平邑甜茶无融合生殖发育与遗传特性分析及相关基因的功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无融合生殖是发育生物学领域的重要科学问题。与有性种子后代相比,无融合生殖后代的遗传背景与母本一致,不发生性状分离。在水稻和玉米等作物育种中,无融合生殖可以固定杂种优势;在苹果、柑橘、马铃薯和甘薯等无性繁殖植物中,无融合生殖产生无性种子,克服无性繁殖的不便,并能避免长期营养繁殖造成的亲本退化。鉴于无融合生殖在农业生产中的巨大应用潜力,并受到植物学家和育种学家的广泛关注,对无融合生殖进行相关研究不仅具有重要的理论价值,而且具有潜在的实践意义。
     本文以兼性无融合生殖的野生苹果资源平邑甜茶(Malus hupehensis Redh. var.pingyiensis)及其有性杂交群体为试材,探讨苹果属无融合生殖植物的发育和遗传特性及其分子机理。主要研究结果如下:
     1.平邑甜茶具有高度单性生殖和2n雌配子形成能力
     平邑甜茶胚囊由胚珠体细胞发育而来,并存在多胚囊现象,属于无孢子无融合生殖类型。通过连续3年的调查统计,发现平邑甜茶的单性生殖能力平均为94%,2n雌配子形成能力平均为95%,说明平邑甜茶具有高度的单性生殖能力和无融合非减数分裂能力。
     2.平邑甜茶等苹果属无融合生殖资源的2n胚囊通过发育迟滞策略逃避受精
     平邑甜茶的2n胚囊能够正常受精,但由于发育滞后,当其发育成熟时,柱头已经衰老并失去授粉能力,从而逃避了受精过程,最终通过单性生殖形成无融合生殖种子,我们把这种现象称之为“FLD”。FLD现象在小金海棠和沙金海棠等其它无融合生殖苹果资源中也普遍存在,表明胚囊发育迟滞是苹果属无融合生殖过程的关键发育事件。
     3.缩短柱头寿命提高无融合生殖率
     苹果属无融合生殖材料大部分进行的是兼性无融合生殖,自然授粉下可形成有性种子,而通过喷施石硫合剂可以缩短柱头寿命,阻止授粉受精,从而降低杂种率,提高无融合生殖率。
     4.无融合非减数分裂和单性生殖独立遗传并共同决定无融合生殖
     利用平邑甜茶与舞美的杂交后代对无融合生殖特性进行遗传分析,结果表明,2n雌配子形成能力与单性生殖能力不偶联,是相互独立的发育事件,并且两者的乘积与无融合生殖率和FLD现象正相关。所以,平邑甜茶的无融合生殖由单性生殖和2n雌配子形成两个发育事件组成,而胚囊发育迟滞现象是反映无融合生殖能力的关键早期发育事件。
     5.无融合生殖相关基因的筛选和克隆
     平邑甜茶与舞美的杂交后代群体,根据无融合生殖能力的高低分为高-低无融合非减数分裂群体和高-低单性生殖群体,这两组群体的表达谱分析,筛选表达差异的无融合生殖相关基因。根据筛选结果选择MhFIE和MhMSI1两个基因,克隆测序后发现二者均含有WD40保守区域,GFP融合蛋白分析发现,它们均定位于细胞核。
     6. MhFIE和MhMSI1基因的功能鉴定
     为了鉴定MhFIE和MhMSI1基因的生物学功能,将35S启动子驱动的MhFIE和MhMSI1基因分别遗传转化拟南芥、番茄和苹果,实现两个基因在拟南芥和番茄等植物中的异位表达,与对照相比,转基因株系的营养生长和生殖器官发育均表现出异常,表明MhFIE和MhMSI1基因在植物营养生长与生殖生长中均具有重要功能。
Apomixis is an attractive trait in developmental biology. Compared with the sexualoffspring, progeny of apomixis are large genetically uniform and without character separation.In the rice and corn breeding, apomixis can fix heterosis. In addition, apple, orange, potatoesand sweet potatoes are typically propagated vegetatively. if apomixis is introduced to them,they would produced asexual seeds which can avoid inconvenience in propagation anddegradation in long-term vegetative propagation. Therefore, apomixis has great potentialapplication in agricultural production. Because of its huge potential utilization inhybridization breeding, both botanists and breeders are interested in elucidating the molecularmechanism underlying apomixis.
     In this study, developmental and genetic characters were observed and investigated inapomictic tea crabapple. Apomixis-related genes were molecular cloned and functionallycharacterized. The main results are shown as follows:
     1. Tea crabapple shows high capacity of parthenogenesis and apomeiosis
     Stomatic cells developed into one or more embryo sacs in the ovules of tea crabapple.Aposporous embryo sac initiated development at tetrad stage. Investigations throughcontinuous three years showed that the percentages of parthenogenesis and2n gamete were94%and95%, respectively, in tea crabapple, indicating that it exhibits high capacity toperform parthenogenesis and apomeiosis.
     2.2n embryo sacs escape fertilization due to developmental delay in apomictic apple species
     Embryo sacs of tea crabapple showed developmental delay,which was also found both inother two apomictic wild apple species M. Sargentii and M. Xiaojinensis. When embryo sacbecame mature, the stigma turned too senescent to accept pollens. Finally, asexual seedsformed directly from2n embryo sacs without fertilization. This phenomenon was called FLD,which is an early developmental event crucial for apomixis.
     3. Apomictic reproduction is enhanced by shortening pistil longevity
     Most of apomictic apple species perform facultative apomixes, i.e. they produce sexualseeds to certain great in addition to apomictic ones. Apomictic seed formation was enhancedby spraying lime sulphur in order to shorten pistil longevity and avoid pollination.
     4. Apomeiosis and parthenogenesis are genetically independent but collaborate to determineapomixis
     Genetical analysis showed that apomeiosis and parthenogenesis are geneticallyindependent to each other. They were uncoupled in the hybrid population obtained from a cross between tea crabapple and Maypole. But their multiplication was positively related tothe apomictic capacity and FLD phenomenon. Therefore, apomeiosis and parthenogenesisdetermine apomictic capacity, and FLD reflect the ability of apomixis in apomictic applespecies.
     5. Screening and cloning of apomixis-related genes
     According to the different ability of apomeiosis and parthenogenesis, hybrid offspringpopulation was divided into four subpopulations. Apomixis genes were screened through anexpression analysis using cDNA libraries of4subpopulations. Depending on the screening,two genes MhFIE and MhMSI1were cloned. Both predicted protein contained WD domainswhich are highly conserved in various plant species. Furthermore, GFP fusion analysisdemonstrated that both MhFIE and MhMSI1proteins were subcellurly localized in nucleus.
     6. Functional characterization of MhFIE and MhMSI1genes
     To further characterize the functions of MhFIE and MhMSI1in planta, the constructscontaining MhFIE and MhMSI1driven by35S promoter were genetically transformed intoarabidopsis, tomato and apple, respectively. In transgenic Arabidopsis and tomato lines,ectopic expression of MhFIE and MhMSI1brought about developmental alterations both invegetative and reproductive growth, indicating that the functions of both genes are importantfor normal growth in higher plants.
引文
母锡金,蔡雪,孙德兰,时光春,朱至清被子植物的无融合生殖和它的应用前景。作物学报,2001,27:590-599
    陈耀峰,朗少兰核桃无融合生殖的细胞胚胎学研究。西北农业大学学报,2000,28(1):16-20
    董文轩,景士西,宣景宏苹果属植物无融合生殖特性-文献述评。园艺学报,1996,23(4):343-348
    韩振海,王倩我国果树营养研究的现状和展望-文献述评。园艺学报,1995a,22(2):138-146
    韩振海落叶果树种质资源学。北京,中国农业出版社,1995b,236-237
    郝玉金,刘丹丹植物的无融合生殖《10000个科学难题》--农业科学卷科学出版社,
    381-383
    胡龙兴,王兆龙植物融合生殖相关基因研究进展。遗传,2008,30:155-163
    胡立丽怎样配制鲜花保鲜剂。家庭科技,2005,051122
    廖飞雄李育农变叶海棠无孢子生殖的胚胎学观察。西南农业大学学报,1997,19(2):98-104
    刘阳,董文轩,张蕾,程晓丹平邑甜茶(Malus hupehensis)胚囊种类与发生特性。果树学报,2006(3):330-334
    束怀瑞苹果学。北京,中国农业出版社,1999,210-235
    李育农苹果属植物种质资源研究。北京,中国农业出版社,2001,208-213
    毛宝琴苹果属植物的无融合生殖能力研究。西南农业大学学报,1995,17(3):220-223
    杨进中国苹果砧木资源。济南,山东科学技术出版社,1990
    杨进,蒲富慎苹果砧木育种。中国农业百科全书-果树卷。北京,农业出版社,1993,264-265
    任庆棉,刘捍中,刘立军几种野生苹果属抗寒能力的鉴定。北方果树,1988,(4):23-25
    石桂英,刘捍中几种苹果和梨砧木抗盐性鉴定与调查。落叶果树,1990,(3):30-31
    田义珂,王彩虹,张继澍,戴洪义,赵静苹果柱型基因RAPD标记的克隆与序列分析。莱阳农学院学报,2004,21(4):265-268
    杨晓红周志钦小金海棠雌蕊无融合生殖发育的解剖学结构观察。果树学报,2009,26(1):1-5
    应建平作物无融合生殖机理及研究进展。上海农业科技,2009,(6):38-40
    王颖平邑甜茶(Malus hupehensis var. pingyiensis)的杂交后代生殖特性研究和花期子房抑制性消减文库构建。沈阳农业大学,2009,博士学位论文
    张美勇,马凤贤核桃的无融合生殖能力。果树科学,2000,17(4):314-316
    赵晓光,潘增光我国无融合生殖类型的苹果属资源及其利用。山东林业科技,2002,3:33-34
    Aguilar G.M., Michaud C., Leblanc O. and Grimanelli D. Inactivation of a DNA methylationpathway in maize reproductive organs Results in apomixis-like phenotypes. Plant cell,2010(22):3249-3267.
    Albertini E., Marconi G., Reale L., Barcaccia G., Porceddu A., Ferranti F. and Falcinelli M.SERK and APOSTART, candidate genes for apomixis in Poapratensis. Plant Physiol,2005(138):2185-2199.
    Asker S.E. and Jerling L. Apomixis in plants. Boca Raton, FL: CRC,1992.
    Balasubramanian S. and Schneitz K. NOZZLE regulates proximal-distal pattern formation,cell proliferation and early sporogenesis during ovule development in Arabidopsisthaliana. Development,2000(127):4227-4238.
    Berger F. Endosperm: the crossroad of seed development. Cur Opp Plant Biol,2003(6):42-50.
    Berger F., Hamanura Y., Ingouff M. and Higashiyama T. Double fertilization caught in theact. Trends in Plant Sci,2008(13):437-443.
    Berger F. and Chaudhury A. Parental memories shape seeds. Trends in Plant Sci,2009(14):1360-1385.
    Bezhani S., Winter C., Hershman S., Wagner J.D., Kennedy J.F., Kwon C.S., Pfluger J., SuY. and Wagner D. Unique, shared, and redundant roles for the Arabidops is SWI/SNFchromatin remodeling ATPases BRAHMA and SPLAYED. Plant Cell,2007(19):403-416.
    Bicknell R.A. and Koltunow A.M. Understanding apomixis: remaining conundrums. PlantCell,2004(16): S228-S245.
    Bonilla J.R. and Quarin C.L. Diplosporous and aposporous apomixis in a pentaploid race ofPaspalumminus. Plant Sci,1997(127):97-104.
    Boutilier K., Offringa R., Sharma V.K., Kieft H., Ouellet T., Zhang L., Hattori J., Liu C.M.,Lammeren A., Miki B., Custers J.B. and van Lookeren M. Ectopic expression ofBABYBOOM triggers a conversion from vegetative to embryonic growth. Plant Cell,2002(14):1737-1749.
    Brown R.C., Lemmon B.E. and Nguyen H. Endosperm development. Plant Reproduction,2002,193-220.
    Cao X. and Jacobsen S.E. Role of the Arabidopsis DRM methyltransferases in de novo DNAmethylation and gene silencing. Curr Biol,2002(13):1138-1144.
    Cao X., Aufsatz W., Zilberman D., Mette M.F., Huang M.S., Matzke M. and Jacobsen S.E.Role of the DRM and CMT3methyltransferases in RNA-directed DNA methylation.Curr Biol,2003(13):2212-2217.
    Catanach A.S., Erasmuson S.K., Podivinsky E., Jordan B.R. and Bicknell R.A. Deletionmapping of genetic regions associated with apomixis in Hieracium. Proc Natl Acad SciUSA,2006(133):18650-18655.
    Chandler V.L., Stam M. and Sidorenko L.V. Long-distance cis and trans interactions mediateparamutation. Adv Genet,2002(46):215-234.
    Chaudhury A.M. and Berger F. Maternal control of seed development. Semin Cell Dev Biol,2001(12):381-386.
    Chaudhury A.M., Koltunow A., Payne T., Luo M., Tucker M.R., Dennis E.S. and PeacockW.J. Control of early seed development. Annu Rev Cell Dev Biol,2001(17):677-699.
    Chaudhury A.M., Ming L., Miller C., Craig S., Dennis E.S. and Peacock W.J.Fertilization-independent seed develop-ment in Arabidopsis thaliana. Proc Natl Acad SciUSA,1997(94):4223-4228.
    Chaudhury A.M. and Peacock J.W. Approaches towards isolating apomictic mutants inArabidopsis thaliana: prospects and progress. In Apomixis: Exploiting Hybrid Vigor inRice,1993,66-71.
    Chen S., Songkumarn P., Liu j. and Wang G.L. A versatile zero backgroud T-Vector systemfor gene cloning and functional genomics. Plant Physiol,2009(150):1111-1121.
    Chevalier D., Sieber P. And Schneitz K. The genetic and molecular control of ovuledevelopment. Annu Plant Rev,2002,61-85.
    Clough S.J. and Bent A.F. Floral dip: a simplified method for agrobacterium-mediatedtransformation of Arabidopsis thaliana. Plant J,1998(16):735-743.
    Curtis M.D. and Grossniklaus U. Amphimixis and apomixis: two sides of the same coin?Apomixis: evolution, mechanisms and perspe ctives. Rugell, Liechtenstein: ARGGantner Verlag,200737-62.
    d'Erfurth I., Jolivet S., Froger N., Catrice O., Novatchkova M. and Mercier R. Turningmeiosis into mitosis. PLoS Biol,2009(7): e1000124. doi:10.1371.
    Drews G.N., Lee D. and Christensen C.A. Genetic analysis of female gametophytedevelopment and function. Plant Cell,1998(10):5-17.
    Erilova A., Brownfield L., Exner V., Rosa M., Twell D., Scheid O.M., Hennig L. and KohlerC. Imprinting of the Polycomb Group Gene MEDEA serves as a ploidy sensor inArabidopsis. PloS Genet,20095(9): e1000663.
    Friedman W.E. Developmental and evolutionary hypotheses for the origin of doublefertilization and endosperm. C R Acad Sci III,2001(324):559-567.
    Gasser C.S., Broadhvest J. and Hauser B.A. Genetic analysis of ovule development. AnnuRev Plant Physiol,1998(49):1-24.
    Goodrich J. and Tweedie S. Remembrance of things past: Chromatin remodeling in plantdevelopment. Annu Rev Cell Dev Biol,2002(18):707-746.
    Grimanelli D., Leblanc O., Perotti E. and Grossniklaus U. Developmental genetics ofgametophytic apomixes. Trends Genet,2001(17):597-604.
    Grossniklaus U., Spillane C., Page D.R. And Kohler C. Genomic imprinting and seeddevelopment: endosperm formation with and without sex. Curr Opin Plant Sci,2001(4):21-27.
    Grossniklaus U. From sexuality to apomixes. molecular and genetic approaches,2001168-211.
    Grossniklaus U. and Schneitz K. The molecular and genetic basis of ovule andmegagametophyte development. Semin Cell Dev Biol,1998(9):227-238.
    Grossniklaus U., Nogler G.A. and van Dijk P.J. How to avoid sex: the genetic control ofgametophytic apomixis. Plant Cell,2001(13):1491-1497.
    Guitton A.E., Page D.R., Chambrier P., Lionnet C., Faure J.E., Grossniklaus U. and Berger F.Identification of new members of fertilization independent seed polycomb grouppathway involved in the control of seed development in Arabidopsis thaliana.Development,2004(131):2971-2981.
    Guitton A.E. and Berger F. Loss of function of MULTICOPE SUPPERSSOR OF IRA1produces nonviable parthenogenetic embryos in Arabidopsis. Curr Biol,2005(15):750-754.
    Haig D. and Westoby M. Genomic imprinting in endosperm: its effect on seed developmentin crosses between species, and between different ploidies of the same species, and itsimplications for the evolution of apomixis. Philos Trans R Soc London Ser B,1991(333):1-13.
    Hao Y.J., Kitashiba H., Honda C., Nada K. and Moriguchi T. Expression of argininedecarboxylase and ornithine decarboxylase genes in apple cells and stressed shoots. JExp Bot,2005(56):1105-1115.
    Huanca-Mamani W., Garcia-Aguilar M., Leon-Mart nez G., Grossniklaus U. and Vielle-Calzada JP. CHR11, a chromatin-remodeling factor essential fornuclear proliferationduring female gametogenesis in Arabidopsis thaliana. Proc Natl Acad Sci USA,2005(102):17231-17236.
    Huettel B., Kanno T., Daxinger L., Bucher E., vander Winden J., Matzke J.M. and Matzke M.RNA-directed DNA methylation mediated by DRD1and PolIVb: a versatile pathway fortranscriptiona l gene silencing in plants. Biochim Biophys Acta1,2007(769):358-374.
    Jacobsen S.E. and Meyerowitz E.M. Hypermethylated SUPERMAN epigenetic alleles inArabidopsis. Science,1997(277):1100-1103.
    Jacobsen S.E., Sakai H., Finnegan E.J., Cao X. and Meyerowitz E.M. Ectopichypermethylation of flower-specific genes in Arabidopsis. Curr Biol,2000(10):179-186.
    Jackson J.P., Lindroth A.M., Cao X. and Jacobsen S.E. Control of CpNpG DNA methylationby the KRYPTONI TE histone H3methyltran sferase. Nature,2002(416):556-560.
    Jeddeloh J.A., Stokes T.L. and Richards E.J. Maintenance of genomic methylation requires aSWI2/SNF2-like protein. Nat Genet,1999(22):94-97.
    Jullien P.E., Mosquna A., Ingouff M., Sakata T., Ohad N. and Berger F. Retinoblastoma andits binding partner MSI1control imprinting in Arabidopsis. PLOS Biol,2008,6(8):e194. doi:10.1371.
    Juan C.M., Daniel V.C., Annie S.O., Marie M., Nicole B., Georges P. and Christine H.Switch1(swi1), an Arabidopsis thaliana mutant affected in the female meiotic switch.Sex Plant Reprod,1999(12):209-218.
    Kakutani T., Jeddeloh J.A., Flowers S.K., Munakata K. and Richards E.J. Developmentalabnormalities and epimutations associated with DNA hypomethylation mutations. ProcNatl Acad Sci USA,1996(93):12406-12411.
    Kohler C. and Grossniklaus U. Epigenetic inheritance of expression states in plantdevelopment: the role of Polycomb group proteins. Curr Opin Cell Biol,2002(14):773-779.
    Kohler C., Hennig L., Spillane C., Pien S., Gruissem W. and Grossniklaus U. Thepolycomb-group protein MEDEA regulates seed development by controlling expressionof the MADS-box gene PHERES1. Genes Dev,2003(17):1540-1553.
    Koltunow A.M. Apomixis: embryo sacs and embryos formed without meiosis or fertilizationin ovules. Plant Cell,1993(5):1425-1437.
    Koltunow A.M., Johnson S.D. and Bicknell R.A. Sexual and apomictic development inHieracium. Sex Plant Rep,1998(11):213-230.
    Koltunow A.M. and Grossniklaus U. Apomixis: a developmental perspective. Annual RevPlant Biol,2003(54):547-574.
    Koltunow A.M., Johnson S.D. and Bicknell R.A. Apomixis is not developmentally conservedin related genetically characterized Hieracium plants of varying ploidy. Sex Plant Rep,2000(12):253-266.
    Koltunow A.M., Johnson S.D, Julio C.M., Okada T., Hu Y., Tsuchiya T., Wilson S., FletcherP., Ito K., Suzuki G., Mukai Y., Fehrer J. and Bicknell R.A. Sexual reproduction is thedefault mode in apomictic Hieracium subgenus Pilosella, in which two dominant locifunction to enable apomixis. Plant J,2011(66):890-902.
    Leblanc O. Detection of the apomictic mode of reproduction in maize-Tripsacum hybridsusing maize RFLP markers. Theor Appl Genet,1995:1198-1203.
    Leblanc O., Grimanelli D., Hernandez-Rodriguez M., Galindo P.A., Soriano-Martinez A.M.and Perotti E. Seed development and inheritance studies in apomictic maize-Tripsacumhybrids reveal barriers for the transfer of apomixis into sexual crops. Int J Dev Biol,2009(53):585-596.
    Lee H.S. and Chen Z.J. Protein-coding genes are epigenetically regulated in Arabidopsispolyploids. Proc Natl Acad Sci USA,2001(98):6753-6758.
    Liu Z., Franks R.G. and Klink V.P. Regulation of gynoecium marginal tissue formation byLUENIG and AINTEGU-MENTA. Plant Cell,2000(12):1879-1892.
    Luo M., Bilodeau P., Koltunow A.M., Dennis E.S., Peacock W.J. and Chaudhury A.M. Genescontrolling fertilization-independent seed development in Arabidopsis thaliana. ProcNatl Acad Sci USA,1999(96):296-301.
    Luo M., Bilodeau P., Dennis E.S., Peacock W.J. and Chaudhury A.M. Expression andparent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo ofdeveloping Arabidopsis seeds. Proc Natl Acad Sci USA,2000(97):10637-10642.
    Marimuthu M.P., Jolivet S., Ravi M., Pereira L., Davda J.N., Cromer L., Wang L., ChanS.W., Siddiqi I. and Mercier R. Synthetic clonal reproduction through seeds. Science,2011(331):876.
    Mercier R., Vezon D., Bullier E., Motamayor J.C., Sellier A., Lefèvre F., Pelletier G. andHorlow C. SWITCH1(SWI1): a novel protein required for the establishment of sisterchromatid cohesion and for bivalent formation at meiosis. Genes Dev,2001(15):1859-1871.
    Mercier R., Armstrong S.J., Horlow C. and Franklin F.C.H. The meiotic protein SWI1isrequired for axial element formation and recombination initiation in Arabidopsis.Development,2003(130):3309-3318.
    Mogie M. The Evolution of Asexual Reproduction in Plants. London: Chapman&Hall,1992.
    Muschietti J., Dircks L., Vancanneyt G. and McCormick S. LAT52protein is essential fortomato pollen development: pollen expressing antisense LAT52RNA hydrates andgerminates abnormally and cannot achieve formation. Plant J,1994(6):321-338.
    Naumova T.N., Vanderlaak J., Osadtchiy J., Matzk F., Kravtchenko A., Bergervoet J.,Ramulu K.S. and Boutilier K. Reproduction development in apomictic populations ofArabis holboellii (Brassicaceae) Sex Plant Rep,2001(14):195-200.
    Nemhauser J.L., Feldman L.J. and Zambryski P.C. Auxin and ETTIN in Arabidopsisgynoecium morphogenesis. Development,2000(127):3877-3888.
    Nogler G.A. Gametophytic apomixis. In embryology of angiosperms, B.M. Johri, ed (Berlin,Springer-Verlag),1984475-518。
    Nybom H. Apomixis versus sexuality in Black berries (Rubus subgen. Rubus, Rosaceae).Plant Syst Evol,1988(160):207-218.
    Ohad N., Margossian L., Hsu Y., Williams C., Repetti P. and Fischer R. A mutation thatallows endosperm development without fertilization. Proc Natl Acad Sci USA,1996(93):5319-5324.
    Ohad N., Yadegari R., Margossian L., Hannon M. and Michaeli D. Mutaions in FIE, a WDPolycomb group gene, allow endosperm development without fertilization. Plant Cell,1999(11):407-416.
    Okada T., Catanach A.S., Johnson S.D., Bicknell R.A. and Koltunow A.M. An Hieraciummutant, loss of apomeiosis1(LOA1), is defective in the initiation of apomixis. Sex PlantRep,2007(20):199-211.
    Olien W.C. Apomictic crabapples and their potential for research and fruit production. HortScience,198722(4):541-546.
    Olmedo-Monfil V., Duran-Figueroa N., Arteaga-Vazquez M., Demesa-Arevalo E., Autran D.,Grimanelli D., Slotkin R.K., Martienssen R.A. and Vielle-Calzada J.P. Control of femalegamete formation by a small RNA pathway in Arabidopsis. Nature,2010(464):628-632.Ozias-Akins P., Roche D. and Hanna W.W. Tight clustering and hemizygosity ofapomixis-linked molecular markers in Pennisetum squamulatum implies genetic controlof apospory by a diverent locus that may have no allelic form in sexual genotypes. ProcNatl Acad Sci USA,1998(95):5127-5132.
    Pagnussat G.C., Alandete-Saez M., Bowman J.L. and Sundaresan V. Auxin-dependentpatterning and gamete specification in the Arabidopsis female gametophyte. Science,2009(324):1684-1689.
    Pawlowski W.P., Wang C.R.., Golubovskaya I.N., Szymaniak J.M., Shi L., Hamant O., ZhuT., Harper L., Sheridan W.F. and Cande W.Z. Maize AMEIOTIC1is essential formultiple early meiotic processes and likely required for the initiation of meiosis. ProcNatl Acad Sci USA,2009(106):3603-3608.
    Perez-Grau L. Plant embryogenesis-the cellular design of a plant. Annual Rev,2002,154-192.
    Poethig R.S. Phase change and the regulation of developmental timing in plants. Science,2003(301):334-336.
    Pugh B.F. and Gilmour D.S. Genome-wide analysis of protein-DNA interactions in livingcells. Genome Biol,20012(4):1013.1-1013.3.
    Quarin C.L. and Hanna W.W. Effect of three ploidy levels on meiosis and mode ofreproduction in Paspalum hexa-stachyum. Crop Sci,1980(20):69-75.
    Quarin C.L., Espinoza F., Martinez E.J., Pessino S.C. and Bovo O.A. A rise of ploidy levelinduces the expression of apomixis in Paspalum notatum. Sex Plant Rep,2001(13):243-249.
    Ranganath R.M. Harnessing the developmental potential of nucellar cells: opportunities andbarriers. Trends Biot,2004(22):54-60.
    Ravi M., Marimuthu M.P. and Siddiqi I. Gamete formation without meiosis in Arabidopsis.Nature,2008(451):1121-1124.
    Ravi M. and Chan S.W. Haploid plants produced by centromere-mediated genomeelimination. Nature,2010(464):615-618.
    Reyes J.C. and Grossniklaus U. Diverse functions of Polycomb group proteins in plantdevelopment. Sem Cell Dev Biol,2003(14):77-84.
    Sax K. Interstock effects in dwarfing fruit trees. Proc Amer Sci,1953(62):201-204.
    Schmidt H. Problerms in breeding for apomictic apple rootstocks. Eucarpia Fruit BreedingSymp, Angers,1988,269-283.
    Savidan Y.H. Gametophytic apomixis: a successful mutation of the female gametogenesis. InCurrent Trends in the Embryology of Angiosperms, ed. SS Bhojwani, WY Soh,2001,419-433.
    Sheridan W.F., Avalkina N.A., Shamrov I.I., Batygina T.B. and Golubovskaya I.N. The mac1gene: controlling the commitment to the meiotic pathway in maize. Genetics,1996(142):1009-1020.
    Siddiqi I., Ganesh G., Grossniklaus U. and Subbiah V. The dyad gene is required forprogression through female meiosis in Arabidopsis. Development,2000(127):197-207.
    Soppe W.J., Jacobsen S.E., Alonso-Blanco C., Jackson J.P., Kakutani T. and Koornneef M.The late flowering phenotype of fwa mutants is caused by gain-of-function epigeneticalleles of a homeodomain gene. Mol Cell,2000(6):791-802.
    Spileman M., Vinkenoog R. and Scott R.J. Genetic mechanisms of apomixis. Phil Trans RSoc Lond B,2003(358):1095-1103.
    Spillane C., MacDougall C., Stock C., Kohler C., Vielle-Calzada J.P., Nunes S.M,Grossniklaus U. and Goodrich J. Interaction of the Arabidopsis Polycomb group proteinsFIE and MEA mediates their common phenotypes. Curr Biol,2000(10):1535-1538.
    Spillane C., Steimer A. and Grossniklaus U. Apomixis in agriculture: the quest for clonalseeds. Sex Plant Rep,2001(14):179-187.
    Stam M., Belele C., Dorweiler J.E. and Chandler V.L. Differential chromatin structure withina tandem array100kb upstream of the maize b1locus is associated with paramutation.Genes Dev,2002(16):1906-1918.
    Sykes S.R. and Lewis W.J. Comparing Imperial mandarin and Silverhill satsuma mandarin asseed parents in a breeding program aimed at developing new seedless citrus cultivars forAustralia. Aust J Exp Agric,1996(36):731-738.
    Twell D. The developmental biology of pollen. Annu Plant Rev,2002(91a):86-153.
    Tucker M.R. and Koltunow M.G. Sexual and asexual (apomictic) seed development inflowering plants: molecular, morphological and evolutionary relationships. FunctionalPlant Biol,2009(36):490-504.
    Tucker M.R., Okada T., Johnson S.D., Takaiwa F. and Koltunow M.G. Sporophytic ovuletissues modulate the initiation and progression of apomixis in Hieracium. J ExpBot,2012doi:10.1093/jxb/ers047.
    Vaillant I. and Paszk owski J. Role of histone and DNA methylation in gene regulation. CurrOpin Plant Biol,2007(10):528-533.
    Vinkenoog R., Spielman M., Adams S., Fischer R.L. and Dickinson H.G. Hypomethylationpromoters autonomous endosperm development and rescues postfertilization lethality infie mutants. Plant Cell,2000(12):2271-2282.
    Walter M., Chaban C., Schutze K., Batistic O., Weckermann K., Nake C., Blazevic D.,Grefen C., Schumacher K., Oecking C., Harter K. and Kudla J. Visualization of proteininteractions in living plant cells using bimolecular fluorescence complementation. PlantJ,2004(40):428-438.
    Weijers D., Schlereth A., Ehrismann J.S., Schwank G., Kientz M. and Jurgens G. Auxintriggers transient local signaling for cell specification in Arabidopsis embryogenesis.Dev Cell,2006(10):265-270.
    Willemse T.M. and van Went J.L. The female gametophyte. Berlin,1984:159-196.
    Woodson W.R. Pollination signals and flower senescence. Annu Plant Rev,2002(91):279-295.
    Xiao W., Custard K.D., Brown R.C., Lemmon B.E., Harada J.J., Goldberg R.B. and FischerR.L. DNA methylation is critical for Arabidopsis embryogenesis and seed viability. PlantCell,2006(18):805-814.
    Yadegari R., Kinoshita T., Lotan O., Cohen G., Katz A., Choi Y., Katz A., Nakashima K.,Harada J.J., Goldberg R.B., Fischer R.L. and Ohad N. Mutations in the FIE and MEAgenes that encode interacting Polycomb proteins cause parent-of-origin effects on seeddevelopment by distinct mechanisms. Plant Cell,2000(12):2367-2382.
    Yang W.C., Ye D., Xu J. and Sundaresan V. The SPOROCYTELESS gene of Arabidopsisisrequired for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev,1999(13):2108-2117.
    Yang W.C. and Sundaresan V. Genetics of gametophyte biogenesis in Arabidopsis. Curr OpinPlant Sci,2000(3):53-57.
    Yang W.C., Shi D.Q. and Chen Y.H. Female gametophyte development in flowering plants.Ann Rev Plant Biol,2010(61):89-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700