基于WLAN的室内定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线网络的普及和普适计算技术的发展,基于位置的服务受到越来越多的关注,在紧急救助、医疗保健、个性化信息传递等领域显示出巨大的活力。其中,定位技术是实现普适计算应用和基于位置的服务的必要前提和关键。
     但是,现有的定位技术,特别是室内定位技术,在使用成本、应用范围和便携性等方面还不能满足普适计算应用的需要,限制了基于位置的服务在用户中的普及。基于WLAN和位置指纹的室内定位技术由于使用范围广,能够以纯软件的方式实现,定位系统成本低等优点,成为近年来普适计算和位置感知领域的一个研究热点。
     本文对这一技术进行了较深入、系统的研究,并针对定位准确度、移动设备能耗方面存在的问题,采用人工智能和数据挖掘理论,提出了相应的解决方案。通过算法比较和实验分析,证明了方案的有效性和可行性。论文的主要工作和创新点如下:
     (1)通过在实际WLAN环境中测得的位置指纹数据,从定位的角度分析了无线信号在室内的传播特性,并提出一个表示定位平均误差的数学模型。
     在基于WLAN和位置指纹的定位技术里,采样点间距、接入点的个数以及环境的干扰是影响定位平均误差的重要因素,但是对于这些参数的选取目前还没有较系统的指导,主要依靠经验来确定。该数学模型形式化地概括了定位问题中的一些关键因素。通过仿真实验,本文分析了各因素与定位平均误差之间的关系,为设计定位算法、部署定位系统提供了一定的理论支持。
     (2)根据多源信息融合的思想,提出了一种基于Dempster-Shafer证据理论的定位方法。
     由于受室内复杂环境里噪声的干扰,位置指纹数据中常含有不确定性因素,提高定位准确度是当前研究的重点之一。该方法将接入点作为提供接收信号强度数据的信息源,能够为不同的信息源赋予不同的信任度,详细地描述和区分了不同接入点对定位结果的贡献能力。在选择信息源时,还采用了本文所提出的一种接入点选择和匹配方法——最大匹配法。与目前常用的一些定位方法相比,本文所提的方法能够更加有效地估计用户的位置,准确度更高。
     (3)提出了一种基于高斯混合模型(GMM)的位置指纹聚类算法。
     鉴于越来越多的用户使用主要依靠电池供电的移动设备,如何减小定位算法的计算量,节省电能也是一个十分重要的问题。本文提出的算法用高斯混合模型表示位置指纹的簇,通过考虑接收信号强度的概率分布,克服了现有聚类算法只考虑接收信号强度大小的相似性的不足,从而减小聚类对于含噪声数据的敏感性。此外,该算法中的参数含义明确,易于使用。实验结果表明,该聚类算法能更好地降低定位算法的计算量,减小移动设备的能耗。
     (4)本文以普适计算应用为背景,设计并实现了一个基于WLAN和位置指纹的室内定位系统原型,并在实际的无线局域网环境里对上述方法进行了实验。实验结果表明,本文提出的方案在提高定位准确度的同时,还能够降低定位算法的计算量,增强了定位系统的实用性。
With the widespread of wireless networks and development of pervasive computing, location based services (LBS) have attracted more and more attention and shown great energy in many applications, such as emergency, medical care and customized information delivery. Location estimation is a prerequisite and key to implement pervasive computing applications and LBS.
     However, existing location estimation technology, especially in the indoor environments, cannot satisfy the needs of pervasive computing applications in system cost, application area and portability, which limits the popularization of LBS in common people. In recent years, the indoor location estimation technology based on WLAN and location fingerprinting has become a hot research topic in the field of pervasive computing and location awareness for the advantages that it works in a more wide area, can be implemented simply in software and doesn’t cost too much.
     Aiming at existing problems and requirements in location estimation accuracy and energy consumption of mobile device, the thesis makes a deep and systematic study, and proposes corresponding solutions using theory of artificial intelligence and data mining. Through algorithm comparison and experimental analysis, the validity and practicability of the proposed solutions are demonstrated. The major contributions of this dissertation are:
     (1) With the location fingerprints measured in a practical WLAN, the thesis analyzes some characteristics of radio signal propagation in indoor environments from positioning point of view. Based on this, a mathematical model of average error of localization is proposed.
     In WLAN and location fingerprint based location estimation technique, the sampling grid spacing, the number of access points, and the interference of environment are key factors for average error of location estimation. However, there isn’t a general strategy on how to determine these parameters. They are mostly determined by experience. The mathematical model formally describes the key factors for errors in fingerprint based location estimation. Through emulation experiments, relationships between the average error and the number of access points, the size of sampling grid and environmental factors are analyzed, which helps to design location estimation algorithm and deploy location estimation system.
     (2) According to the idea of multi-source information fusion, the thesis presents a location estimation method based on Dempster-Shafer evidence theory.
     Due to the interference from noises of complex indoor environments, data of location fingerprints always contain uncertainty. Improving location estimation accuracy is one of important research focuses. The method considers access points as information sources of received signal strength, and assigns different belief to information sources. The contribution of access points to location estimation results is amply described and differentiated. To choose the information sources, an access point selection method proposed by the thesis, that is, the maximum matching method is used. Compared with existing location estimation methods that often used, the proposed method can estimate user location more efficiently and get higher location estimation accuracy.
     (3) This thesis proposes a Gauss mixture model (GMM) based location fingerprint clustering algorithm.
     As more and more clients choose small, self-maintained devices which heavily depend on battery power, how to reduce computation cost in location estimation and save energy is also a very important problem. The proposed clustering algorithm uses a Gauss mixture model to represent location fingerprint clusters. By taking account of the probability distribution characteristic of received signal strength, the algorithm overcomes the shortcoming of other location fingerprint clustering algorithms which only consider the similarity of signal strength values, and thus alleviates the sensitivity to noisy data. Moreover, parameters in the algorithm are easy to determine. Experimental results show that the clustering algorithm can effectively reduce computation cost of location estimation algorithm and decrease energy consumption of mobile devices.
     (4) Oriented to pervasive computing applications, a prototype of indoor location estimation system based on WLAN and location fingerprinting technique is designed and implemented. All experiments are conducted in a practical indoor WLAN environment. Experimental results show that the proposed solutions not only improve location estimation accuracy but also reduce computation cost so that the practicability of location estimation system is enhanced.
引文
[1] Yang Q, Chen Y, Yin J, et al. LEAPS: A Location Estimation and Action Prediction System in a Wireless Lan Environment. In Proceedings of NPC, LNCS 3222, Wuhan, China: 2004, 584-591
    [2] Schiller J, Voisard A. Location-based Services. Morgan Kaufmann Publishers, 2004
    [3] Kupper A. Location-based Services. John Wiley & Sons Ltd., Chichester, 2005
    [4] Patterson C A, Muntz R R, Pancake C M. Challenges in Location-Aware Computing. IEEE Pervasive Computing, 2003, 2(2), 80-89
    [5] Tao P, Rudys A, Ladd A M, et al. Wireless LAN Location-sensing for Security Applications. In Proceedings of the ACM workshop on Wireless Security, San Diego, CA, USA: 2003, 11-20
    [6] Latvala J, Syrjarinne J, Niemi S, et al. Patient Tracking in a Hospital Environment Environment Using Extended Kalman-filtering. In Proceedings of 1999 Middle East Conference on Networking, Beirut, Lebanon: 1999, 1-5
    [7] Rodriguez M D, Favela J, Martinez E A, et al. Location-aware Access to Hospital Information and Services. IEEE Transactions on Information Technology in Biomedicine, 2004, 8(4), 448-455
    [8] Hazas M, Scott J, Krumm J. Location-aware Computing Comes of Age. IEEE Computer, 2004, 37(2), 95-97
    [9] Harroud H, Ahmed M, Karmouch A. Policy-driven Personalized Multimedia Services for Mobile Users. IEEE Transactions on Mobile Computing, 2003, 2(1), 16 - 24
    [10] Rao B, Minakakis L. Evolution of Mobile Location-based Services. Communications of the ACM, 2003, 46(12), 61-65
    [11] Weiser M. The Computer for the 21st Century. Scientific American, 1991, 265(3), 66-75
    [12] MIT Oxygen Project, http://oxygen.lcs.mit.edu/, 2007
    [13] Garlan D, Siewiorek D, Smailagie A, et al. Porjeet Aura: Toward Distraction-Free Pervasive Computing. IEEE Pervasive Computing, 2002, 1(4-6), 22-31
    [14] Washington U, Portolano project, http://portolano.cs.washington.edu/, 2007
    [15]吴朝晖.普适计算//中国计算机学会.中国计算机科学技术发展报告2005.北京:清华大学出版社, 2006: 175-187
    [16] Norman D A. The Invisible Computer. Cambridge, MA: The MIT Press, 1999
    [17] Salz P. The Disappearing Computer. Time Europe, 2000, 155(8), 1-8
    [18] Syatanarayanall M. Pevrasive Computing: Vision and Challenge. IEEE Personal Communieations, 2001, 8(8), 10-17
    [19] UbiComp. http://www.ubicomp.org, 2007
    [20] Enge P, Misra P. Special Issue on Global Positioning System. Proceedings of the IEEE, 1999, 87(1), 3-15
    [21] Cinar T, Ince F. Contribution of GALILEO to Search and Rescue. In Proceedings of the 2nd International Conference on Recent Advances in Space Technologies, Turkish Air Force Acad., Istanbul, Turkey: 2005, 254 - 259
    [22] FCC Docket No. 94-102, Revision of the Commission Rules to Insure Compatibility with Enhanced 911 Emergency Calling Systems. Federal Communications Commission Tech. Rep. RM-8143, 1996
    [23] Zagami J M, Parl S A, Bussgang J J, et al. Providing Universal Location Services Using a Wireless E911 Location Network. IEEE Communications Magazine, 1998, 36(4), 66-71
    [24] FCC, FCC Acts to Promote Competition and Public Safety in Enhanced Wireless 911 Services, www.fcc.gov/911/enhanced, 1999
    [25] FCC, Wireless 911 Services, http://www.fcc.gov/cgb/consumerfacts/wireless911srvc.html, 2008
    [26] Abrardo A, Benelli G, Maraffon C, et al. Performance of TDOA-based Radiolocation Techniques in CDMA Urban Environments. In Proceedings of the IEEE International Conference on Communications, New York: 2002, 431-435
    [27] Weiss A J. On the Accuracy of a Cellular Location System Based on RSS Measurements. IEEE Transactions on Vehicular Technology, 2003, 52(6), 1508-1518
    [28] Lin D B, Juang R T, Lin H P. Robust Mobile Location Estimation Based on Signal Attention for Cellular Communication Systems. Electronics Letters, 2004, 40(25), 1-2
    [29] Sun G, Guo W. Robust Mobile Geo-location Algorithm Based on LS-SVM. IEEE Transactions on Vehicular Technology, 2005, 54(3), 1037-1041
    [30] Wu Z, Li C, Ng J K, et al. Location Estimation via Support Vector Regression. IEEETransactions on Mobile Computing, 2007, 6(3), 311-321
    [31] CLickz, Wireless Devices Continue to Proliferate, http://www.clickz.com/stats/markets/wireless/article.php/10094_950001, 2002
    [32] Want R, Hopper A, Falcao V, et al. The Active Badge Location System. ACM Transactions on Information Systems, 1992, 10(1), 91 - 102
    [33] Hightower J, Borriello G. Location Systems for Ubiquitous Computing. IEEE Computer, 2001, 34, 57-66
    [34] Ward A, Jones A, Hopper A. A New Location Technique for the Active Office. IEEE Personal Communications, 1997, 4(5), 42-47
    [35] MIT CSAIL, The Cricket Indoor Location System, http://nms.lcs.mit.edu/projects/cricket/#overview, 2007
    [36] Hightower J, Want R, Borriello G. SpotON: An Indoor 3D Location Sensing Technology Based on RF Signal Strength. Seattle, WA: University of Washington, UW CSE 2000-02-02, 2000
    [37] Krumm J, Harris S, Meyers B, et al. Multi-camera Multi-person Tracking for EasyLiving. In Proceedings of the Third IEEE International Workshop on Visual Surveillance (VS'2000) Dublin Ireland: 2000, 3-10
    [38] Orr R J, Abowd G D. The Smart Floor: a Mechanism for Natural User Identification and Tracking. In Proceedings of the Conference on Human Factors in Computing Systems, Hague Netherlands: 2000, 275 - 276
    [39]贾青,刘乃安,朱明华.无线局域网定位技术研究.无线通信技术, 2004, 13(3), 33-37
    [40] Pahlavan K, Li X, Makela J P. Indoor Geolocation Science and Technology. IEEE Communications Magazine, 2002, 40, 112-118
    [41] K?bben B, Bunningen A v, Muthukrishnan K. Wireless Campus LBS: Building Campus-Wide Location Based Services Based on WiFi Technology//E Stefanakis, M P Peterson. Geographic Hypermedia. Springer Berlin Heidelberg, 2006: 399-408
    [42] Griswold W G, Shanahan P, Brown S W, et al. ActiveCampus: Experiments in Community-oriented Ubiquitous Computing. Computer, 2004, 37(10), 73-81
    [43] Gartner, Emerging Technologies Hype Cycle Highlights Key Technology Themes. http://www.gartner.com/it/page.jsp?id=495475, 2006
    [44]郎昕培,许可,赵明.基于无线局域网的位置定位技术研究和发展.计算机科学,2006, 33(6), 21-24
    [45] Zhao F, Yao W, Logothetis C C, et al. Comparison of Super-resolution Algorithms for TOA Estimation in Indoor IEEE 802.11 Wireless LANs. In Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China: 2006, 1-5
    [46] Li X, Pahlavan K. Super-resolution TOA Estimation with Diversity for Indoor Geolocation. IEEE Transactions on Wireless Communications, 2004, 3(1), 224 - 234
    [47] Tummala D.Indoor Propagation Modeling at 2.4GHz for IEEE 802.11 Networks. Texas, USA: Department of Engineering Technology, University of North Texas, 2005
    [48] Wang Y, Jia X, Lee H K, et al. An Indoors Wireless Positioning System Based on Wireless Local Area Network Infrastructure. In Proceedings of the 6th International Symposium on Satellite Navigation Technology Including Mobile Positioning and Location Services, Melbourne, Australia: 2003, 1-13
    [49] Smailagic A, Siewiorek D P, Anhalt J, et al. Location Sensing and Privacy in a Context Aware Computing Environment. IEEE Wireless Communications Magazine, 2002, 10-17
    [50] Bahl P, Padmanabhan V N. RADAR: an In-building RF-based Location and Tracking System. In Proceedings of the IEEE INFOCOM, Tel-Aviv, Israel: 2000, 775-784
    [51] Seidel S Y, Rapport T S. 914 MHz Path Loss Prediction Model for Indoor Wireless Communications in Multi-floored Buildings. IEEE Transactions on Antennas and Propagation, 1992, 40(2), 207-217
    [52] NI W, WANG Z-x. Indoor Location Algorithm Based on the Measurement of the Received Signal Strength. Frontiers of Electrical and Electronic Engineering in China, 2006, 1(1), 48-52
    [53]倪巍,王宗欣.基于接收信号强度测量的室内定位算法.复旦学报(自然科学版), 2004, 43(1), 72-76
    [54] Robinson M, Psaromiligkos I. Received Signal Strength Based Location Estimation of a Wireless LAN Client. In Proceedings of the IEEE Wireless Communications and Networking Conference, 2005, 2350 - 2354
    [55] Roos T, ki P M, Tirri H. A Statistical Modeling Approach to Location Estimation.IEEE Transactions on Mobile Computing, 2002, 1(1), 59-69
    [56] Li X. RSS-Based Location Estimation with Unknown Pathloss Model. IEEE Transactions on Wireless Communications, 2006, 5(12), 3626-3633
    [57] Pahlavan K, Levesque A. Wireless Information Networks. John Wiley & Sons, 1995
    [58] Hatami A.Application of Channel Modeling for Indoor Localization using TOA and RSS. Worcester, Mass.: Electrical and Computer Engineering, Worcester Polytechnic Institute, 2006
    [59] Hatami A, Pahlavan K. Comparative Statistical Analysis of Indoor Positioning Using Empirical Data and Indoor Radio Channel Models. In Proceedings of the 3rd IEEE Consumer Communications and Networking Conference, 2006, 1018-1022
    [60] Ji Y, Biaz S, Pandey S, et al. ARIADNE: a Dynamic Indoor Signal Map Construction and Localization System. In Proceedings of the 4th International Conference on Mobile systems, Applications and Services, Uppsala, Sweden: 2006, 151 - 164
    [61] Sayrafian-Pour K, Kaspar D. Indoor Positioning Using Spatial Power Spectrum. In Proceedings of the IEEE 16th International Symposium on Personal Indoor and Mobile Radio Communications, 2005, 2722-2726
    [62] Niculescu D, Nath B. VOR Base Stations for Indoor 802.11 Positioning. In Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, Philadelphia, PA, USA: 2004, 58 - 69
    [63] LaMarca A, Chawathe Y, Consolvo S, et al. Place Lab: Device Positioning Using Radio Beacons in the Wild. In Proceedings of the third International Conference on Pervasive Computing, LNCS 3468, 2005, 116-133
    [64] Hightower J, LaMarca A, Smith I. Practical Lessons from Place Lab. IEEE Pervasive Computing, 2006, 5(3), 32-39
    [65] Cheng P-C, Chawathe Y, LaMarca A, et al. Accuracy Characterization for Metropolitan-scale Wi-Fi Localization. In Proceedings of the 3rd International Conference on Mobile Systems, Applications, and Services, Seattle, Washington: 2005, 233 - 245
    [66] Small J, Smailagic A, Siewiorek D P. Determining User Location for Context Aware Computing Through the Use of a Wireless LAN Infrastructure. Carnegie Mellon University, Project Aura Report, 2000
    [67] Sepp?nen A, Ikonen J, Porras J. Extracting and Using Positioning Information in WLAN Networks. In Proceedings of the 1st Workshop on Applications of Wireless Communications, Lappeenranta University of Technology, Finland: 2003, 1-11
    [68] Chen Y-C, Chan Y-J, She C-W. Enabling Location-based Services in Wireless LAN Hotspots. International Journal of Network Management, 2005, 15, 163-175
    [69] Rigney C, Willens S, Rubens A, et al., Remote Authentication Dial in User Service, IETF, Editor, http://www.ietf.org/rfc/, 2000
    [70] Castro P, Chiu P, Kremenek T, et al. A Probabilistic Room Location Service for Wireless Networked Environments. In Proceedings of the International Conference on Ubiquitous Computing, Atlanta Georgia: 2001, 18-24
    [71] Chai X, Yang Q. Reducing the Calibration Effort for Location Estimation Using Unlabeled Samples. In Proceedings of the 3rd IEEE International Conference on Pervasive Computing and Communications, 2005, 95 - 104
    [72] Chai X, Yang Q. Reducing the Calibration Effort for Probabilistic Indoor Location Estimation. IEEE Transactions on Mobile Computing, 2007, 6(6), 649-662
    [73] DEASY T P, SCANLON W G. Simulation or Measurement: The Effect of Radio Map Creation on Indoor WLAN-Based Localisation Accuracy. Wireless Personal Communications: An International Journal, 2006, 42(4), 563 - 573
    [74] Moraes L F M d, Nunes B A A. Calibration-free WLAN Location System Based on Dynamic Mapping of Signal Strength. In Proceedings of the International Workshop on Mobility Management and Wireless Access, Terromolinos, Spain: 2006, 92-99
    [75] Widyawan, Klepal M, Pesch D. Influence of Predicted and Measured Fingerprint on the Accuracy of RSSI-based Indoor Location Systems. In Proceedings of the 4th Workshop on Positioning, Navigation and Communication, Hannover, Germany: 2007, 145 - 151
    [76] Kwon J, Dundar B, Varaiya P. Hybrid Algorithm for Indoor Positioning Using Wireless LAN. In Proceedings of the IEEE 60th Vehicular Technology Conference, 2004, 4625-4629
    [77] Tsai T-C, Li C-L, Lin T-M. Reducing Calibration Effort for WLAN Location and Tracking System using Segment Technique. In Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, 2006, 46-51
    [78] Krishnan P, Krishnakumar A S, Ju W-H, et al. A System for LEASE: Location Estimation Assisted by Stationary Emitters for Indoor RF Wireless Networks. In Proceedings of the INFOCOM, 2004, 1001 - 1011
    [79] Gwon Y, Jain R, Kawahara T. Robust Indoor Location Estimation of Stationary and Mobile Users. In Proceedings of the INFOCOM, 2004, 1032 - 1043
    [80] Brunato M, Battiti R. Statistical Learning Theory for Location Fingerprinting in Wireless LANs. Computer Networks, 2005, 47, 825–845
    [81] Bahl P, Padmanabhan V N. Enhancements of the RADAR User Location and Tracking System. Technical Report MSR-TR-2000-12, 2000
    [82] Prasithsangaree P, Krishnamurthy P, Chrysanthis P. On Indoor Position Location with Wireless LANs. In Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2002, 720 - 724
    [83] Kushki A, Plataniotis K N, Venetsanopoulos A N. Kernel-based Positioning in Wireless Local Area Networks. IEEE Transactions on Mobile Computing, 2007, 6(6), 689 - 705
    [84] Castro L A, Favela J. Continuous Tracking of User Location in WLANs Using Recurrent Neural Networks. In Proceedings of the Sixth Mexican International Conference on Computer Science, 2005, 174-181
    [85] Martinez E A, Cruz R, Favela J. Estimating User Location in a WLAN Using Backpropagation Neural Networks. In Proceedings of the IBERAMIA, LNAI 3315, 2004, 737-746
    [86] Nerguizian C, Despins C, Affès S. Indoor Geolocation with Received Signal Strength Fingerprinting Technique and Neural Networks. In Proceedings of the ICT, 2004, 866-875
    [87] Krumm J, Platt J. Minimizing Calibration Effort for an Indoor 802.11 Device Location Measurement System. MSR-TR-2003-82, 2003
    [88] Ahmad U, Gavrilov A, Nasir U, et al. In-building Localization Using Neural Networks. In Proceedings of the IEEE International Conference on Engineering of Intelligent Systems, 2006, 1-6
    [89] Saha S, Chaudhuri K, Sanghi D, et al. Location Determination of a Mobile Device Using IEEE 802.11b Access Point Signals. In Proceedings of the IEEE Wireless Communications and Networking Conference, New Orleans, LA: 2003, 1987-1992
    [90] Battiti R. Location-aware Computing: A Neural Network Model for Determining Location in Wireless LANs. University of Trento, #DIT-02-0083, 2002
    [91] Battiti R, Villani A, Nhat T L. Neural Network Models for Intelligent Networks: Deriving the Location from Signal Patterns. In Proceedings of the First Annual Symposium on Autonomous Intelligent Networks and Systems, UCLA: 2002, 1-13
    [92] Vapnik V N. Statistical Learning Theory. New York, NY: John Wiley & Sons, 1998
    [93] Pan J J, Kwok J T, Yang Q, et al. Multidimensional Vector Regression for Accurate and Low-Cost Location Estimation in Pervasive Computing. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(9), 1181-1193
    [94] Roos T, Myllymaki P, Tirri H, et al. A Probabilistic Approach to WLAN User Location Estimation. International Journal of Wireless Information Networks, 2002, 9, 155-164
    [95] Seshadri V, Záruba G V, Huber M. A Bayesian Sampling Approach to In-door Localization of Wireless Devices Using Received Signal Strength Indication. In Proceedings of the 3rd IEEE International Conference on Pervasive Computing and Communications, 2005, 75-84
    [96] ITO S, KAWAGUCHI N. Bayesian Based Location Estimation System Using Wireless LAN. In Proceedings of the 3rd International Conference on Pervasive Computing and Communications Workshops, 2005, 273-278
    [97] Pahlavan K, Krishnamurth P. Principles of Wireless Networks: A Unified Approach. Upper Saddle River, NJ: Prentice Hall PTR, 2001
    [98] The Institute of Electrical and Electronics Engineers Inc., IEEE Standard 802.11 - Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. 1999,
    [99] Milner M, NetStumbler v0.4.0 Release Notes, http://www.stumbler.net/readme/readme_0_4_0.html, Editor. 2004
    [100] Kismet, http://kismetwireless.net/. 2004
    [101] Wireless Research API (WRAPI), University of California San Diego, http://sysnet.ucsd.edu/pawn/wrapi/, Editor. 2002
    [102] Sklar B. Rayleigh Fading Channels in Mobile Digital Communication Systems: I. Characterization. IEEE Communications Magazine, 1997, 35, 90-100
    [103] Youssef M, Agrawala A. Handling Samples Correlation in the Horus System InIEEE INFOCOM, Hong Kong, China: 2004, 1-9
    [104] Ladd A M, Bekris K E, Rudys A, et al. Robotics-based Location Sensing Using Wireless Ethernet. In Proceedings of the Eighth Annual International Conference on Mobile Computing and Networking (MOBICOM), Atlanta, GA: 2002, 227-238
    [105] Kaemarungsi K, Krishnamurthy P. Properties of Indoor Received Signal Strength for WLAN Location Fingerprinting. In Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004,
    [106]严忠,岳朝龙.概率论与数理统计新编.中国科学技术大学出版社, 2007
    [107] Youssef M, Agrawala A. The Horus WLAN Location Determination System. In Proceedings of the Third International Conference on Mobile Systems, Applications and Services, Seattle, Washington: 2005, 205-218
    [108] Kaemarungsi K, Krishnamurthy P. Modeling of Indoor Positioning Systems Based on Location Fingerprinting In Proceedings of the IEEE Infocom, Hong Kong: 2004, 1012-1022
    [109] Rappaport T S. Wireless Communications: Principles and Practice. Upper Saddle River, New Jersey: Prentice Hall PTR, 1996
    [110] Janssen G J, Prasad R. Propagation Measurements in an Indoor Radio Environment at 2.4 GHz, 4.75 GHz and 11.5 GHz. In Proceedings of the IEEE VTC, Denver, Colorado: 1992, 617-620
    [111] Smith D, Singh S. Approaches to Multisensor Data Fusion in Target Tracking: A Survey. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(2), 1696-1710
    [112] Hall D L, Llinas J. An Introduction to Multisensor Data Fusion. Proceedings of the IEEE, 1997, 85(1), 6-23
    [113] Varshney P K. Multisensor Data Fusion. Electronics & Communication Engineering Journal, 1997, 9(6), 245-253
    [114] E.Waltz, J.Linas. Multisensor Data Fusion. Boston: Artech House, 1990
    [115] Ladd A M, Bekris K E, Rudys A, et al. Robotics-Based Location Sensing UsingWireless Ethernet. Wireless Networks, 2005, 11, 189–204
    [116] Guvenc I, Abdallah C, Jordan R, et al. Enhancements to RSS Based Indoor Tracking Systems Using Kalman Filters. In Proceedings of the International Signal Processing Conference and Global Signal Processing Expo, Dallas, TX.: 2003,91-102
    [117] Kushki A, Plataniotis K N, Venetsanopoulos A N. Location Tracking In Wireless Local Area Networks With Adaptive Radio Maps. In Proceedings of the ICASSP, 2006, V741-V744
    [118] Hightower J, Borriello G. Particle Filters for Location Estimation in Ubiquitous Computing: A Case Study. In Proceedings of the 6th International Conference on Ubiquitous Computing, UbiComp 2004, Nottingham, UK: 2004, 88-106
    [119] Z`aruba G V, Huber M, Kamangar F A, et al. Indoor Location Tracking Using RSSI Readings From A Single Wi-Fi Access Point. Wireless Networks, 2006, 13(2), 221-235
    [120] Youssef M, Agrawala A, Shankar A U. WLAN Location Determination via Clustering and Probability Distributions. In Proceedings of the IEEE International Conference on Pervasive Computing and Communications, Fort Worth, Texas: 2003, 23-26
    [121] Chen Y, Yang Q, Yin J, et al. Power-Efficient Access-Point Selection for Indoor Location Estimation. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(7), 877-888
    [122] Dempster A. Upper and Lower Probabilities Induced by Multivalued Mapping. Annals of Mathematical Statistics, 1967, 38(2), 325-339
    [123] Shafer G. A Mathematical Theory of Evidence. Princeton, NJ: Princeton Univ. Press, 1976
    [124] Orponen P. Dempster's Rule of Combination is #P-complete. Artificial Intelligence, 1990, 44(1-2), 245-253
    [125] Kravets R, Krishnan R. Power Management Techniques for Mobile Communication. In Proceedings of the Fourth Annual ACM/IEEE International Conference on Mobile Computing and Networking, 1998, 157-168
    [126] Stemm M, Katz R H. Measuring and Reducing Energy Consumption of Network Interfaces in Handheld Devices. IEICE Transactions on Fundamentals of Electronics, Comm., and Computer Science, 1997, 80(8), 1125-1131
    [127] Hong I, Potkonjak M. Power Optimization in Disk-Based Real-Time Application Specific Systems. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, 1996, 10-14
    [128] Gurumurthi S, Sivasubramaniam A, Kandemir M, et al. DRPM: Dynamic Speed Control for Power Management in Server Class Disks. ACM SIGARCH Computer Architecture News, 2003, 31(2), 169-181
    [129] Weiser M, Welch B, Demers A, et al. Scheduling for Reduced CPU Energy. In Proceedings of the First USENIX Symposium on Operating System Design and Implementation, 1994, 13-23
    [130] Lorch J R, Smith A J. Scheduling Techniques for Reducing Processor Energy Use in Macos. Wireless Networks, 1997, 3(5), 311-324
    [131] Lee W C, Lee D L. Using Signature Techniques for Information Filtering in Wireless and Mobile Environments. Journal of Distributed and Parallel Databases, 1996, 4(3), 205-227
    [132] Shivakumar N, Venkatasubramanian S. Efficient Indexing for Broadcast Based Wireless Systems. ACM/Baltzer Mobile Networks and Applications (MONET), 1996, 1(4), 433-446
    [133] Xu Y, Lee W C. On Localized Prediction for Power Efficient Object Tracking in Sensor Networks. In Proceedings of the first International Workshop on Mobile Distributed Computing, 2003, 434-439
    [134] Heinzelman W R, Chandrakasan A, Balakrishnan H. Energy-Efficient Communication Protocol for Wireless Microsensor Networks. In Proceedings of Hawaii International Conference System Sciences, 2000, 1-10
    [135] Xu Y Q, Winter J, Lee W C. Prediction-Based Strategies for Energy Saving in Object Tracking Sensor Networks. In Proceedings of the IEEE International Conference on Mobile Data Management, 2004, 346-357
    [136] T.E. system, http://www.ekahau.com. 2006
    [137] Papers A W, Power Consumption and Energy Efficiency Comparisons of WLAN Products. 2003: Atheros Inc.
    [138] Ebert J P, Burns B, A.Wolisz. A Trace-Based Approach for Determining the Energy Consumption of a WLAN Network Inteface. In Proceedings of European Wireless Conference, 2002, 230-236
    [139] Youssef M, Agrawala A. Location-Clustering Techniques for Energy-Efficient WLAN Location Determination Systems. International Journal of Computers and Applications, 2006, 28(3), 278-283
    [140] Han J, Kamber M.数据挖掘:概念与技术.范明,孟小峰,译.原书第二版.北京:机械工业出版社, 2007
    [141] Youssef M, Agrawala A. The Horus WLAN Location Determination System. Wireless Networks, 2007, (1), 1-18
    [142] Tan P-N, Steinbach M, Kumar V.数据挖掘导论.范明,范宏建等,译.北京:人民邮电出版社, 2006
    [143] Dempster A P, Laird N M, Rubin D B. Maximum Likelihood from Incomplete Data via the EM Algorithm. J. Royal Statist. Society (B), 1977, 39(1), 1-38
    [144] Redner R A, Walker H F. Mixture Densities, Maximum Likelihood and the EM Algorithm. SIAM Review, 1984, 26(2), 195-239
    [145] Rissanen J. A Universal Prior for Integers and Estimation by Minimum Description Length. Annals of Statistics, 1983, 11, 417-431
    [146] Gr?unwald, Myung, Pitt. Advances in Minimum Description Length: Theory and Applications. MIT Press, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700