LiFePO_4正极材料的合成及改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橄榄石型LiFePO4是一种新型的锂离子电池正极材料,具有能量密度高、成本低、环保和安全等一系列优点,有望成为商业化动力锂离子电池的正极材料。本文采用高温固相法制备LiFePO4,并对其进行碳包覆、Mg2+体相掺杂改性,系统地研究了合成工艺、改性方式等对材料性能的影响以及导电剂对锂离子电池正极性能的影响。通过EIS对LiFePO4材料在充电过程中的Li+扩散系数进行了估算,比较、联系了Li+扩散系数对材料平台性能的影响。
     利用XRD、SEM、CV以及充放电测试等方法研究了橄榄石型LiFePO4正极材料的合成工艺。通过正交实验对合成过程中所用原料配比、预烧温度、煅烧温度、煅烧时间等工艺参数进行了优化实验,确定了合成磷酸铁锂最佳的工艺条件。以葡萄糖为碳源时,最佳含碳量为6wt.%,容量可达130.40mAh·g-1(0.1C)。
     以葡萄糖和Super P为混合碳源时,LiFePO4/6wt.%C(MC-Super P: MC-葡萄糖=2:4)材料性能最好。0.1C下放电,其比容量值为140.14mAh·g-1,20次循环后,容量值仍能保持在134.22 mAh·g-1。在碳包覆的基础上,进行Mg2+掺杂所制备的Li1-2xMgxFePO4/6wt.%C材料,当x=0.01时,材料性能优异。尤其是倍率放电性能得到显著提高,1C下放电比容量可达111.81mAh·g-1。随着Mg2+含量增大,性能呈下降趋势。
     本文研究了Super P、导电炭黑、KS-6三种导电剂的单一、两两混合、三种混合使用对LiFePO4的电极性能的影响。结果表明,三种导电剂混合(Super P:导电炭黑:KS-6=4:8:6)时LiFePO4电极性能最佳,首次放电容量为155.93mAh·g-1(0.1C)。
     运用EIS技术测定了LiFePO4正极材料中Li+扩散系数。对橄榄石型LiFePO4材料中锂离子的扩散系数随电极的荷电状态变化的规律进行了探讨。
Olive LiFePO4 is a promising cathode material of lithium-ion battery, especially to the LIB used for EVs and HEVs, due to its relatively large theoretical capacity, low cost, environmental friendliness and safety. In this work, LiFePO4 cathode material was prepared by solid-state method and modified by carbon coating and Mg2+ doping. And meanwhile, the effect of conductive agents on the performance of cathode in lithium ion batteries was studied. The Li+ diffusion coefficient of LiFePO4 at different charge states was estimated and analyzed.
     Effect of the preparation conditions, such as pre-calcination temperature, MLi/MFe, calcination temperature and time et al., on the structure, particle size and electrochemical properties of LiFePO4 were studied by using XRD, SEM, CV and electrochemical charge-discharge tests to optimized LiFePO4 production process.
     Carbon coated LiFePO4 with 6wt.% carbon which came from glucose exhibited the best electrochemical performance. Specific capacity in the discharge of the material was 130.40mAh·g-1(0.1C). When glucose and Super P were used as cabon sources, the material LiFePO4/6wt.%C(MC-Super P: MC-glucose=2:4) performed best. The specific capacity of the sample was 140.14mAh·g-1 at the rate of 0.1C. After 20 cycles, the capacity remained at 134.22 mAh·g-1. Mg2+ doped Li1-2xMgxFePO4/6wt.%C was obtained based on carbon coated LiFePO4. When the doping content was 0.01, the obtained has the best electrochemical performance with a specific capacity of 111.81mAh·g-1 at 1C. The specific capacity of Li1-2xMgxFePO4/6wt.%C was reduced as the increasing contents of Mg2+.
     The effects of the single, binary and ternary conductive agents consisting three kinds of carbon particals with different sizes in a LiFePO4 cathode on the performance were studied. The results showed that the LiFePO4 cathode with ternary conductive agents (Super P:Conductive Carbon Black:KS-6=4:8:6) had the best electrochemical properties, and the first discharge capacity reached 155.93mAh·g-1(0.1C).
     The Li+ diffusion coefficients have been obtained by EIS method and the results indicated that their values were changing with the state of charge.
引文
[1]陈立泉.锂离子电池中的物理问题[J].物理,1998, 27(6): 354-357
    [2]Scrosati B, Recent advances in lithium ion battery materials, Electrochimica Acta, 2000, 45: 2461-2466
    [3]冯熙康,王伯良,陈爱松等.电动汽车锂离子动力系统的研制[J].电源技术,2002, 26(2): 63-65
    [4]吴宇平,戴晓兵,马军旗等.锂离子电池——应用与实践[M].北京:化学工业出版社,2004, 1-13
    [5]Yoshimatsu I, Hirai T, Yamaki J, Lithium electrode morphology during cycling in lithium cells[J], Journal of the Electrochemical Society, 1988, 135(10): 2422-2426
    [6]唐致远,刘春燕,徐国祥.锂离子电池的产品现状及其发展前景[J].河北化工,2001, 1(1): 6-7
    [7]张勇,胡信国,张翠芬.新型化学电源的电极反应原理[J].电池工业,2004, 9(1): 33-36
    [8]郭炳焜,徐徽,王先友等.锂离子电池[M].长沙:中南大学出版社,2002, 17-36, 259-263
    [9]吴宇平,万春荣,姜长印等.锂离子二次电池[M].北京:化学工业出版社,2002, 336-352
    [10]魏智.锂离子电池充电器[J].国外电子元器件,2001, 1(2): 69-72
    [11]苏金然,秦兴才,贾宏涛.锂离子电池的发展动态[J].中国电子商情,2006, 3(10): 40-43
    [12]Hahn T, International tables for crystallography[M], Dordrecht, Holland: D.Reidell Publishing Company, 1987, Volume A, 504-537
    [13]Koksbang R, Barker J, Shi H et al., Cathod materials for lithium rocking chair batteries[J], Solid State Ionics, 1996, 84(1-2): 1-21
    [14]Chebiam R V, Kannan A M, Prado F et al., Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries[J]. Electrochemistry Communications, 2001, 3(10): 624-627
    [15]Yamada S, Osaki T, Secondary nonaqueous batteries with improved cathodes[P]. JP: 0536411, 1993-04-20
    [16]Yoshi I, Nonaqueous secondary battery[P]., EP: 0567149, 1993-10-08
    [17]Gupta R, Manthiram A, Chemical Extraction of Lithium from Layered LiCoO2[J], Journal of Solid State Chemistry, 1996, 121(2): 483-491
    [18]吴宇平,方世璧,刘昌炎等.锂离子电池正极材料氧化钴锂的进展[J].电源技术,1997, 21(5): 208-209
    [19]Noma T, Yamamoto J, Kruokawa H et al., Nonaqueous-electrolyte secondary lithium batteries with cycle properties[P], JP: 05290847, 1993-11-05
    [20]Broussely M, Perton F, Biensan P et al., LixNiO2, A Promising cathode for rechargeable lithium batteries[J], Journal of Power Sources, 1995, 54(1): 109-114
    [21]Ohzuku T, Ueda A, Nagayama M et al., Comparative study of LiCoO2, LiNi1/2Co1/2O2 and LiNiO2 for 4 volt secondary lithium cells[J], Electrochimica Acta, 1993, 38(9): 1159-1167
    [22]袁荣忠,翟美臻,于作龙.锂离子电池镍系正极材料的热稳定性研究进展[J].无机材料学报,2003, 18(5): 973-978
    [23]刘汉三,杨勇,张忠如等.锂离子电池正极材料锂镍氧化物研究新进展[J].电化学,2001, 7(2): 145-154
    [24]Wu Y P, Rahm E, Holze R, Effects of heteroatoms on electrochemical performance of electrode materials for lithium ion batteries[J], Electrochimica Acta, 2002, 47(21): 3491-3507
    [25]Gao Y, Dahn J R, The high temperature phase diagram of Li1-xMn2-xO4 and its implications[J], Journal of the Electrochemical Society, 1996, 143(6): 1783-1788
    [26]Kumagai N, Fujiwara T, Tanno K et al., Physical and electrochemical characterization of quaternary Li-Mn-V-O spinel as positive materials for rechargeable lithium batteries[J], Journal of the Electrochemical Society, 1996, 143(3): 1007-1013
    [27]Thackeray M M, Shao-Horm Y, Kahaian A J et al., Structural fatigue spinel electrodes in high voltage(4V)Li/LixMn2O4 cells[J], Electrochemical and Solid-State Letters, 1998, 1(1): 7-9
    [28]Jang D H, Shin Y J, Oh S M, Dissolution of spinel oxides and capacity losses in 4V Li/LixMn2O4 coils[J], Journal of the Electrochemical Society, 1996, 143(7): 2204-2211
    [29]Komaba S, Sasaki T, Miki Y et al., Electrochemical characteristics and managanese dissolution of spinel Li1.05M0.2Mn1.75O4 (M=Al,Co,and Cr) cathode for rechargeable lithium ion batteries[J], Electrochemistry, 2003, 71(12): 1236-1239
    [30]Yamada A, Chung S C, Hinokuma K, Optimized LiFePO4 for lithium battery cathodes, Journal of the Electrochemical Society, 2001, 148(3): 224-229
    [31]倪江锋,苏光耀,周恒辉等.锂离子电池正极材料LiMPO4的研究进展化学进展[J].2004, 16(4): 554-560
    [32]Larminie James, Lowry John, Electric Vehicle Technology Explained, Queensland: John Wiley & Sons Australia Ltd, 2003, 1-20
    [33]Padhi A K, Nanjundaswamy K S, Goodenough J B, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J], Journal of the Electrochemical Society, 1997, 144(4): 1188-1194
    [34]Padhi A K, Nanjundaswamy K S, Masquelier C et al., Effect of structure on the Fe3+/ Fe2+ redox couple in iron phosphate[J], Journal of the Electrochemical Society, 1997, 144(5): 1609-1613
    [35]Padhi A K, Nanjundaswamy K S, Masquelier C et al., Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation[J], Journal of the Electrochemical Society, 1997, 144(8): 2581-2586
    [36]Thuckeray M, An unexpected conductor[J], Nature Matertials, 2002, 1(2): 81-82
    [37]Andersson A S, Thomas J O, The source of first-cycle capacity loss in LiFePO4[J], Journal of The Electrochemical Society, 2002, 149(7): A886-A890
    [38]吕正中,周震涛.磷酸铁锂锂离子电池正极材料[J].化学通报,2004, 67(4): 314-319
    [39]徐如人,庞文琴.无机合成与制备化学[J].北京:高等教育出版社,2001, 37-40
    [40]Prosini P P, Carewska M, Scaccia S, et al, A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance[J], Journal of the Electrochemical Society, 2002, 149(7): 886-890
    [41]Delacourt C, Wurm C, Reale P, et al, Low temperature preparation of optimized phosphates for Li-battery applications[J], Solid State Ionics, 2004, 173(1-4): 113-118
    [42]Delacourt C, Poizot P, Levasseur S, et al, Size effects on carbon-free LiFePO4 powders[J], Electrochemical and Solid-State Letters, 2006, 9(7): 352-355
    [43]Kim D H, Kim J, Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties[J], Electrochemical and Solid-State Letters, 2006, 9(9): 439-442
    [44]Ni J F, Zhou H H, Chen J T, et al, LiFePO4 doped with ions prepared by co-precipitation method[J], Materials Letters, 2005, 59(18): 2361-2365
    [45]Croce F, Epifanio A. D, Hassoun J, et al, A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode[J], Electrochemical and Solid-State Letters, 2002, 5(3): 47-50
    [46]Dominko R, Bele M, Gaberscek M, et al, Porous olivine composites synthesized by sol-gel technique[J], Journal of Power Sources, 2006, 153(2): 274-280
    [47]Dominko R, Goupil J M, Bele M, et al, Impact of LiFePO4/C composites porosity on their electrochemical performance[J], Journal of The Electrochemical Society, 2005, 152(5): 858-863
    [48]Dominko R, Bele M, Gaberscek M, et al, Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites, Journal of The Electrochemical Society, 2005, 152(3): 607-610
    [49]Dokko Kaoru, Koizumi Shohei, Sharaishi Keisuke, et al, Electrochemical properties of LiFePO4 prepared via hydrothermal route, Journal of Power Sources, 2007, 165(2): 656-659
    [50]Yang S F, Zavalij P Y, Whittingham M S, Hydrothermal synthesis of lithium iron phosphate cathodes, Electrochemistry Communications, 2001, 3(9): 505-508
    [51]Barker J, Saidi M Y, Swoyer J L, Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method, Electrochemical and Solid-State Letters, 2003, 6(3): 53-55
    [52]Cho T H, Chung H T, Synthesis of olivine-type LiFePO4 by emulsion-drying method, Journal of Power Sources, 2004, 133: 272-276
    [53]Park K S, Son J T, Chung H T, et al., Synthesis of LiFePO4 by co-precipitation and microwave heating, Electrochemistry Communications, 2003, 5(10): 839-842
    [54]Higuchi M, Katayama K, Azuma Y, et al., Synthesis of LiFePO4 cathode material by microwave processing, Journal of Power Sources, 2003, 119-121: 258-261
    [55]沈湘黔,占云,韩种.橄榄石型结构LiFePO4锂电池正极材料实用化的障碍和途径[J].功能材料信息,2005, 2(4): 31-35
    [56]Cushing B L, Goodenough J B, Influence of carbon coating on the performance of a LiMn0.5Ni0.5O2 cathode[J], Solid State Sciences, 2002, 4(11-12):1487-1493
    [57]Park K S, Son J T, Chung H T, et al.,Surface modification by silver coating for improving electrochemical properties of LiFePO4[J], Solid State Communications, 2004, 129(5): 311-314
    [58]Yamada A, Hosoya M, Chung S C, et al.,Olivine-type cathodes: achievements and problems[J], Journal of Power Sources, 2003, 119-121(3): 232-238
    [59]Chung S Y, Bloking J T, Chiang Y M, Electronically conductive phosphor -olivines as lithium storage electrodes[J], Nature Materials, 2002, 1(2): 123-128
    [60]Yamada A, Chung S C, Crystal chemistry of the olivine-type Li(MnyFe1-y)PO4 and (MnyFe1-y)PO4 as possible 4V cathode materials for lithium batteries [J], Journal of the Electrochemical Society, 2001, 148(8): A960-A967
    [61]张玉荣,王文继.锂离子电池正极材料Li2+2xTi1-xCux(NbO4)2的研究[J].无机材料学报,2004, 19(2): 349-353
    [62]Huang H, Yin S C, Nazar L F, Approaching theoretical capacity of LiFePO4 at room temperature at high rates[J], Electrochemical and Solid-State Letters, 2001, 4(10): A170-A172
    [63]Ravet N, Chounard Y, Magnan J F, et al., Electroactivity of natural and synthetic triphylite[J], Journal of Power Sources, 2001, 97-98(4): 503-507
    [64]Takahashi M, Tobishima S, Takei K, et a1., Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries[J], State Solid Ionics, 2002, 148(3-4): 283-289
    [65]Burba C M, Frech R, Raman and FTIR spectroscopic study of LixFePO4 (0≤x≤1) [J], Journal of the Electrochemical Society, 2004, 151(7): 1032-1038
    [66]Prosini P P, Carew, ska M, Scaccia S, et al, Long-term cyclability of nanostructured LiFePO4[J], Electrochimica Acta, 2003, 48(28): 4205-4211
    [67]Zhang S S, Allen J L, Xu K, et al., Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes[J], Journal of Power Sources, 2005, 147: 234-240
    [68]Song M S, Kang Y M, Kim J H, et al., Simple and fast synthesis of LiFePO4/C composite for lithium rechargeable batteries by ball-milling and microwave heating[J], Journal of Power Sources, 2007, 166(1): 260-265
    [69]Mi C H, Cao G S, Zhao X B, Low-cost, one-step process for synthesis carbon-coated LiFePO4 cathode[J], Materials Letters, 2005, 59(1): 127-130
    [70]Franger S, Cras F L, Bourbon C, et al., Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties[J], Journal of Power Sources, 2003, 119-121: 252-257
    [71]Bewlay S L, Konstantinov K, Wang G X, et al., Conductivity improvements to spray-producted LiFePO4 by addition of a carbon sources[J], Materials Letters, 2004, 58: 1788-1791
    [72]Yang S F, Song Y N, Whittingham M S, et al., Reactivity, stability and electrochemical behavior of lithium iron phosphates[J], Electrochemistry Communications, 2002, 4(3): 239-244
    [73]Takahashi M, Tobishima S, Takei K, et a1., Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries[J], Journal of Power Sources, 2001, 97-98: 508-511
    [74]Andersson A S, Kalska B, Thomas J O, et al., Lithium extraction/insertion in LiFePO4: an X-ray diffraction and M?ssbauer spectroscopy study[J], Solid State Ionics, 2000, 130: 41-52
    [75]Spong A D, Vitins G, Owen J R, A solution-precursor synthesis of carbon-coated LiFePO4 for Li-ion cells, Journal of the Electrochemical Society, 2005, 152(12): 2376-2382
    [76]Myung S T, Komaba S, Hirosaki N, et al., Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material, Electrochimica Acta, 2004, 49(24): 4213-4222
    [77]Dokko K, Shiraishi K, Kanamuraa K, Identification of surface impurities on LiFePO4 particles prepared by a hydrothermal process, Journal of the Electrochemical Society, 2005, 152(11): 2199-2202
    [78]Liu H, Li C, Zhang H P, et al, Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique, Journal of Power Sources, 2006, 159(1): 717-720
    [79]Salah A A, Mauger A, Julien C M, et al, Nano-sized impurity phases in relation to the mode of preparation of LiFePO4, Materials Science and Engineering: B, 2006, 129(1-3): 232-244
    [80]Wang D Y, Li H, Shi S Q, et al., Improving the rate performance of LiFePO4 by Fe-site doping, Electrochimica Acta, 2005, 50(14): 2955-2958
    [81]Yoshinori A, Masahiro Y, Yasuo O, Non-aqueous electrolyte secondary cell, EP 1180811~A2, 2002
    [82]周振涛,潘慧铭.含氟聚合物胶粘剂及其电化学特性的研究[J].电源技术,1998, 22(2): 47
    [83]Ahn S, Kim Y, Kim K J, et al., Developerment of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives[J], Journal of Power Sources, 1999, (81-82): 896
    [84]Cheon S E, Kwon C W, Kim DB, et al., Effect of binary conductive agents in LiCoO2 cathode on performances of Lithium ion polymer battery[J], J Electrochim Acta, 2000, 46(8): 599-605
    [85]Sato Y, Miyagi H, Takano H, et al., Transit-time-limited shot noise due to carrier generation in semiconductors: A new approach[J].Solid-State Electronics, 1998, 42(4): 664-666
    [86]Liao X Z, Ma Z F, He Y S, et al., Electrochemical behavior of LiFePO4/C cathode material for rechargeable lithium batteries, Journal of the Electrochemical Society, 2005, 152(10): 1969-1973
    [87]Wang G X, Yang L, Chen Y, et al., An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries, Electrochimica Acta, 2005, 50(24): 4649-4654
    [88]Delacourt C, Wurm C, Laffont L, et al., Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites, Solid State Ionics, 2006, 177(3-4): 333-341
    [89]Delacourt C, Laffont L, Bouchet R, et al., Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M=Fe, Mn) electrode materials, Journal of the Electrochemical Society, 2005, 152(5): 913-921
    [90]Bohnke C, Bohnke O, Fourquet J L, Electrochemical intercalation of lithium into LiLaNb2O7, Journal of the Electrochemical Society, 1997,144(4): 1151-1158
    [91]Uchina T, Marikaua Y, Ikuta H, et al.,Chemical diffusion coefficient of lithium in carbon fiber, Journal of the Electrochemical Society, 1996, 143(8): 2606-2610
    [92]Hodjean R B, Farcy J, Ramos J P P, A kinetic study of lithium transport in a new lithium intercalation material Al0.11V2O5.15 synthesized via a sol-gel process, Journal of the Electrochemical Society, 1996, 143(7): 2083-2088
    [93]Johnson B J, Doughty D H, Voigt J A, et al., Electrochemical impedance spectroscopy studies of lithium diffusion in doped manganese oxide, Journal of Power Sources, 1997, 68: 634-636
    [94]Yang W S, Zhang G, Lu S G, et al., Electrochemical studies of Li/LixMn2O4 by using powder microelectrode, Solid State Ionics, 1999, 121: 85-89
    [95]Mohamedi M, Takahash D I, Uchiyama T, et al., Explicit analysis of impedance spectra related to thin films of spinel LiMn2O4, Journal of Power Sources, 2001, 93: 93-103
    [96]Bard A J, Faulkner L R, Electrochemical Methods: Fundamentals and Applications (2nd Edition), New York: John Wiley & Sons, Inc., 2001, 383-384

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700