提高通信系统可靠性的实用低密度奇偶校验码研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了降低通信系统的差错率,提高系统的可靠性,先进的信道编码技术是宽带无线通信和电力线通信系统中不可缺少的部分。LDPC码是目前世界上距离香农限最近的码字,在宽带无线通信和电力线通信系统中具有广阔的应用前景。本文对结构化LDPC码的帧同步、译码和构造等问题作了深入研究,主要内容及成果如下:
     提出两种LDPC码译码辅助的盲帧同步算法,分别为基于最大值法和基于门限法的帧同步算法。推导了它们的帧同步错误概率。两种算法均无需一次完整的迭代译码过程,可借助LDPC码译码器硬件资源实现,节约了帧同步搜索的时间和功耗,还可提高译码器的利用率。仿真结果表明,基于最大值法的帧同步算法性能明显优于硬判决的同步算法,且接近已有的码字软信息辅助的帧同步算法。针对基于门限法的同步算法,提出一种准最佳帧同步门限的确定方法,并进行了算法仿真和验证。它的帧同步性能比基于最大值法的要差,但在帧同步搜索速率上有明显的优势。
     译码方面,针对采用扰码来解决帧同步“斜坡现象”的系统,提出联合扰码校验图案的BP译码算法;提出了改进的双分层BP译码算法,并行计算两个校验行分组的信息,来提高分层译码算法的译码速率;解决了BP译码算法在放大和译码前传协作中继中应用的初始化问题。仿真验证了改进BP译码算法的有效性和可靠性。
     针对结构化LDPC码译码器,归纳并证明了Banyan交换结构在信息置换时的选路交换规律,设计了一种基于可预置选路算法的新型循环移位置换单元及其出线转换单元。相比Benes和Reverse Banyan等交换结构,设计的新型循环移位置换单元提高了信息循环移位交换的速率,且占用较少的硬件资源和面积。
     提出一种基于快速高斯消元算法的结构化LDPC码的构造方法。快速高斯消元算法在基本分组运算的基础上,以单位置换阵为基本单元进行整体消元,降低消元算法的复杂度。分析了小四环和小六环的构成条件,提出小环的快速检测方法。仿真结果表明,当码率为1/2和2/3时,新构造的第一类S1-LDPC码都具有相对较好的译码性能,尤其帧错误概率(FER)译码性能都是最佳的。
     提出一种基于多重置换阵的结构化LDPC码的构造方法。研究并证明了多重置换阵的一些重要性质;该结构化LDPC码的生成矩阵具有结构化和稀疏的特点,适用基于网络编码的协作中继策略。通过仿真对比,当码率为1/2时,第二类S2-LDPC码的译码性能要差一些;当码率为2/3时S2-LDPC码具有仅次第一类S2-LDPC码的次优译码性能。
Advanced channel coding technology is a necessary part of broad wireless communication and power line communication with an aim to reduce error ratio and to increase the reliability of the systems. LDPC codes have most excellent performance close to the Shannon limit in the world. They can be widely used in broad wireless communication and power line communication system. Frame synchronization, decoding and construction technology for structure LDPC codes are explored and investigated in this paper. Main content and results are shown as follows.
     Two LDPC code-aided frame synchronization algorithms based on maximum method and threshold method are proposed. The frame synchronization error ratios for both algorithms are derived. Using part of LDPC decoder hardware resource, the algorithms don't need additional hardware resource and a full iterative decoding process. Compared to other code-aided frame synchronization algorithms, favorable synchronization performance and decoding performance using the algorithm based on maximum method that approaches the performance of ideal frame synchronization are presented by simulations. A frame synchronization threshold for the synchronization algorithm based on threshold method is proposed and its performance is checked by simulations. Although the frame synchronization performance of the algorithm based on threshold is not as good as the algorithm based on maximum method, it has obvious advantage in synchronization search speed.
     A BP decoding algorithm joint with check pattern under PN disturbance is proposed for the system adapting PN codes to solve the frame synchronization ramp. An improved double layered BP decoding which computes two check row grouping simultaneously to reduce the number of sub-iterative computation and thus to increase decoding speed is proposed. The initialization of BP decoding for amplify-and-forward and decode-and-forward cooperative relaying is solved. Simulation results show efficiency and validity of all the improved BP decoding algorithms.
     When the information is exchanged, a connecting law of basic switch units in Reverse Banyan network for structre LDPC decoder is discovered and proved. Then a non-blocking permutation structure based on presetting routing algorithm is designed, which are suitable for structure LDPC codes decoders. Compared to Benes exchange structure and Reverse Banyan exchange structure, the novel structure increases the exchange speed for information cyclic shift and occupies less hardware resource and area. Finally, an output converting unit is designed, which is adaptable for all kinds of switch structures.
     Based on fast gauss elimination algorithm, a constructing method for structure LDPC codes with multiform structure and rational column weight distributing is proposed. The fast gauss elimination based on basic grouping operation eliminates the whole permutation matrix considered as a unit, which reduces the complexity of the algorithm. The condition forming length-four loop and length-six loop are analyzed and check methods for loops with small length are proposed. Compared to other structure LDPC codes, simulation results show better decoding performance of S1-LDPC codes with 1/2 and 2/3 code rate by the first constructing method, especially in the performance of frame error ratio.
     Based on multi-permutation matrix, another constructing method for LDPC codes with sparse generation matrix is proposed. The conception of multi-permutation matrix is given firstly, than important characteristics of the matrix are explored and proved. It is analyzed that the generation matrix of the structure LDPC codes take on structure and sparse characteristics applicable of joint encoding and decoding for cooperative relaying based network coding. By simulation comparison, the second kind of LDPC codes named as S2-LDPC codes show dissatisfied decoding performance when the code rate is 1/2. When code rate is 2/3, S2-LDPC codes show favourable performance only inferior to S1-LDPC codes.
引文
[1]Dai Huaiyu, Poor H. Vincent. Advanced Signal Processing for Power Line Communications. IEEE Communications Magazine,2003,41 (5):100~107
    [2]Umehara, Daisuke, Yamaguchi. Turbo Decoding in Impulsive Noise Environment. IEEE Global Telecommunications Conference,2004,(1):194~198
    [3]Wada Tadahiro. A Study on Performance of LDPC Codes on Power Line Communications.2004 IEEE International Conference on Communications,2004, (1):109~113
    [4]Raju Hormis, Inaki Berenguer, and Xiaodong Wang A Simple Baseband Transmission Scheme for Power Line Channels. IEEE Journal on Selected Areas in Communications,2006,24(7):1351-1363
    [5]N. Andreadou and F. N. Pavlidou. Mitigation of Impulsive Noise Effect on the PLC Channel With QC-LDPC Codes as the Outer Coding Scheme. IEEE Transactions on Power Delivery,2010, accepted for inclusion in a future issue
    [6]C. E. Shannon. A Mathematical Theory of Communication. Bell Syst. Tech. J., vol.27, pp.379-423,623-656, July~Oct.1948
    [7]C. Berrou, A. Glavieux, P. Thitimajshima. Near Shannon Limit Error Correcting Coding and Decoding:Turbo-codes. ICC'93, Switzerland,1993:1064~1070
    [8]R.G.Gallager. Low-Density Parity-Check Codes. IEEE Transactions on Information Theory.1962,8(3):21~28
    [9]S. Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke. On the design of low-density parity-check codes within 0.0045 db of the Shannon limit. IEEE Communictions Letters.2001,2(5):58~60
    [10]R.K.Sreenivas and J.Hamid. On the EXIT Chart Analysis of Low-Density Parity-Check Codes. IEEE Globecom 2005 Proceedings:1131~1137
    [11]Eran Sharon, Alexei Ashikhmin and Simon Litsyn. Analysis of Low-Density Parity-Check Codes Based on EXIT Functions. IEEE Trans. Communicaitons, 2006,54(8):1407~1414
    [12]Yang Kyeongcheol and Hellesech Tor. On the Minimum Distance of Array Codes as LDPC Codes. IEEE Trans.on Information Theory,2003,49(12):3268~3271
    [13]Freudlich Shay, Burshtein David and Litsyn Simon. Approximately Lower Triangular Ensembel of LDPC Codes with Linear Encoding Complexity. IEEE Trans. Info. Theory,2007,53(4):1484~1494
    [14]A.M. Chan and F.R. Kschischang. A Simple Taboo-Based Soft Decision Decoding Algorithm for Expander Codes. IEEE Comm. Letters,1998,2(7):183~185
    [15]Nenad M. and Marc P.C. Fossorier. Improved Bit Flipping Decoding of Low-Density Parity-Check Codes. ISIT, Lausanne, Switzerland, June,2002
    [16]Yu Kou, Shu Lin and Marc P.C. Fossorier. Low-Density Parity-Check Codes Based on Finite Geometries:A Rediscovery and New Results. IEEE Trans. Info, Theory.2001,47:183~185
    [17]Yu Kou. Finite Geometry Low Density Check Codes. Ph.D. thesis, University of California,2001
    [18]Michael E.O'Sullivan. Algebraic Construction of Sparse Matrices with Large Girth. IEEE. Trans. on Info. Theory,2006,52(2):718~727
    [19]B. Vasic and I.B. Djordjevic. Low-Density Parity Check Codes for Long Haul Optical Commuications Systems. IEEE Photon. Technol. Lett.,2002, 14:1208~1210
    [20]K. Andrews, S. Dolinar, D. Divsalar. Design of Low-Density Parity Check Codes for Deep Space Applications. IPN Progress Report 42~159, November 2004
    [21]E.Eleftheriou and S.Olcer. Low-Density Parity Check Codes for Digital Subscriber Lines. in Proc. GLOBECOM 2002, Nov.2002:1752~1757
    [22]A.J. Blanksby and C.J. Howland. A 690-mW 1-Gb/s 1024-b, Rate-1/2, Low-Density Parity Check Code Decoder. IEEE J. Solid-State Circuits,2002, 37(3):404~412
    [23]C. Howland and A. Blanksby. A 220mW 1-Gb/s 1024-b, Rate-1/2, Low-Density Parity Check Code Decoder. Proc.2001, IEEE Conf. Custom Integrated Circuits, 2001:293~296
    [24]薛英健,吴晓富,项海格.LDPC编码系统符号同步技术[J].通信学报,2005,26(3):130~135
    [25]D. U. Lee, E. L. Valles and J. D. Villasenor. Joint LDPC Decoding and Timing Recovery Using Code Constraint Feedback. IEEE Communications Letter,2006, 10(3):189~191
    [26]潘小飞,刘爱军,张邦宁.一种基于LDPC编码系统的符号同步联合信噪比估计算法.电子与信息学报,2008,30(1):125~129
    [27]H. Wymeersch, H. Steendam, and H. Bruneel. Code-Aided Frame Synchronization and Phase Ambiguity Resolution. IEEE Transactions on Signal Processing,2006, 54(7):2747~2757
    [28]N Noels, H Steendam, M Moeneclaey. Carrier phase tracking from turbo and LDPC coded signals affected by a frequency offset. IEEE Communications letters, 2005,9(10):915~917
    [29]H Wymeersch, M Moeneclaey. Iterative Code-Aided ML Phase Estimation and Phase Ambiguity Resolution. Eurasip Journal on Applied Signal Processing. Special Issue on Turbo Processing,2005,2005(6):981~988
    [30]H Steendam, N Noels, M Moeneclaey. Iterative Carrier Phase Synchronization for Low-Density Parity-Check Coded Systems. International Conference on Communications 2003. Anchorage, Alaska:ICC,2003:3120~3124
    [31]W. Matsumoto and H. Imai. Blind synchronization with enhanced sum-product algorithm for low-density parity-check codes. IEEE Int. Symp. Wireless Personal Multimedia Communications, Hawaii:IEEE,2002,3:966~970
    [32]H. Wymeersch and M. Moeneclaey.ML frame synchronization for turbo and LDPC codes. in Proc. Int. Symp. DSP and Communications Systems,2003
    [33]H.Wymeersch, H. Steendam, H. Bruneel, and M. Moeneclaey. Code aided frame synchronization and phase ambiguity resolution. IEEE Trans. Signal Process., 2006,54(7):2747~2757
    [34]D. Lee, H. Kim, C. R. Jones. Pilotless frame synchronization via LDPC code constraint feedback. IEEE Commun. Letter,2007,11(8):683~685
    [35]D. Lee, H. Kim, C. R.Jones. Pilotless frame synchronization for LDPC-coded transmission systems. IEEE Transactions on Signal Processing,2008,56(7): 2865~2874
    [36]J. Massey. Optimum frame synchronization. IEEE Transactions on Communications,1972,20(2):115~119
    [37]P. Nielsen. Some optimum and suboptimum frame synchronizers for binary data in Gaussian noise. IEEE Transactions on Communications,1973,21(6):770~772
    [33]J. Hu and T. Duman. Low density parity check codes over wireless relay channels. IEEE Transactions on Wireless Communications,2007,6(9):3384-3394
    [39]M. Karkooti and J.R. Cavallaro. Cooperative Communications Using Scalable, Medium Block-length LDPC Codes. Wireless Communications and Networking Conference 2008,2008:88-93
    [40]雷维嘉,谢显中,李广军.一种基于LDPC编码的协作通信方式.电子学报,2007,4(35):712~715
    [41]B.Dong, L. Xie, P. Qiu. Low-Density Parity-Check Coded Distributed Space-Time Cooperative System. Vehicular Technology Conference 2006,5:2383-2387
    [42]A. Chakrabarti, E. Erkip, A. Sabharwal, etc. Code Designs for Cooperative Communication. IEEE Siganl Processing Magazine,2007,16~26
    [43]C. Li, G. Yue, X. Wang and M. A. Khojastepour. LDPC code design for half-duplex cooperative relay. IEEE Transactions on Wireless Communications, 2008,7(11):4558~4567
    [44]C. Li, G. Yue, M. A. Khojastepour and X. Wang. LDPC-coded cooperative relay systems:performance analysis and code design. IEEE Transactions on Communications,2008,56(3):485~496
    [45]郝建军,李剑峰,罗涛.网络卷积协同通信新系统及性能[J].北京邮电大学学报,2008,8(4):15-19
    [46]X. K. BAO and J. LI.Adaptive network coded cooperation (ANCC) for wireless relay networks:matching code-on-graph with network-on-graph. IEEE Transactions on Wireless Communications,2008,7(2):574~583
    [47]张宇宁,姜建,杨根庆.基于网络编码的协同多用户接入协议。华中科技大学学报.2009,37(3):76~78
    [48]M M. Mansour. A Turbo-Decoding Message-Passing Algorithm for Sparse Parity-Check Matrix Codes. IEEE Trans ON SIGNAL PROCESSING,2006, 54(11):4376~4392
    [49]刘晓健,吴晓富,赵春明.准循环LDPC码的两种典型快速译码算法研究.电子与信息学报,2009,31(1):79~82
    [50]Yeong-Tim Ueng, Yu-Lun, etc. Modified Layered Message Passing Decoding with Dynamic Scheduling and Early Termination for Qc-LDPC Codes. in Proc. IEEE International Symposium on Circuits& Systems (ISCAS 2009), Taipei, Taiwan, May 24~27,2009
    [51]Y.M. Chang, A.I. Casado, M.C. Frank. Lower-Complexity Layered Belief Propagation Decoding of LDPC Codes. in International Conference on Communications, Beijing, China,2008
    [52]G.J.Han,X.C. Liu. An Efficient Dynamic Schedule for Layered Belief-Propagation Decoding of LDPC Codes. IEEE Communications Letters. 2009,13(12):950~952
    [53]Darabiha A, Carusone A C and Kschischang F R. Block-interlaced LDPC decoders with reduced inter-connect complexity. IEEE Transaction Circuits System II: Express Briefs,2008,55(1):74~78
    [54]Yang S, Marjan K and Joseph R C. VLSI decoder architecture for high throughput, variable block-size and multi-rate LDPC codes. IEEE ISCAS 2007, New Orleans, USA, May 27-30,2007:2104~2107
    [55]Mansour M M and Shanbhag N R. A 640-Mb/s 2048-bit programmable LDPC decoder chip. IEEE Journal of Solid-State Circuits,2006,41(3):634~698
    [56]Masera G, Quaglio F and Vacca F. Implementation of a flexible LDPC decoder. IEEE Transaction Circuits System II:Express Briefs,2007,54(6):1057~7130
    [57]Quaglio F, Vacca F, Castellano C, Tarable A, Masera G. Interconnection framework for high-throughput, flexible LDPC decoders. Proceedings Design Automation and Test in Europe, Munich, Germany,2006,2:6~10
    [58]Liu C H, Lin C C, Chang H.C, Lee C Y, Hsu Y S. An LDPC decoder chip based on self-routing network for IEEE 802.16e applications.IEEE Journal of Solid-State Circuits,2008,43(3):684~694
    [59]Brack T, Alles M, Lehnigk-Emden T. A survey on LDPC codes and decoders for OFDM-based UWB systems. IEEE VTC-spring 2007, Dublin, Ireland, April 22~25,2007:1549~1553
    [60]A. Darabiha, A. C. Carusone and F. R. Kschischang. Block-interlaced LDPC decoders with reduced interconnect complexity. IEEE Transaction Circuits System II:Express Briefs,2008,55(1):74~78
    [61]Liu C H, Lin C C, Chang H C, Lee C Y, Hsu Y S. An LDPC Decoder Chip Based on Self-Routing Network for IEEE 802.16e Applications. IEEE J. of Solid-State Circuits,2008,43(3):684~694
    [52]H. Zhang, J. Zhu and D. Wang. Layered approx-regular LDPC:code construction and encoder/decoder design. IEEE Trans. Circuits Syst. I, Regular Paper,2008, 55(2):572~585
    [53]J. Lin, Z. Wang and L. Li. Efficient shuffle network architecture and application for WiMAX LDPC decoders. IEEE Transaction Circuits System II:Express Briefs, 2009,56(3):215~219
    [64]D. Oh and K. K. Parhi. Low-complexity switch network for reconfigurable LDPC decoders. Accepted for inclusion in a future issue of IEEE Transactions on VLSI Systems
    [65]S. K. Chilappagari and B. Vasic. Error-Correction Capability of Column-Weight-Three LDPC Codes. IEEE Transactions on Information Theory, 2009,55(5):2055~2061
    [66]徐华,徐澄圻.一种优化Girth分布的准循环LDPC码设计方法研究.电子与信息学报,2008,30(7):1640~1643
    [67]S. Kim, J. S. No and H. Chung. Quasi-cyclic Low-Density Parity-Check codes with girth larger than 12. IEEE Transactions on Information Theory,2007, 53(8):2885~2891
    [68]沈东,余松煜,朱慎立,何志.高围长结构化LDPC码的构造方法.系统工程与电子技术,2006,28(12):1912~1915
    [69]敬龙江,林竟力,朱维乐.无小环的结构化低密度校验码的构造方法.计算机学报,2007,30(4):648~654
    [70]A.V. Casado, W. Weng, S. Valle and R. D. Wesel. Multiple-rate low-density parity-check codes with constant Blocklength. IEEE Transactions on Communications,2009,57(1):75~83
    [71]H. Y. Park, K. S. Kim and D. H. Kim. Structured Puncturing for Rate-Compatible B-LDPC Codes with Dual-Diagonal Parity Structure. IEEE Transactions on Wireless Communications,2008,7(10):3692~3696
    [72]费泽松,高振远,匡镜明.基于IEEE802116e标准中低密度校验码的码率适配设计.北京理工大学学报,2007,27(5):451~459
    [73]Richardson T, Urbanke R. Efficient encoding of low-density-parity-check codes. IEEE Transactions on Information Theory,2001,47(2):638~656
    [74]S. Myung, K. Yang and J. Kim. Quasi-cyclic LDPC codes for fast encoding. IEEE Transactions on Information Theory,2005,51(8):2894~2901
    [75]彭立,朱光喜.不同置换矩阵对基于分块H矩阵的LDPC码性能的影响.计算机学报,2008,31(5):783~792
    [76]Li Ping, Leung W K, Phamdo Nam. Low density parity Check codes with semi-random parity check matrix. Electronics Letters,1999,35(1):38~39
    [77]J. Kim, A. Ramamoorthy and S. W. Mclaughlin. The design of efficiently-encodable rate-compatible LDPC codes. IEEE Transactions on Communications,2009,57(2):365~375
    [78]Li Zongwang, Chen Lei, Zeng Lingqi, Lin Shu. Efficient Encoding of Quasi-Cyclic Low-Density Parity-Check Codes. IEEE Transactions on Communications,2006,54(1):71~81
    [79]黄炜,张建秋.构造准循环LDPC码生成矩阵的块高斯消元法.复旦学报,2008,47(6):691~702
    [80]T. J. Richardson and R. L. Urbanke. The Capacity of Low-density Parity-Check Codes Under Message-passing Decoding. IEEE Transaction on Information Theory.2001,47(3):599~618
    [81]S.Y. Chung, T. J. Richardson, and R. L. Urbanke. Analysis of Sum-product Decoding of Low-density Parity-check Codes using a Gaussian Approximation. IEEE Transactions on Information Theory.2001,47(8):657~670
    [82]L. Z. Liu, C. J. Richard Shi. Sliced Message Passing:High Throughput Overlapped Decoding of High-Rate Low-Density Parity-Check Codes. IEEE Transactions on Circuits and Systems,2008,55(11):3697~3710
    [83]J. Y. Lee, H. J. Ryu. A 1-Gb/s Flexible LDPC Decoder Supporting Multiple Code Rates and Block Lengths. IEEE Transactions on Consumer Electronics,2008, 54(2):417~424
    [84]S. Y. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke. On the design of low-density parity-check codes within 0.0045 db of the Shannon limit. IEEE Communictions Letters.2001,2(5):58~60
    [85]M. Fossorier. Quasi-cyclic Low Density Parity Check Codes. Proc IEEE Int Symp Information Theory.2003,11(4):150~161
    [86][Seho Myung, Kyeongcheol Yang. Quasi-cyclic LDPC Codes for Fast Encoding. IEEE Transactions on Information Theory.2005,51(8):2894~2901
    [87]Marc P.C.Fossorier. Quasi-cyclic Low-density Parity-check Codes form Circulant Permutation Matrices. IEEE Transactions on Information Theory.2004,50(8): 1788~1793
    [88]S. Lin, L. Chen, J. Xu, and I. Djurdjevic. Near Shannon limit quasi cyclic low-density parity-check codes. In Proc.2003 IEEE GLOBECOM Conf., San Francisco, CA, Dec.2003
    89] IEEE P802.11nTM/D1.02, "Draft Amendment to STANDARD Information Technology Part 11:Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications:Enhancements for Higher Throughput," IEEE 802.11 document, July.2006
    [90]IEEE P802.16eTM, "Part 16:Air Interface for Fixed and Mobile Broadband Wireless Access Systems," IEEE 802.16 document, Feb.2005
    [91]IEEE 10 GBase-T Task Force [Online]. Available in http://grouper. ieee.org/ groups/802/3/an/index.html
    [92]M.G.Luby, M.Mitzenmacher, M.A.Shokrollah, D.A.Spielman. Improved Low-density parity-check codes Using Irregular Graphs, Information Theory. IEEE Transactions on,2001,47(2):585~598
    [93]R. M. Tanner. Arecursive Approach to Low Complexity Codes. IEEE Transactions on Information Theory.1981,11(27):533~547
    [94]Xiao-Yu Hu, et al. Regular and Irregular Progressive Edge-Growth Tanner Graphs. IEEE Trans. Inform. Theory.2005,51(1):386~398
    [95]E.Eleftheriou, S.Olcer. Low-density Parity-check Codes for Multilevel Modulation. Proc. IEEE Int. Symp. Information Theory.2002:442
    [96]T. J. Richardson, M. A. Shokrollahi, and R. L.Urbanke. Design of Capacity approaching Irregular Low-density Parity-check Codes. IEEE Transactions on Information Theory.2001,47(9):619~637
    [97]L. Z. Liu, C. J. Richard Shi. Sliced Message Passing:High Throughput Overlapped Decoding of High-Rate Low-Density Parity-Check Codes. IEEE Transactions on Circuits and Systems[J],2008,55(11):3697~3710
    [98]J. Y. Lee, H. J. Ryu. A 1-Gb/s Flexible LDPC Decoder Supporting Multiple Code Rates and Block Lengths. IEEE Transactions on Consumer Electronics[J],2008, 54(2):417~424
    [99]Marc P. C. Fossorier, Miodrag Mihaljevic, Hideki Imai. Reduced Complexity Iterative Decoding of Low-Density Parity Check Codes Based on Belief Propagation. IEEE Transaction on Communications.1999,47(5):673~680
    [10C]J. H. Chen, A. Dholakia, E. Eleftheriou. Reduced-Complexity Decoding of LDPC Codes. IEEE Transactions on Communications.2001,53(8):1288~1299
    [101]Motohiko Isaka, Marc Fossorier and Hideki Imai. Iterative Reliability-based Decoding of Turbo-like Codes. ICC'2002.2002,25(1):1495~500.
    [102]D. E. Hocevar. A reduced complexity decoder architecture via layered decoding of LDPC codes. in Proc. IEEE Workshop on Signal Processing Systems (SIPS 2004), Austin, TX, Oct.2004, pp.107~112
    [103]S.Y. Chung, T.J. Richardson and R.L.Urbanke. Analysis of Sum-product Decoding of Low-density Parity-check Codes using a Gaussian Approximation. IEEE Transactions on Information Theory, vol.47,2001:657~670
    [104]N. Wiberg. Codes and Decoding on General Graphs. PH.D Thesis, Linkoping University, S-581 Linkoping, Sweden,1996
    [105]肖琳,王琳,邓礼钊.不规则LDPC码的密度进化方法及其门限值确定.电子与信息学报,2005,27(4):617~620
    [106]G. Lui and H. Tan. Frame synchronization for Gaussian channels. IEEE Transactions on Communications,1987,35(8):818~829
    [107]P. Nielsen. Some optimum and suboptimum frame synchronizers for binary data in Gaussian noise. IEEE Transactions on Communications,1973,21(6):770~772
    [108]S. Dolinar and K. Cheung. Frame synchronization methods based on channel symbol measurements Jet Propulsion Lab., Pasadena, CA, The Telecommunications and Data Acquisition Progress Rep.42~98,1989
    [109]G. Lorden, R. McEliece, and L. Swanson. Node synchronization for the Viterbi decoder. IEEE Transactions on Communications,1984,32(5):524~531
    [110]M. de Mateo. Node synchronization technique for any 1/n rate convolutional code. in Proc. IEEE Int. Conf. Communications,1991,3:1681~1687
    [111]M. Mostofa, K. Howlader, and B. Woerner. Decoder-assisted frame synchronization for packet transmission. IEEE Journal on Selected Areas Communications,2001,19(12):2331~2345
    [112]J. Sun andM. Valenti. Optimum frame synchronization for preambleless packet transmission of turbo codes. in Proc. IEEE Asilomar Conference on Signals, Systems and Computers,2004,1:126~1130
    [113]T. Cassaro and C. Georghiades. Frame synchronization for coded systems over AWGN channels. IEEE Transactions on Communications.2004,52(3):484~489.
    [114]B. Mielczarek. Synchronization in turbo coded systems. Licentiate Thesis 342L, Chalmers Univ. Technol., Goteborg, Sweden,2000
    [115]B.Mielczarek and A. Svensson. Timing error recovery in turbo-coded systems on AWGN channels. IEEE Transactions on Communications.2002,50(10): 1584~1592
    [116]A. Papoulis. Probability, Random Variables and Stochastic. McGraw-Hill, N.J.1984
    [117]盛骤,谢式千.概率论与数理统计.北京:高等教育出版社,1989
    [118]赵淑清,郑薇.随机信号分析.哈尔滨:哈尔滨工业大学,1999
    [119]王新梅,肖国镇.纠错码原理和方法.西安:西安电子科技大学出版社,2003
    [120]Z.X. Chen and J.S. Yuan. A Construction of Linearly Encodable QC-LDPC Codes by Grouping Cyclic Shift and Block Elimination. ISECS International Colloquium on Computing, Communication, Control and Management 2008,2008, pp: 304~308
    [121]Goke L and Lipovski G. Banyan network for partitioning multiprocessor systems. in Proc. First Ann. Symp. Compur. Arch,1973:21~30
    [122]Lee T H and Liu S J. Banyan Network Nonblocking with Respect to Cyclic Shifts. ELECTRONICS LETTERS,1991,27(16):1474~1476
    [123]Sendonaris A, Erkip E, Azhang B. User cooperation diversity-Part I:System description, Part Ⅱ:Implementation aspects and performance analysis. IEEE Transactions on Communication.2003,51(11):1927~1948
    [124]J.N.Laneman, N.C.Tsed, G.W.Wornell. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory.2004,50(12):3062~3080
    [125]T.Hunter, A.Nosratinia. Diversity through coded cooperation. IEEE Transactions on Wireless Communications.2006,5(4):283~289
    [126]Y. Fan and J. Thompson. MIMO Configurations for Relay Channels:Theory and Practice. IEEE Transactions on Wireless Communications,2007,6(5):1774~1786
    [127]Y. Li and X. Xia. A Family of Distributed Space-Time Trellis Codes with Asynchronous Cooperative Diversity. IEEE Transactions on Communications, 2007,55(4):790~800
    [128]陈智雄,苑津莎.前向放大协作中继系统中的优化功率分配.华北电力大学学报,2009,36(5):89~92
    [129]D. J. C. MacKay and M. Davey, Evaluation of Gallager codes for short block length and high rate applications. In Proc. IMA Workshop Codes, Systems and Graphical Models,1999
    [130]Shu Lin, Daniel, J.Costello. Error Control Coding, Fundamentals and Applications, 2nd Edition. Prentice Hall,2004
    [131]S.Gounai and T.Ohtsuki. Decoding algorithms based on oscillation for low-density parity check codes. IEICE Trans.on Fundamentals of Electronics, Communications and Computer Sciences.2005, E88-A(8):2216~2226
    [132]J.Francisco and G.L.Miguel. Serially-Concatenated LDGM Codes for MIMO Channels. IEEE Transactions on Wireless Communications,2007,6(8):2860-2871
    [133]J.S. Kim and H.Y. Song. Concatenated LDGM Codes with Single Decoder. IEEE Commucations Letters,2006,10(4):287~289
    [134]G.D. Forney, D.J. Costello. Channel Coding:The Road to Channel Capacity. Proceedings of the IEEE,2007,95(6):1150~1177

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700