过在铁氧体中加入其它吸波介质组成复合吸收剂,可使电磁参数得到较好匹配。在实际使用中己经发现通过将铁氧体和其他多种材料复合能够提高材料的吸波性能。
     本文采用溶胶-凝胶法制备了纳米镍锌铁氧体。对镍锌铁氧体掺杂不同微量的稀土元素铈,发现微波吸收特性随掺杂稀土含量的不同而改变。在Ni_(0.2)Zn_(0.8)Fe_(2-x)Ce_xO_4 (x = 0,0.01,0.03,0.07)四种不同掺杂铈的材料中,x=0.07的吸波性能最好,最高吸收值达到35.79dB,相对于x=0,0.03都有显著提高,x=0.01时吸波性能相对与x=0时(即未掺杂稀土时)又有所下降。添加稀土元素铈并不遵循随添量的增多吸波性能提高的原则,而是适量稀土元素铈的添加能有效提高材料吸波性能,过量或少量的添加都有减弱材料微波吸收特性的趋势。同时通过与国外先进吸波材料性能对比,发现吸波性能不仅与材料有关,还与贴片的内部结构设计有关。一般情况下,吸波性能随贴片厚度的增加而增加。
Microwave absorbing material is a kind of functional material. It is applied and developed in military technology, information and environmental protection. The increasing environmental pollution from non-ionizing microwave irradiation due to the fast development in information and communication technology has received much attention. So how to prevent electromagnetic interference is an issue concerned.
     The ability of ferrite materials to absorb microwaves is well known. Ferrites have been used as absorbers in reducing back scattering from objects or radar targets. The recent development in absorber technology is to produce absorbers which are thin, flexible, strong and lowcost. These can be acheived by blending or mixing the pure ferrites with other non-magnetic oxides. The practice has found that changing the absorption characteristics of the pure ferrites may broaden the frequency of absorption.
     Nano-NiZn ferrite was produced by sol-gel method. Then different quantities of cerium were doped in nano-NiZn ferrite. It was found that the microwave absorption properties of ferrite change with changing quantity of rare earth. InNi_(0.2)Zn_(0.8)Fe_(2-x)Ce_xO_4 (x=0, 0.01, 0.03, 0.07) four different materials, when the mol concentration of rare earth cerium is 7% (x=0.07), the microwave absorption property is the best, while the microwave absorption property for x=0.01 is lower than that for x=0. These indicate that the absorption properties of these materials do not regularly change with the quantity of doped rare earth. Only doping a proper amount of rare earth cerium can improve microwave absorption properties of nano-NiZn ferrite, and doping more or less quantity of it is not favorable to improving microwave absorption property. In addition, some commercial products have been compared with ours, showing that not only the material but also the internal structure affect the absorption properties. In general, absorption properties of the nano-NiZn ferrite increase with the increase of its thickness.
引文
1巩晓阳,董企铭.吸波材料的研究现状与进展[J].河南科技大学学报,2003,24(20):19~22
    2邓龙江,谢建良,梁迪飞等.磁参数对六角铁氧体RAM温度稳定性影响[J]电子科技大学学报,2000,29(1):61~64
    3王自荣.激光与雷达复合隐身分析[J].上海航天,2001,4:34~37
    4胡传析.隐身涂层技术[M].北京:化学工业出版社,2004
    5郭清泉,陈焕钦.涂覆型军品隐身包装的研究现状与发展趋势[J].涂料工业,2003,33(6):42
    6高焕方,陈一农,张捷等.吸波涂料的研究现状[J].表面技术,2003,23(5):1~3
    7曹克广.国外微波隐身材料的发展及现状[J].抚顺石油学院学报,1997,17(2)29~32
    8何显运,张兴华,周彦豪.吸波材料的研究进展[J].功能材料增刊,2001,10:592~595
    9秦嵘,陈雷.国外新型隐身材料研究动态[J].宇航材料工艺,1997,4:17~19
    10周敏,杨觉明.周建军.吸波材料研究进展[J].西安工业学院学报,2000,20(4):296~302
    11 Kim S S, Han D H, Cho S B. Microwave absorbing properties of sintered Ni-Zn ferrite. IEEE Trans Magn, 1994, 30(6):4554~4556
    12 Cho S B, Kang D H, Oh J H. Relation between magnetic properties and microwave-absorbing characteristics of NiZnCo ferrite composites. J Mater Sci,1996, 31:4719~4722
    13阳开新.铁氧体吸收材料及应用[J].磁性材料及器件,1996,27(3)
    14巩晓阳,董企铭.吸波材料的研究现状与进展[J].河南科技大学学报,2003,24(2):19~22
    15李黎明,徐政.吸波材料的微波损耗机理及结构设计[J].现代技术陶瓷,2004,(2):31~34
    16官建国,王琦,张清杰等.纳米技术在微波吸收材料中的应用[J].材料导报,2003,3,17(3):45~48
    17邓建国,王建华,贺传兰.纳米微波吸收剂的研究现状与进展[J].宇航材料工艺,2005(5):5~9
    18张克立,从长杰,郭光辉等.纳米吸波材料的研究现状与展望[J].武汉大学学报,2003,12,49(6):680~684
    19郭方方,徐政.新型纳米微波吸收剂的研究动态[J].现代技术陶瓷,23~33
    20李国栋.稀土材料物理[M]内蒙古大学物理系教材,2003
    21稀土编写组,稀土(下)[M]北京,冶金工业出版社,1978
    22 Komarneni, E. Fregeau, E. Breval,et al. Hydrothermal preparation of ultr affine ferrites and their sintering. J.Am. Ceram. soc. 1998, 71(1):26~28
    23徐春旭,李茹民,景小燕等.超微铁氧体磁性材料的制备技术.应用科技. 2004, 3:57~59
    24贾志刚,李佑楚,张亮等.钡铁氧体磁粉的热处理方法.北工冶金. 1999, 20(4):337~341
    25李飞跃.用聚丙烯酞胺凝胶法制备钡铁氧体BaFe12O19超细微粒.功能材料. 1992,23(3):157~159
    26丁子上,翁文剑.溶胶-凝胶技术制备材料的进展.硅酸盐学报. 1993, 21(5):443~45
    27 R. Bowen, B. Derby. Self-propagating high temperature synthesis of ceramic materials. Brit. Ceram. Trans. 1997, 96(1):25~28
    28李鑫,赵九蓬,韩杰才等.自蔓延高温合Ni0.35Zn0.65Fe2O4的研究.硅酸盐学报. 2000, 28(5):427~431
    29 X. Y. Zhao, B. C. Zheng, H. C. Gu, et al. Preparation of phase homogeneous Mn- Zn ferrite powder by spray pyrolysis. J. Mater. Res. 1999, 14(7): 3073~3082
    30陈祖耀,张大杰,钱逸泰.喷雾热解法制备超细粉末及其应用.硅酸盐通报.1998, 7(6):54~61
    31洪广言.超微粉末的合成及应用.仪表材料. 1987, 21(1):51~58
    32 S. Castro, M. Gayoso et al. Structural an Magnetic Properties of Barium Hexaferrite Nanostructured Particles Prepared by combustion Method. Journal of Magnetism and Magnetic Materials. 1996, (152):61~69
    33刘常坤. CoFe2O4超细微粒催化剂的制备、性能与表征.功能材料. 1997, 28(4):427
    34 N. Moumen, I. Lisiecki, M. P. Pileni. Micellar factors which play a role the control of the nanosize particles of cobalt ferrite. Supramol S. 1995, (3-4):427
    35 A. G. Merchanov Reviews: fundamentals, achievements, and perspectives for development of solid-flame combustion. Russ. Chem. Bul1. 1997, 46(1):1~27
    36 M. Yokoyama, T. Sato, E. Ohta, et al. Magnetization of cadmium ferrite prepared by co-precipitation. J.Appl. Phys. 1996, 80(2):1015
    37刘辉,魏雨,张岩峰等.纳米铁酸盐的制备研究低温催化相转化合成纳米铁酸锌及表征.无机材料学报. 2002, 17(1):56~60
    38姚志强,王琴,钟炳.超临界流体干燥法制备锰锌铁氧体超细粉末.磁性材料与器件. 1998,29(1):6~9
    39徐康,刘建军,徐挑等.用冲击波合成法制备铁酸锌粉体.无机材料学报. 1997, 12(5):759
    40 S. Komarneni, Q. H. Li, Y. R. Ro. Microwave-hydrothermal processing of layered anion exchangers. J. Mater. Res. 1996, (11):1866~1869
    41 J. H. Lee, C. K. Kim, K. Shunsaku, et al. Microwave-hydrothermal preparation of Ni- and Zn- ferrite powders. J. Alloys Comp. 2001, 325(12):276~280
    42 D. Arcos, R. Valeuzuela, M. Vazquez, et al. Chemical homogeneity of nanocrystalline Zn-Mn spinel ferrites obtained by high-energy ball milling. J. Solid State Chem. 1998, 141:10~16
    43 A. G. Merchanov Reviews: fundamentals, achievements, and perspectives fordevelopment of solid-flame combustion. Russ. Chem. Bul1. 1997, 46(1):1~27
    44殷声.自蔓延高温燃烧合成技术和材料.冶金工业出版社. 1995:3~15
    45 S. Castro, M. Gayoso et al. Structural an Magnetic Properties of Barium Hexaferrite Nanostructured Particles Prepared by combustion Method. Journal of Magnetism and Magnetic Materials. 1996, (152):61~69
    46张密林,赵华,李茹民. M-型超微铁氧体粉末合成方法的进展.功能材料. 1996, 27(3):202~205
    47李鑫,赵九蓬,韩杰才等.铁氧体粉料制备工艺的新进展.粉末冶金技术. 2000,18(1):51~55
    48田雨霖.取向钡铁氧体微粉的合成及应用.硅酸盐通报. 1989,8(1):21-29
    49祖光裕,包兴,张永祥.永磁钡铁氧体制备的新途径.天津大学学报. 1998, 31(6):788~792
    50马昌贵.高性能磁性材料与微粒子制备技术.磁性材料及器件. 1994, 25(4):46~50
    51王晓慧,李龙土,张连生等. BaFe12-2x(CoTi)xO19超细粉的制备及磁性能的研究.功能材料. 1999,30(1):13~14
    52方庆清,钟伟,都有为等.复合型锶铁氧体纳米晶粒的改性研究.物理学报. 1999,48(6):1170~1174
    53 P. V. P. Kumar, D. O. Shah. Magnetic properties of barium ferrite synthesized using a microemulsion mediated process. Magnetism and Magnetic Materials. 1992, (112):299~304
    54滕荣厚.浅谈磁性液体.粉末冶金工业. 2001, 6:42~46
    55朱心昆,林秋实,陈铁力等.自蔓延高温合成技术及发展.2000,8,29(4):41~45
    56岳振星,周济,张洪国等.柠檬酸盐凝胶的自燃烧与铁氧体纳米粉合成.1999,8,27(4):466~470
    57黄文艳,杜丕一,韩高容等.溶胶直接自蔓燃法制备NiZn铁氧体粉末研究.2005,23(5)528~532

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700