结合应用层抗误码工具的无线视频传输技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着视频编码及无线通信技术的迅速发展,视频已成为无线通信的主要业务之一。无线信道的时域和频域衰落特性复杂多变,并且其传输带宽有限。这都难以满足视频业务高速率和高服务质量的传输要求,使得无线视频通信在实际应用中仍面临着严峻的技术挑战。因此,无线视频传输和相关的编码处理技术成为视频通信领域的核心研究内容之一。为了在有误码的传输信道情况下提高接收端恢复视频的质量,本文从三个方面对无线视频抗误码传输技术进行了深入研究,主要包括视频编码中抗误码工具、OFDM无线视频传输技术,以及二者的结合应用。
     论文的主要研究成果有:
     1.提出了适用于视频编码的视频场景分析方法,包括一种实时多测度突变场景检测算法和一种基于运动加速度的关键帧提取算法。综合使用上述两种算法可提取视频序列的关键信息,确定视频序列中各图像的重要性。
     2.提出了一种基于场景分析的视频编码自适应图像组(AGOP)构造方法。利用所提出的视频场景检测算法和关键帧提取算法,确定视频序列中各图像对整体编码效率和抗误码性能的重要性,自适应划分视频GOP并确定GOP中各图像的编码类型。所提出的AGOP可以为视频码流提供更高层次的分级特性,有利于对不同重要性的图像进行不等保护传输,并且解码端易于实现视频错误掩盖。该方法有利于提高视频码流在无线信道中传输的抗误码能力。另外,针对AGOP编码方法,对已有的码率控制方法作了相应的修改,以有效控制码率,防止恢复视频质量的过大波动。仿真和实验结果表明AGOP不仅可以提高编码效率,也是一个有效的抗误码工具。
     3.深入研究无线视频传输中的视频码流和无线信道的适配问题。首先分析无线信道的衰落特性以及OFDM调制技术特点,然后结合视频数据特点,提出了一种OFDM无线信道上的三重交织视频传输技术。该技术综合运用空间域、频域和时域交织技术,有效降低了信道时域和频域的衰落特性对视频数据传输的影响,并有利于解码端的视频错误掩盖,提高了接收端恢复视频的质量。
     4.提出三重交织与应用层视频编码抗误码工具相结合的无线视频传输技术。将三重交织分别与多参考帧选择技术、灵活宏块顺序技术、提出的AGOP技术相结合,综合使用视频编码抗误码和无线传输技术,显著提高了接收端恢复视频的质量。仿真结果表明,当信道质量较差时,恢复视频质量的提高可达2dB以上。
Along with the advancement of video encoding and the development of wireless network, video communication has become one of the primary services over wireless networks. However, there are still severe technical challenges in wireless video communications, because the error-prone and time-varying band-limited wireless channels always have difficulty in meeting the requirements for large-data-volume and high-service-quality video transmission. Therefore, the video transmission and related video processing techniques have become part of the key research areas in video communication. In this dissertation, the error control techniques in wireless video transmission are researched from three aspects, i.e., the error resilience tools in video encoding, video transmission over OFDM wireless channels and the effective integration of the above techniques for wireless video transmission.
     The major contributions of the dissertation are summarized as follows:
     1. Two content analysis methods based on motion characteristics are proposed, i.e., a new multi-metric scene cut detection method and a key frame extraction method based on acceleration. Based on the two methods, the importance of each frame can be classified, which further facilitates the design of adaptive group of pictures (AGOP) structure.
     2. Based on the two newly developed scene analysis methods, an adaptive GOP structure construction method is proposed. After performing scene content analysis, the frames in the video sequence can easily be classified according to their impacts on the entire coding efficiency and error resilience performance. Then different coding types are assigned to the pictures, which will facilitate the determination of the service priority to the coding bits of each picture in the transmission scheme using differential service strategy (e.g., unequal error protection). By employing the proposed AGOP video encoding, together with advanced error concealment methods, the quality of the received video can be further secured when transmitted over error-prone channels. Moreover, an improved rate control scheme is also devised for the AGOP encoding scheme to alleviate the fluctuation in the pictures’coding quality. Extensive experiments have shown that AGOP is an effective error resilient tool besides improving the coding efficiency.
     3. The key issues of the adaptation of video bitstream and wireless channels are investigated. Based on the analyses on the characteristics of compressed video data and the wireless OFDM channel, a novel three dimensional interleaving technique, namely, spatial-frequency-temporal interleaving (SFTI), is proposed. By introducing frequency and temporal diversity, the proposed method reduces the degradation in video quality caused by the impacts of wireless fading and facilitates error concealment on the application layer at the receiver.
     4. Several error resilience techniques are integrated to develop a stream transmission scheme over OFDM wireless channels. The general idea of the proposed scheme is to effectively integrate the proposed SFTI with error resilience tools in video coding and transmission. By combining the SFTI with multiple reference picture selection, flexible macroblock technique, and the proposed AGOP, respectively, robustness of video transmission can be well consolidated, which is demonstrated by an average quality improvement of over 2 dB for the reconstructed video at the receiver.
引文
[1] A. H. Sadka, Compressed Video Communications, John Wiley & Sons, Ltd, Chichester, 2002
    [2] L. Hanzo, P. J. Cherriman, J. Streit, Wireless Video Communications: Second to Third Generation Systems and Beyond, IEEE Series on Digital & Mobile Communication, IEEE Press, New York 2001
    [3] Y. Wang, J. Ostermann, Y. Q. Zhang著,侯正信,杨喜,王文全等译,Video Processing and Communications(视频处理与通信),电子工业出版社,北京,2003
    [4]沈兰荪,卓力,小波编码与网络视频传输,科学出版社,2005
    [5] D. Wu, Y. T. Hou, Y. Q. Zhang. Transporting Real-Time Video over the Internet: Challenges and Approaches. Processings of the IEEE, Vol.88, No.12, Dec 2000:1855-1875
    [6] D. Wu, Y. T. Hou, Y. Q. Zhang. Streaming Video over the Internet: Approaches and Directions. IEEE Trans. Circuits Syst. Video Technol. Vol.11, No.3, Mar 2001,282-298
    [7] T. S. Rappaport著,周文安等译, Wireless Communications Principles and Practice, 2nd Edition(无线通信原理与应用,第二版),电子工业出版社,北京, 2006
    [8] ISO/IEC MPEG, Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s, ISO/IEC-11172(MPEG-1), 1993
    [9] ISO/IEC MPEG, Information technology -- Generic coding of moving pictures and associated audio information, ISO/IEC 13818(MPEG-2)
    [10] ISO/IEC MPEG, Coding of audio-visual objects, ISO/IEC-14496(MPEG-4), 1999
    [11] ITU Telecom. Standardization Sector of ITU. Video Codec for Audio Visual Services at px64 kbit/s. ITU-T Recommendation H.261. 1993.
    [12] ITU Telecom. Standardization Sector of ITU, ISO/IEC MPEG, Video elementary stream content description data, ITU-T Recommendation H.262 | ISO/IEC 13818-2(MPEG-2 Part 2).1995
    [13] ITU Telecom. Standardization Sector of ITU. Video Coding for Low Bit Rate Communication. ITU-T Recommendation H.263 Version 1. 1996.
    [14] ITU Telecom. Standardization Sector of ITU. Draft Text of Recommendation H.263Version 2 (“H.263+”) for Decision, ITU-T Recommendation H.263+. 1998.
    [15] ITU Telecom. Standardization Sector of ITU. Draft for“H.263++”Annexes U, V, and W to Recommendation H.263. ITU-T Recommendation H.263++. 2000.
    [16] Joint Video Team of ITU-T and ISO/IEC JTC 1. Advanced video coding for generic audiovisual services. Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification, ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC(MPEG-4 part 10). March 2003
    [17] I. E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia, John Wiley & Sons Ltd, Chichester, 2003
    [18]吴炜,多媒体通信,西安电子科技大学出版社,西安,2008
    [19] TUHhttp://www.chiariglione.org/mpeg/standards/mpeg-1/mpeg-1.htmTHU
    [20] B. Girod, N. Farber, Feedback-based Error Control for Mobile Video Transmission, Proceedings of the IEEE, Special Issue on Video for Mobile Multimedia, 1999, 10(87):1707-1723
    [21] Injong, Rhee, et al. Error Recovery for Interactive Video Transmission over the Internet, IEEE Journal on selected area in communications, 2000, 6(18):1033-1049
    [22] T. H. Lee, J. T. Wang, P. C. Chang, , Precise Error Tracking for Terminating Error Propagation Effects in H.263 Video Transmission, Proc. SPIE Vol. 3561, p. 265-273
    [23] W. Tu, E. Steinbach, Proxy-based error tracking for H.264 based real-time video transmission in mobile environments, Proceedings of the IEEE International Conference on Multimedia and Expo (ICME’04), 2004,
    [24] Y. Zhang, W. Gao, H. Sun, Q. Huang, Y. Lu, Error Resilience Video Coding in H.264 Encoder with Potential Distortion Tracking, International Conference on Image Processing (ICIP '04). 2004.: 1522-4880
    [25]宋彬,常义林,马林华,艾达,基于H.263中PEI域的视频抗误码方法研究,电子学报,2002,30(8)
    [26] W. Li, Overview of Fine Granularity Scalability in MPEG-4 Video Standard, IEEE Trans. Circ. Syst. Video Techn.,Vol.11, No.3, Mar. 2001.
    [27] X.Y. Sun et cl., Macroblock-Based Progressive Fine Granularity Scalable(PFGS) Video Coding with Flexible Temporal-SNR Scalabilities, Proc. ICIP 2001, vol. 2, Oct. 2001: 1025–1028
    [28] H. Schwarz, D. Marpe, T. Wiegand, Overview of the Scalable Extension of the H.264/MPEG-4 AVC Video Coding Standard, IEEE Trans. CSVT, scheduled, 2007
    [29] J.R. Ohm, Advances in Scalable Video Coding, Proceedings of the IEEE, 93(1), Jan. 2005
    [30] A. Secker, D. Taubman, Highly Scalable Video Compression With Scalable Motion Coding, IEEE Trans. on Image Processing, 13(8), Aug. 2004
    [31] Jie Jia, Hae-Kwang Kim, Hae-Chul Choi, Polyphase Downsampling Based Redundant Picture Coding for SVC Error Resiliency, Proceedings of the 2008 Congress on Image and Signal Processing, 2008, Vol. 2 - Volume 02: 90-94
    [32]阎蓉,陶然,王越,吴枫,李世鹏,精细的可伸缩性视频编码中容错技术的研究,电子学报,Vol.30,No.1,Jan.2002:102-104
    [33] Y. Liu, S. Yu, Adaptive Unequal Loss Protection for Scalable Video Streaming Over IP Networks, IEEE Transactions on Consumer Electronics, Vol.51, No.4, November 2005:1277-1282
    [34] Y. Wang, A. R. Reibman, S. Lin, Multiple Description Coding for Video Delivery, Proceeding of the IEEE, Vol.93, No.1, Jan. 2005:57-70
    [35] J. R. Taal, J. A. Pouwelse, R. L. Lagendijk, HScalable Multiple Description Coding for Video Distribution in P2P HNetworks, 24th Picture Coding Symposium, , San Francisco, CA,2004.
    [36] M.T. Lu, C.K. Lin, J. Yao, H. H. Chen, Multiple Description Coding with spatial-temporal Hybrid Interpolation for Video Streaming in peer-to-peer Networks, Journal of Zhejiang University ScienceA, 7A(5)2006: 894-899
    [37] Y. Wang et al., Wireless video transport using path diversity: multiple description vs. layered coding, IEEE International Conference on Image Processing (ICIP), 2002
    [38] M. Tesanovic, D. Bull, A. Doufexi, A. Nix, Enhanced MIMO wireless video communication using multiple-description coding, Image Communication, Volume 23 , Issue 4 April 2008:325-336
    [39] Q. Chen, K. P. Subbalakshmi, Joint Source-Channel Decoding for MPEG-4 Video Transmission Over Wireless Channels, IEEE Journal on Selectied Areas in Communications, 21(10), December 2003:1780-1789
    [40] L. Yin, W. Chen, J. Lu, C.W. Chen, Joint Source-Channel Decoding for MPEG-2 Video Transmission, Proc. Of SPIE, Vol.5600:128-136
    [41] Q. Zhang, W. Zhu, Y. Q. Zhang, Resource Allocation for Multimedia Streaming over the Internet, IEEE Trans. Multimedia, vol. 3, Sept. 2001:339-355
    [42] D. Slepian, J. K. Wolf, Noiseless Coding of Correlated Information Sources, IEEE Transactions on Information Theory, Vol.IT-19, No.4, July 1973:471-480
    [43] A. D. Wyner, J. Ziv, The Rate-Distortion Function for Source Coding with Side Information at the Decoder, IEEE Transactions on Information Theory, Vol.IT-22, No.1, January 1976:1-10
    [44] B. Girod, A. Aaron, S. Rane, D. Rebollo-Monedero , Distributed video coding, Proceedings of the IEEE, Special Issue on Video Coding and Delivery, vol. 93, no. 1, pp. 71-83, January 2005
    [45] A. Aaron, D. Varodayan, B. Girod, Wyner-Ziv residual coding of video, Proc. Picture Coding Symposium, PCS-2006, Beijing, China, April 2006
    [46] A. Aaron, B. Girod, "Wyner-Ziv video coding with low-encoder complexity," Proc. Picture Coding Symposium, PCS-2004, San Francisco, CA, December 2004.
    [47] S. Rane, B. Girod, Systematic Lossy Error Protection Versus Layered Coding with Unequal Error Protection, Proc. SPIE Conference on Image and Video Communications and Processing, IVCP-2005 , San Jose, CA., January 2005
    [48] S. Rane, A. Aaron, B. Girod, Systematic lossy forward error protection for error-resilient digital video broadcasting - A Wyner-Ziv coding approach, Proc. IEEE International Conference on Image Processing, ICIP-2004, Singapore, Oct. 2004
    [49] A. Yoneyama, Y. Nakajima, H. Yanagihara, M. Sugano, MPEG Encoding Algorithm with Scene Adaptive Dynamic GOP Structure, in MMSP'99. 1999. p. 297-302.
    [50] Y. Yokoyama, Adaptive GOP structure selection for real-time MPEG-2 videoencoding, in ICIP 2000. 2000: Vancouver, Canada.
    [51] L. Natário, F. Pereira, Adaptive GOP Size in the MPEG-4 Scalable Video Coding Standard, in EURASIP. 2005.
    [52] J. Lee, I.S Shin, H. Park, Adaptive Intra-Frame Assignment and Bit-Rate Estimation for Variable GOP Length in H.264. IEEE Trans. CSVT, Oct. 2006. 16(10): 1271-1279.
    [53] J. R. Ding, J. F. Yang, Adaptive group-of-pictures and scene change detection methods based on existing H.264 advanced video coding information. IET Image Processing, 2008. 2(2): 85-94.
    [54] T. Wiegand, G.J. Sullivan, G. Bjontegaard, A. Luthra, Overview of the H.264/AVC Video Coding Standard. IEEE Trans. CSVT,, July. 2003, 13(7): 560-576.
    [55] A. Puri, X. Chen, A. Luthra, Video Coding Using the H.264/MEPG-4 AVC Compression Standard. Signal Processing: Image Communication, Vol.19,2004:793-849
    [56] T. Stockhammer, M. Hannuksela, T. Wiegand . H.264/AVC in wireless environments.IEEE Trans,Circuits Syst,Video Technol, 2003, 13(7):657-673
    [57] S. Wenger, H.264/AVC Over IP.IEEE Trans. CSVT, 2003, 13(7):645~656
    [58] P. Baccichet, S. Rane, B. Girod, Systematic Lossy Error Protection based on H.264/AVC Redundant Slices and Flexible Macroblock Ordering, Proc. Packet Video Workshop, PV-2006, Hangzhou, China, April 2006.
    [59] S. Rane, B. Girod, Systematic Lossy Error Protection based on H.264/AVC Redundant Slices, Proc. SPIE Visual Communications and Image Processing, VCIP-2006, San Jose, CA. Jan. 2006.
    [60] I. E. G. Richardson, M. J. Riley, Varying Slice Size to Improve Error Tolerance of MPEG video, Proc. SPIE, 1996 Vol. 2668, p. 365-371
    [61] T. Fang, L.P. Chau, Optimal resynchronization for layered video over wireless channel, IEEE International Symposium on Circuits and Systems, ISCAS2005, VOL 6, pa. 6070-6073
    [62] Y. P. Fallah, P. Nasiopoulos, H. Alnuweiri, Efficient Transmission of H.264 Video over Multirate IEEE 802.11e WLANs, EURASIP Journal on Wireless Communications and Networking Volume 2008 (2008), Article ID 480293, 14 pages doi:10.1155/2008/480293
    [63] S. Xiao, C. Wu, J. Du, Y. Yang, Reliable Transmission of H.264 Video over Wireless Network, Proceeding of AINA'06, 2006:
    [64] G. J. Sullivan, T. Wiegand,Video Compression--From Concepts to the H.264/AVC Standard, Proceedings of IEEE, Vol.93,No.1,Jan 2005:18-31
    [65] T. Wiegand, G. J. Sullivan, The H.264/AVC Video Coding Standard, IEEE Signal Processing Magazine, March 2007:148-153
    [66]艾达,常义林,罗忠,王静,基于对象的H.264视频编码抗分组丢失方法,西安电子科技大学学报,2006,33(4):524-528
    [67] P. Lambert, D. Schrijver, D. Deursen, W. Neve, Y. Dhondt, R. Walle, A Real-Time Content Adaptation Framework for Exploiting ROI Scalability in H.264/AVC. ACIVS 2006: 442-453
    [68] C. Fan, H. Cui K. Tang, Chessboard-interpolation-based multiple description video coding, Science in China Series F: Information Sciences, 47(1)2004: 66-74
    [69] Y. Dhondt, P. Lambert, R. V. Walle, A Flexible Macroblock Scheme for Unequal Error Protection, ICIP’06, Atlanta, U.S.A, Oct. 2006
    [70] J.Y. Choi, J. Shin, Content-Aware Packet-Level Interleaving Method for Video Transmission over Wireless Networks,Lecture Notes in Computer Science,Springer-Verlag GmbH Volume 3510/2005:149-158
    [71] S. Wenger, G. D. Knorr, J. Ott, F. Kossentini, Error resilience support in H.263+. IEEE Trans. CSVT, Vol.8, No. 7, Nov.1998:867-877.
    [72] Y. J. Liang, B. Girod, Network-Adaptive Low-Latency Video Communication Over Best-Effort Networks, IEEE Trans. CSVT, January 2006, 16(1):72-81
    [73] T. Stockhammer, T. Wiegand, T. Oelbaum, F. Obermeier, Video Coding and Transport Layer Techniques for. H.264/AVC-Based Transmission over Packet-Lossy Networks, IEEE ICIP 2003, Spain, 2003: 481-484
    [74] T. Stockhammer, D. Kontopodis, T. Wiegand, Rate-Distortion Optimization for JVT/H.26L coding in Packet Loss Environment, Proc. PVW, Pittburgh, PY, April 2002
    [75] H. Yang, K. Rose, Source-channel prediction in error resilient video coding, Proc. IEEE Int. Conf. Multimedia, Baltimore, MD, 2003, pp. 233–236.
    [76] T. Wiegand, N. Farber, K. F?rber, K. Stuhlmüller, B. Girod, Error-resilient video transmission using long-term memory motion-compensated prediction, IEEE JSAC, Vol. 18, No.6, 2000:1050-1062
    [77] K. Stuhlmüller, N. F?rber, M. Link, B. Girod, Analysis of Video Transmission over Lossy Channels, IEEE Journal on Selected Areas in Communications, Vol.18, No.6, June 2000
    [78] R. Zhang, S. L. Regunathan, K. Rose, Video coding with optimal Inter/Intra-mode switching for packet loss resilience, IEEE J. Sel. Areas Commun., vol. 18, no. 6, pp. 966–976, Jun. 2000.
    [79] G. Cote, S. Shirani, F. Kossentini, Optimal mode selection and synchronization for robust video communications over error-prone networks, IEEE J. Sel. Areas Commun., vol. 18, no. 6, pp. 952–965, Jun. 2000.
    [80] A. Leontaris, P. C. Cosman, Video compression for lossy packet networks with mode switching and dual-frame buffer, IEEE Trans. Image Process., vol. 13, no. 7, pp. 885–897, Jul. 2004.
    [81] S. Wan, E. Izquierdo, F. Yang, Y. Chang, End-to-End Rate-Distortion Optimized Motion Estimation. ICIP 2006: 809-812
    [82] S. Wan, E. Izquierdo, Rate-Distortion Optimized Motion-Compensated Prediction for Packet Loss Resilient Video Coding, IEEE Trans. Image Processing, 2007, 16(5)
    [83] Y. Wang, Q. Zhu, Error Control and Concealment for Video Communication: A Review, Proceedings of the IEEE, Vol.86, No.5, May 1998:974-997
    [84] M. Paredes Farrera, M. Fleury, M. Ghanbari, Accurate packet-by-packet measurements and analysis of video streams across an Internet tight link, Signal Processing: Image Communication, Vol.22, 2007:69-85
    [85] S. Shirani, F. Kossentini, R. Ward, A Concealment Method for Video Communications in an Error-Prone Environment, IEEE Journal on Selected Areas in Communications, Vol.18, No.6, June 2000:1122-1128
    [86] Y. Wang, S. Wenger, J. Wen, A. K. Katsaggelos, Error Resilient Video Coding Techniques, IEEE Signal Processing Magazine, Vol., July 2000: 61-82
    [87] X. Zhang, X. Wu, Can Lower Resolution Be Better?, Data Compression Conference, 2008: 302-311
    [88] S. Nemirovsky, M. Porat, On Texture and Image Interpolation Using Markov Models, SignalProcessing: Image Communication, 2009, 24: 139–157
    [89] T.Y. Liu, K.T. Lo, X.D. Zhang. J. Feng, 2003. Frame interpolation scheme using inertia motion prediction. Signal Process.: Image Comm. 18 3, pp. 221–229.
    [90] Y. Takishima, M. Wada, H. Murakami, Reversible Variable Length Codes. IEEE Trans. Commu. 1995, 43(2):158-162,
    [91] J. Wen, J. Villasenor, A Class of Reversible Variable Length Codes for Robust Image and Video Coding, IEEE Int. Conf. on Image Proc. (ICIP’97), 1997, 2:25-28.
    [92] J. Huo, Y. Chang, L. Ma, On constructing symmetrical reversible variable-length codes independent of the Huffman codes, Journal of Zhejiang University Science, 2006, May.
    [93] G. Cote, S. Shirani, F. Kossentini, Optimal Mode Selection and Synchronization for Robust Video Communications over Error Prone Networks, IEEE Journal on Selected Areas in Communications, 2000, 18(6):952-965.
    [94] L. Ma, Y. Chang, A Novel Variable-length Code for Robust Video Coding, Journal of Electronics (China) , 2006, Vol. 23, No.4, pp623-626.
    [95] L. Ma, Y. Chang, A Novel VLC Encoding Algorithm with High Performance of Symbol Synchronization Error Correction, The 14th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2003, 9, Vol. 3, pp2417-2420.
    [96] J. Wen, J. Villasenor, Utilizing Soft Information in Decoding of Variable Length Codes. Data Compression Conference(DCC’99), Snowbird, UT, 1999, 131-139
    [97] H. Nguyen, P. Duhamel, Robust Source Decoding of Variable-Length Encoded Video Data Taking Into Account Source Constraints, IEEE Transactions onCommunications, Vol.53, No.7, July 2005:1077-1084
    [98] G. Sabeva, S.B. Jamaa, M. Kieffer, P. Duhamel, Robust decoding of h. 264 encoded video transmitted over wireless channels, 2006 IEEE 8th Workshop on Multimedia Signal Processing, 2006:9-13
    [99] J. Heiskala, J. Terry著,杨晓春,何建吾等译, OFDM Wireless LANs: A Theoretical and Practical Guide(OFDM无线局域网),电子工业出版社,北京,2003
    [100] TUHhttp://www.wimax.com/THU
    [101] I. Koffman, V. Roman, Broadband Wireless Access Solutions Based on OFDM Access in IEEE 802.16, IEEE Communications Magazine, Apr. 2002:96-103
    [102]张金文等编著,802.16宽带无线城域网技术,电子工业出版社,北京,2006
    [103]全子一著,图像信源压缩编码及信道传输理论与新技术,北京工业大学出版社,2006
    [104]蔡安妮等编著,多媒体通信技术基础,电子工业出版社,2008
    [105] P. Cherriman, T. Keller, L. Hanzo, Orthogonal frequency-division multiplex transmission of H.263 encoded video over highly frequency-selective wireless networks, IEEE Trans. CSVT, 1999, 9(5):701-712
    [106] P. J. Cherriman, T. Keller, L. Hanzo , Subband-Adaptive Turbo-Coded OFDM-Based Interactive Video Telephony, IEEE Trans. CSVT, Oct. 2002, 12(10):829 - 839
    [107] M. Jiang, L. Hanzo, Multiuser MIMO-OFDM for Next-Generation Wireless Systems, Proceedings of the IEEE, Vol. 95, No. 7, July 2007: 1430-1469
    [108] H. Rohling, T. May, K. Bruninghaus, R. Grunheid, Broad-Band OFDM Radio Transmission for Multimedia Applications, Proceedings of IEEE, Vol.87, No.10, October 1999:1778-1789
    [109] J.Y. Chung, , M.Y. Alias, F. Guo, L Hanzo, LDPC and turbo coding assisted space-time block coded OFDM for H-26L compressed wireless video telephony.Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003:2702-2706
    [110] C. Esli, H. Delic, Coded OFDM With Transmitter Diversity for Digital Television Terrestrial Broadcasting, IEEE Transactions on Broadcasting, Vol.52, No.3, September 2006:325-335
    [111] J. Tang, X. Zhang, Effective Bandwidth-Based QoS Provisioning for Real-Time Audio/Video Streaming over MIMO-OFDM Wireless Networks, Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEEInternational 04-08 April 2005 Page(s):247b - 247b
    [112] P. Ferré, J. Chung-How, D. Bull, A. Nix, Distortion-Based Link Adaptation for Wireless Video Transmission, EURASIP Journal on Advances in Signal Processing, vol. 2008, Article ID 253706, 17 pages, 2008. doi:10.1155/2008/253706
    [113] A.R. Reibman, V. Vaishampayan, Y. devi, Quality. monitoring of video over a packet network, IEEE Transactions on Multimedia, vol. 6, pp. 327–334,April 2004:327-334
    [114] P. Pace, E. Viterbo, Fast and Accurate Video PQoS Estimation over Wireless Networks, EURASIP Journal on Advances in Signal Processing, vol. 2008, Article ID 548741, 10 pages, 2008. doi:10.1155/2008/548741
    [115] Q. Zhang, W. Zhu, Y.Q. Zhang, End-to-End QoS for Video Delivery over Wireless Internet, Proceedings of IEEE, Vol.93,No.1,Jan 2005:123-134
    [116] M. van der Schaar, D. Sai Shankar N, Cross-Layer Wireless Multimedia Transmission: Challenges, Principles, and New Paradigms, IEEE Wireless Communications, August 2005:50-58
    [117] D.Dardary, M.G. Martini, M. Mazzotti, M. Chiani, Bit-loading for Unequal Error Protection of Video Streams in OFDM Wireless Systems, IEEE Communications Society 2004:3076-3080
    [118] M. Ghandi, M. Ghanbari, Layered H.264 video transmission with hierarchical QAM, Elsevier J. Visual Commun. Image Representation, Special issue on H.264/AVC, vol. 17, no. 2, pp. 451-466, April 2006
    [119] B. Barmada, M. M. Ghandi, E. V. Jones, M. Ghanbari , Prioritized Transmission of Data Partitioned H.264 Video with Hierarchical QAM, IEEE Signal Processing. Lett., vol. 12, no. 8, pp. 577-580, Aug. 2005
    [120] G.H. Yang, D. Shen, V. O. K. Li, UEP for video transmission in space-time coded OFDM systems, IEEE INFOCOM 2004 - The Conference on Computer Communications, no. 1, March 2004 pp. 1201-1211
    [121] Y. sun, X. Wang, K. J. R. Liu, A Jonint Channel Estimation and Unequal Error Protection Scheme for Video Transmission in OFDM Systems, Proceedings. 2002 International Conference on Image Processing. Volume 1, 22-25 Sept. 2002 Page(s):I-549 - I-552
    [122] Y. S. Chan, P. C. Cosman, L. B. Milstein, A Cross-Layer Diversity Technique for Multicarrier OFDM Multimedia Networks, IEEE Transactions on Image Processing, Vol.15, No.4, April 2006:833-847
    [123] Y. J. Liang, J. G. Apostolopoulos, B. Girod, Model-Based Delay-DistortionOptimization for Video Streaming Using Packet Interleaving, Proc. Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2002, Invited Paper.
    [124] S. Aramvith, C.W. Lin, S. R., M. T. Sun, Wireless video transport using conditional retransmission and low-delay interleaving, IEEE Transactions on Circuits and Systems for Video Technology, Vol.12, No.6, June 2002:558-565
    [125] I. Haratcherev, J. Taal, K. Langendoen, R. Lagendijk, H. Sips, Optimized Video Streaming over 802.11 by Cross-Layer Signaling, IEEE Communication Magazine, January 2006:115-121
    [126] H. Gharavi, Control based mobile ad-hoc networks for video communications, IEEE Transactions on Consumer Electronics, Vol.52, No.2, May 2006:383-391
    [127] F. Yang, Q. Zhang, W. Zhu, Y.Q. Zhang, End-to-End TCP-Friendly Streaming Protocol and Bit Allocation for Scalable Video Over Wireless Internet, IEEE JOUENAL ON SELECTED AREAS IN COMMUNICATIONS, Vol.22, No.4, May 2004:777-790
    [128] K. P. Subbalakshmi, Q. Chen, Joint source-channel decoding for. MPEG-4 coded video over wireless channels. Proc. IASTED International. Conference on Wireless and Optical Communications (WOC '02), Banff, Canada, July 2002., pp. 617-622
    [129] T. Stockhammer, R. Systemand, Cross-Layer Design for H.264/AVC-Based Wireless Video Applications, EURASIP Journal on Applied Signal Processing, 2006,
    [130] TUHhttp://www-nlpir.nist.gov/projects/trecvid/THU
    [131] B. T.Truong, S. Venkatesh, Video abstraction: A systematic review and classification, ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP) archive 3(1), Feb. 2007, Article No.3, 37 pages.
    [132] I. Koprinska and S. Carrato, Temporal video segmentation: A survey, EURASIP Sig. Proc.: Image Communication, 2001, 16(5):77–500
    [133] A. Hanjalic.Shot-boundary detection:unraveled and resolved?, IEEE Trans On CSVT,2002,12(2):90~105
    [134] J. S. Boreczky and L. A. Rowe, Comparison of video shot boundary detection techniques, J. Electron. Imaging, 1996, 5(2):122-128
    [135] U. Gargi, R. Kasturi, S. H. Strayer, Performance Characterization of Video-Shot-Change Detection Methods, IEEE Trans. CSVT, 2000, 10(1): 1-13
    [136] R. Lienhart, Comparison of automatic shot boundary detection algorithms.SPIE, 1999,3656:290~301
    [137] M. Fouad, F.M. Bayoumi, H.M. Onsi, M.G. Darwish, Real-time shot transition detection in compressed MPEG video streams, Journal of Electronic Imaging, 2008, 17(2): 1-16
    [138] S. LIN, Scene Change Detection for Video, World, WO2007142646A1, Dec. 2007
    [139] C. Lee,Y. Jung,S. Lee,Y. Oh, J. Kim, Cost-effective scene change detection algorithm for real-time H.264 rate control, Optical Engineering, 2008, 47(3):1-3
    [140]盛骤,谢式千,潘承毅,概率论与数理统计,高等教育出版社,1989年8月:146-147,189-203。
    [141] W.H.PRESS, S. TEUKOLSKY, W. VETTERLING, B.FLANNERY, Numerical recipes in C (2nd ed.) Cambridge University Press,1992
    [142] C. L. Huang and B. Y. Liao, A Robust Scene-Change Detection Method for Video Segmentation, IEEE Trans. CSVT, Dec. 2001, 11(12):1281-1288
    [143] X. Yi and N. Ling, Fast pixel-based video scene change detection, IEEE Intl. Sym. Circuits Sys. 2005, 4:3443–3446
    [144] T.Y. Liu, X.D. Zhang, J. Feng, K.T. Lo, Shot reconstruction degree: a novel criterion for key frame selection, Pattern Recognition Letters, 2004, Vol.25:1451-1457
    [145] HW.S. HChau, O.C. HAuH, T.S Chong, Key frame selection by macroblock type and motion vector analysis, ICME '04, June 2004 Vol.1: 575- 578.
    [146] T.M. Liu, H.J. Zhang, F.H. Qi, A Novel Video Key-Frame-Extraction Algorithm Based on Perceived Motion Energy Model, IEEE Trans. CSVT, Oct. 2003, 13(10):1006-1013
    [147] T.Y. Liu, K.T. Lo, X.D. Zhang, J. Feng, Frame interpolation scheme using inertia motion prediction. Signal Process.: Image Comm. 2003. 18(3):221–229.
    [148] D. Alfonso, B. Biffi, L. Pezzoni, Adaptive GOP size control in H.264/AVC encoding based on Scene Change Detection, NORSIG 2006:86-89
    [149] Z.G. Li, W. Gao, F. Pan S.W. Ma, K.P. Lim, G.N. Feng, X. Lin, S. Rahardja, H.Q. Lu, Y. Lu, Adaptive rate control for H.264, J. Vis. Commun. Image R. 17 (2006): 376–406
    [150] Siwei Ma, Zhengguo Li, Feng Wu, Proposed Draft of Adaptive Rate Control, JVT draft(JVT-H017), May, 2003: 9pages
    [151] F. Moscheni, F. Dufaux and H. Nicolas, Entropy criterion for optimal bit allocation between motion and prediction error information, SPIE(2094),November 1993, pp. 1548- 1557
    [152] G. J. Sullivan, T. Wiegand, Rate-Distortion Optimization for Video Compression, IEEE Signal Processing Magazine, Nov. 1998: 74-90
    [153] I M. Pao, M. T. Sun, Modeling DCT Coefficients for Fast Video Encoding, IEEE Trans. CSVT, June 1999, 9(4): 608-616
    [154] K. P. Lim, G. Sullivan, T. Wiegand, Text description of Joint Model reference encoding methods and decoding concealment methods, Joint Video Team, doc. JVT-L046, Redmond, WA, USA, July 2004.
    [155] A. Yoneyama, Y. Nakajima, H. Yanagihara, and M. Sugano, MPEG Encoding Algorithm with Scene Adaptive Dynamic GOP Structure, IEEE Proc. MMSP'99,. pp.297-302, Sep.1999
    [156] H. Wu, M. Claypool, R. Kinicki, Guidelines for Selecting Practical MPEG Group of Pictures, IASTED, 2006:61-66
    [157] T. Tian, V. R. Raveendran, Adaptive GOP Structure in Video Streaming, Patent US2007171972A1, Jul. 2007
    [158] A. Dumitras, B. G. Haskell. I/P/B frame type decision by collinearity of displacements. In Proceedings of ICIP 2004, Singapore, Oct. 2004.
    [159] LAN/MAN Standards Committee of the IEEE Computer Society, Supplement to IEEE Standard for Information technology. Telecommunications and information exchange between systems. Local and metropolitan area networks. Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications High-speed Physical Layer in the 5 GHz Band , June 2003R
    [160] ETSI(European Telecommunications Standards Institute), Digital Video Broadcasting (DVB); Framing structure, channel coding andmodulation for digital terrestrial television, DVB-T, ETSI EN 300 744 V1.5.1 (2004-11)
    [161] S. Theodore, A. Rappaport, R. M. Annamalai. Wireless Communications: Past Events and a Future Perspective. IEEE Communications Magazine, 2002(5):148-161.
    [162] L. Nuaymi, WiMAX: Technology for Broadband Wireless Access, John Wiley & Sons Ltd, Chichester, 2007
    [163] G. L. Ren, H. Zhang, Y. L. Chang, A Novel Scheme for Space-Time Block Coding with a Variable Transmit Diversity Gain in OFDM Systems , IEEE Transactions on Consumer Electronics, Vol.50, No.2, May 2004:478-483
    [164] G. H. Yang, D. Shen, V. O. K. Li, Adaptive Video Transmission for OFDMASystems, ICME 2007: 707-710
    [165] H. Harada, R. Prasad, Simulation and software radio for mobile communication, Publisher: Artech House Publishers; Bk&CD-Rom edition (May 1, 2002)29-61,165-202
    [166]任光亮罗美玲常义林,OFDM系统信噪比估计新方法,西安电子科技大学学报2007 34(5): 693-696
    [167] Digital land mobile radio communications, Office for Publications of the European Communities , Luxembourg, Final Rep. COST 207(1989)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700