线粒体自由基在快大型黄羽肉鸡PHS防控中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肉鸡肺动脉高压综合征(Pulmonary hypertension syndrome,PHS)又称肉鸡腹水综合征(Ascites syndrome of broilers,ASB),是当今世界各国肉鸡业中的一大难题,常常发生在海拔3000米左右的高原地区,主要以肺动脉高压、右心室肥大、心脏衰竭和腹水等症状为特征。近年来,在低于海拔1000-2000米甚至低于海平面的一些地区也常见肉鸡发生类似的疾病。肉鸡PHS是一个复杂的综合征,在美国肉鸡PHS的死亡率为2-5%,甚至高达10%以上,每年因此病造成的经济损失达1亿多美元。在世界范围内的发病率为4.2%,每年约有70亿肉鸡遭受此病的侵害,估计全世界因此病所造成的经济损失每年达10亿美元。从1986年起我国十几个省市也陆续报道了本征,其死亡率为1-30%不等,损失惨重。因此引起了国内外学者对该病的广泛关注。为了攻克这一威胁肉鸡业的世界性难题,国内外许多学者潜心致力于PHS的病因、病理发生和防制的研究。多数学者认为导致肺动脉高压的主要因素是由于在遗传育种中片面追求高的生长速率,其机体代谢加强和对氧的需要量剧增,致使组织代谢性缺氧,引起血液红细胞压积、血液粘度、红细胞脆性和血容量增加等血液流变力学的变化。前人对自由基在肉鸡肺动脉高压综合征的发生、发展过程中的作用及其对自由基的清除作了大量的研究工作,但肺动脉高压综合征肉鸡线粒体内自由基的产生机制如何?线粒体功能有何改变?这些还不十分清楚。阐明其深层次的发病机制,以寻找有效的防治方法具有重要的现实意义。
     本研究采用黄羽肉鸡120只,随机分为A、B、C三组各40羽,其中A组为对照组,B组为发病组,C组为治疗组。A、B、C组参试鸡14日龄前常规饲养。14日龄后分别采用不同处理:A组鸡仍常规饲养,而B、C两组鸡舍温按每日1~2℃由25℃逐步降至12℃,同时日粮中按1.5 mg·kg~(-1)的剂量添加T3(sigma公司提供)以诱发肉鸡腹水。另外,自14日龄起,C组在日粮中按500 mg·kg~(-1)的量添加维生素C进行防治,至试验结束。并于处理后1、2、3、4、5周(即肉鸡3、4、5、6、7周龄时)分别从每组肉鸡中随机抽取6羽进行心、肝、肠粘膜等组织样品的采集,以测定其线粒体中的MDA、SOD、GSH-P_X、NOS、NO水平和Na~+-K~+—ATPase的活性,进而探讨肺动脉高压综合征时肉鸡线粒体的抗氧化能力、NO代谢以及评价线粒体氧自由基的产生与各种线粒体电子传递链复合体活性的关系。进一步探讨自由基清除剂对线粒体内自由基生成的影响,为临床用药提供理论依据。
     1、本实验结果显示,对于发生肺动脉高压综合征的肉鸡,在处理后1周、2周时,其肝脏、心肌和肠粘膜线粒体MDA的含量显著低于正常对照组(P<0.05),T-SOD活性、GSH-P_X活性却显著提高(P<0.05);3周、4周、5周时,其肝脏、心肌和肠粘膜线粒体MDA的含量显著高于正常对照组(P<0.05)。线粒体T-SOD的活性却显著降低(P<0.05)。GSH-P_X的活性也显著降低(P<0.05)。
     而经治疗后,1周时,发病组的肝脏和肠粘膜线粒体MDA的含量没有能显著增加,心肌线粒体MDA的含量有所增加,但不显著,发病组的肝脏和肠粘膜线粒体T-SOD的活性没有能显著降低,肠粘膜线粒体T-SOD的活性却显著降低;治疗组肝脏线粒体的GSH-P_X活性显著降低,心肌和肠粘膜线粒体的GSH-P_X活性虽然有所降低,但却不显著;2周时,发病组的肝脏和肠粘膜线粒体MDA的含量显著增加,心肌线粒体MDA的含量增加,却不显著。发病组的肝脏和肠粘膜线粒体T-SOD的活性没有能显著降低,肠粘膜线粒体T-SOD的活性却显著降低;2周时,治疗组未能显著降低肝脏、心肌和肠粘膜线粒体GSH-P_X的活性;3周、4周、5周时,肝脏、心肌和肠粘膜线粒体MDA的含量显著降低,且基本降至正常水平(P<0.05)。T-SOD的活性和GSH-P_X的活性均显著增加(P<0.05),且最终恢复至对照组水平。
     结果表明:肉鸡肺动脉高压综合征显著诱导了肉鸡组织细胞和线粒体的脂质过氧化作用,促进了机体自由基生成增多,并显著降低了肉鸡组织细胞和线粒体的抗氧化能力;治疗后,药物能显著抑制肉鸡肺动脉高压综合征诱导的脂质过氧化作用,阻止了自由基的生成,并能显著增强机体的抗氧化能力。
     2.本实验结果显示,对于发生肺动脉高压综合征的肉鸡,在处理后1周、2周时,其肝脏、心肌和肠粘膜线粒体的NO含量和NOS的活性显著提高(P<0.05);3周、4周、5周时,其肝脏、心肌和肠粘膜线粒体NO含量和NOS的活性却显著降低(P<0.05)。
     治疗组和发病组相比,1周时,肝脏和肠粘膜线粒体的NO活性显著降低(P<0.05),但未能降至对照组水平。心肌线粒体的NO活性显著降低(P<0.05),且基本降至对照组水平;治疗组肝脏线粒体的NOS活性未能显著降低,和对照组间差异显著。心肌和肠粘膜线粒体的NOS活性显著降低(P<0.05),和对照组间差异显著;2周时,肝脏线粒体的NO活性显著降低(P<0.05),且基本降至对照组水平。心肌和肠粘膜线粒体的NO活性显著降低,但仍未降至对照组水平;治疗组肝脏线粒体的NOS活性显著降低(P<0.05),且基本降至对照组水平。心肌和肠粘膜线粒体的NOS活性显著降低(P<0.05),和对照组间差异显著;3周、4周、5周时,肝脏、心肌和肠粘膜线粒体NO活性和NOS活性均显著增高(P<0.05),最后基本恢复至对照组水平。
     结果表明:缺氧的早期,NOS活性升高从而使NO水平升高,NO水平升高舒张血管,缓解肺动脉高压,是机体的一种应激反应。随着缺氧的时间延续,机体对应激因子的反应不能从根本上缓解缺氧,就对此就产生了适应,NOS和NO合成相对不足,相应器官的功能受到损害,肺血管舒缩失衡出现肺动脉高压,进一步发生腹水。药物对此过程具有明显的颉颃作用,对机体起到保护作用。
     3.本实验研究显示,对于发生肺动脉高压综合征的肉鸡,在处理后1周、2周时,肺动脉高压综合征肉鸡组的肝脏、心肌和肠粘膜线粒体的Na~+-K~+—ATPase.活性显著提高,3周、4周、5周时,肺动脉高压综合征肉鸡组的肝脏、心肌和肠粘膜线粒体Na~+-K~+—ATPase的活性却显著降低。出现了先激活后顿抑的效应。和发病组相比,1周时,治疗组肝脏线粒体的Na~+-K~+—ATPase活性显著降低(P<0.05),和对照组间差异显著;治疗组心肌、肠粘膜线粒体的Na~+-K~+—ATPase.活性未能显著降低,但和对照组间差异显著。2周时,治疗组肝脏线粒体的Na~+-K~+—ATPase.活性显著降低(P<0.05),且基本降至对照组水平;治疗组心肌和肠粘膜线粒体的Na~+-K~+—ATPase.活性显著降低(P<0.05),和对照组间仍存在显著差异。3周、4周、5周时,治疗组肝脏、心肌和肠粘膜线粒体Na~+-K~+—ATPase.的活性均显著增高(P<0.05),且最终达到正常水平。
     结果表明:肉鸡肺动脉高压综合征诱导了线粒体的损伤,引起了能量代谢障碍,ATP生成减少,线粒体内的体积、渗透压、内环境、静息电位和离子交换发生紊乱,导致血管通透性增加,白细胞和蛋白渗出增加;药物对此过程具有明显的颉颃作用,对机体起到保护作用。
     4.低温和T_3已成功地诱发了肉鸡PHS,其发病机制可能与肉鸡已产生了大量的自由基并发生了一系列的脂质过氧化链锁反应有关。
     5.日粮添加维生素C明显阻断了低温和T_3条件下肉鸡体内脂质过氧化过程,有效清除了体内自由基,显著增强了体内抗氧化能力,成功防制了肉鸡PHS的发生。
Pulmonary hypertension syndrome (PHS) in broiler chickens poses a serious problem to the international poultry industry, and is an important cause of mortality that has been reported from many parts of the world. For broilers kept at altitudes of approximately 3000m, the onset of pulmonary hypertension, cardiac hypertrophy, heart failure, and oedema leading to PHS has been described. More recently similar symptoms and mortality were reported in broilers reared at lower altitudes of 1000 to 2000m and at altitudes down to sea level. A survey in the United States showed that PHS accounts forover 2-5% of annual broiler losses. An incidence of PHS of 5-10% was reported in China. A global incidence of 4-5% PHS has been reported and, at today's market prices, this mortality represents a cost to the industry of about one billion$US annually. It has been suggested that the fast-growing modem broiler is particularly susceptible to PHS, because rapid growth causes an increased demand for oxygen, which forces the heart to maintain an elevated cardiac output. The resulting increase in blood pressure within the pulmonary circulation can cause hypertrophy of the fight ventricle and eventually congestive heart failure. This pathogenesis for PHS includes increased oxygen requirements by body tissues and low oxygen tensions in arterial blood. Though a large amount of research about the function of free radicals during the course of pulmonary hypertension syndrome (PHS) in broiler chickens has been done, but what is the mechanism of an internal free radical of mitochondria? What changes does mitochondria function have? Further pathologic mechanism is not clear. The present study was conducted to further evaluate the pathogenesis of the acute and chronic forms of PHS, and to obtain the methods for preventing PHS.
     A total of 120 commercial broilers were divided randomly into three groups that were respectively treated as control (Group A) and 2 experimental groups (B、C), Broilers in different groups were fed a normal diet before 14 days of age. Then In group B and C, broilers were subjected to a change of temperature by lowering 1~2℃per day from 25℃ (day 14) down to 12℃, and maintained at this ambient temperature until 7 weeks of age. At the same time, 1.5 mg·kg~(-1) 3, 3, 5-triiodothyronine (T_3) in the diet was added to in groups B in order to induce pulmonary hypertension syndrome (PHS), and 500 mg·kg~(-1) ascorbic acid (Vitamin C) in the diet was added to in groups C with the purpose of decreasing the incidence of PHS, Moreover, the liver, heart and mucous membrane of intestine, were taken from 6 killed birds per group at five time points, i. e. after different treatment 1 week,2 weeks,3 weeks,4 weeksand 5 weeks . At every time point, the mitochondria were determined for the evaluations of the concentrations of malondialdehyde (MDA), nitrix oxide(NO) and the activity of nitric oxide synthase (NOS), superoxide dismutase (SOD)、glutathione peroxidase (GSH-Px), Na~+-K~+—ATPase.
     The results indicated that
     1. At 1 and 2 weeks, the MDA level in PHS group decreased significantly (P<0.05), and the activities ofT-SOD and GSH-Px increased markedly (P<0.05), of the mitochondria in liver, heart and intestinal mucous membrane. But from 3 weeks to 5 weeks, the MDA level increased significantly, and the activities of T-SOD and GSH-Px decreased markedly (P<0.05), of the mitochondria in liver, heart and intestinal mucous membrane.
     After the treatment of Vitamin C, at 1 week, Vitamin C did not significantly increase the MDA level (P>0.05), of the mitochondria in liver, heart and intestinal mucous membrane in broilers with PHS, Vitamin C didn't significantaly decrease the T-SOD level of the mitochondria in liver and heart (P>0.05), but changed the T-SOD level of the mitochondria in intestinal mucous membrane. (P<0.05). and the activities of GSH-Px decreased a little, but not markedly (P>0.05), of the mitochondria in heart and intestinal mucous membrane, the activities of GSH-Px decreased markedly of the mitochondria in liver (P<0.05). At 2 weeks, the MDA level increase significantly (P<0.05), of the mitochondria in liver, and intestinal mucous membrane in broilers with PHS, of the mitochondria in heart, this increase is not significantly (P>0.05). Vitamin C didn't significantaly decrease the T-SOD level of the mitochondria in liver and intestinal mucous membrane. (P>0.05), but of the mitochondria in heart decreased significantaly (P<0.05). and the activities of GSH-Px decreased a little, but not markedly (P>0.05), of the mitochondria in liver, heart and intestinal mucous membrane, from 3 weeks to 5 weeks, Vitamin C decreased sugnificantly the activity of MDA, of the mitochondria in liver, heart and intestinal mucous membrane in broilers with PHS (P<0.05) , the T-SOD and GSH-Px level were increased significantly (P<0.05).
     It might be concluded that the Pulmonary hypertension syndrome (PHS) in broiler chickens induced markedly the lipid peroxidation of mitochondria and cells, and increased clearly the free radicals, and reduced significantly the antioxidative capacity; the Vitamin C significantly stopped lipid peroxidation induced by PHS, and eliminated markedly productions of a lot of free radicals, and increased significantly the antioxidative capacity.
     2. From 1 week to 2 weeks, the NO and NOS level of the mitochondria in liver, heart and intestinal mucous membrane in broilers increased significantly (P<0.05). But from 3 week to 5 week, the NO and NOS level of the mitochondria in liver, heart and intestinal mucous membrane in broilers decreased significantly (P<0.05).
     After the treatment of Vitamin C, at lweek, Vitamin C significantly decreased the NO level (P>0.05), of the mitochondria in liver, heart and intestinal mucous membrane in broilers with PHS, but the NOS level of the mitochondria in liver didn't signifieantaly decrease (P>0.05), the NOS level of the mitochondria in heartr and intestinal mucous membrane, significantaly decreased (P<0.05). at 2 weeks, Vitamin C significantly decreased the NO level and NOS level, of the mitochondria in liver, heart and intestinal mucous membrane in broilers with PHS(P<0.05), From 3 weeks to 5 weeks, the NO level and NOS level, of the mitochondria in liver, heart and intestinal mucous membrane in broilers with PHS were significantly increased.
     It might be concluded that during the early period of the oxygen deficiting, the activeness of NOS elevates, thus causes the NO level elevate, this diastoles the vessel, alleviates the high pressure of pulmonary artery, is one kind of body stress reaction. But if the oxygen deficiting continuring, body can not react efficiently to alleviate this, thus the adaption comes into being, the synthesize of NOS and NO relatively insufficient, The function of corresponding organ is damaged, the unbalancedly stretch and constringency of the lung blood vessel results the pulmonary artery high pressure, furtherlead to the Pulmonary hypertension syndrome (PHS). It is obviously that medicine has obviously antagonistic role. This can protect the organism.
     3. At 1 and 2 weeks, the activity of Na~+-K~+—ATPase of the mitochondria in PHS group decreased significantly (P<0.05) , of the mitochondria in liver, heart and intestinal mucous membrane. But from 3 weeks to 5 weeks, the activity of Na~+-K~+—ATPase of the mitochondria in liver, heart and intestinal mucous membrane in broilers decreased significantly (P<0.05).
     Compared with the PHS group, After the treatment of Vitamin C, at 1 week, Vitamin C significantly decreased the the activity of Na~+-K~+—ATPase (P<0.05), of the mitochondria in liver, but the activity of Na~+-K~+—ATPase didn't significantaly decrease (P>0.05), of the mitochondria in heart and intestinal mucous membrane, at 2 week, Vitamin C significantly decreased the activity of Na~+-K~+—ATPase, of the mitochondria in liver, heart and intestinal mucous membrane (P<0.05), From 3 weeks to 5 weeks, the activity of Na~+-K~+—ATPase were significantly increased (P<0.05), of the mitochondria in liver, heart and intestinal mucous membrane.
     It might be concluded that the Pulmonary hypertension syndrome (PHS) in broiler chickens induced the damnification of the mitochondria, resulted the disfunction of the energy metabolism, decreased the production of ATP energy, resulted the impediment of the volume, infiltration press, inner environment, ion exchange, and the increase of the blood vessel penetration and the increase of the effusion of the leucocyte and the albumen. Medicine played an important role in the objection of the pulmonary hypertension syndrome (PHS) in broiler chickens and the protection of broilers.
     4. The cool ambient and dietary T_3 had successfully induced broiler PHS, which was associated with productions of a lot of free radicals and a series of the chain reaction of lipid peroxidation.
     5. The dietary vitamin C clearly stop the lipid peroxidation, eliminate the free radicals, increase the antioxidative capacity and reduce the incidence of PHS in broilers in the cold ambient and dietary T_3.
引文
[1] Elbert J D. Future research need focus on new old problem. Feedstuff, 1990; 23(7): 12-15.
    [2] Swire P W. Ascites in broiler. Vet Rec, 1980, 107: 540.
    [3] Huchzermeye F W, AMC De Ruych. Pulmonary hypertension syndrome associated with ascites in broilers. Vet Rec, 1986, 119: 94.
    [4] Anonymous. Upsurge of ascites in broilers. Vet Rec, 1985, 116: 559.
    [5] Buys S B, Barnes P. Ascites in broilers. Vet Rec, 1981, 108: 266.
    [6] Cueva S, Sillan H, Valenzula A, et al. High altitude induced pulmonary hypertension and fight heart failure in broiler chichens. Rec Vet Sci, 1974, 16: 370-374.
    [7] Hall S A, Machicao N. Myocarditis in broiler chickens reared at high altitude. Avian dis, 1968, 12: 75-84.
    [8] Odom, T. W. Ascites syndrome: Overview and update. Poult. Dig. 1993, 50: 14-22.
    [9] Maxwell M H and Robertson G W. World broiler ascites survey 1996. Poultry International, 1997, 36(4): 16-22.
    [10] 王小龙.肉鸡腹水和右心衰竭症.畜牧与兽医1993,25(1):38-40.
    [11] 石发庆.肉鸡腹水症的研究进展.中国兽医杂志,1993,(8):46-48.
    [12] 向瑞平.中草药防治肉鸡肺动脉高压综合征的疗效观察.中兽医医药杂志,1998,89(2):11-12.
    [13] 黎翠亭,徐向明.如东县肉鸡腹水和右心衰竭症的调查研究初报.畜牧与兽医,1995,(2):58-60.
    [14] 唐云兵.肉鸡腹水症的诊断报告.养禽与禽病防治,1991,55(3):10.
    [15] 苏瑛.肉鸡腹水症的综合防治.中国家禽,1994,(3):11-12.
    [16] 张克春,王小龙,张滇行等.肉鸡肺动脉高压综合征病因学调查.中国兽医科技,1996,26(8):14-16.
    [17] 张克春,王小龙,孙卫东等.高钠所致肉鸡肺动脉高压综合征发病机理的研究.南京农业大学学报,1998;21(4):92-97.
    [18] 乔健,李树春,李连海等.血液粘度升高在肉鸡肺动脉高压综合征发生发展中的作用.畜牧兽医学报,1998:29(4):361-364.
    [19] Katusic ZS, Schugel J, Cosention F, et al. Endothelium-dependent contraction to oxygen-derived free radicals in the canine basilar artery. Am J Physiology, 1993, 264(33): H859-H864.
    [20] Wang G R, Zhu Y and Halushka P V, et al. Mechanism of platelet inhibition by nitric oxide: in vivo phosphorylation of thromboxane receptor by cyclic GMP-dependent protein kinase. Proceedings of the National Academy Of Science USA, 1998, 95: 4888~4893
    [21] 李锦春,王小龙,孙卫东,向瑞平.肉鸡肺动脉高压综合征自然病例肺细小动脉病理改变的图象分析.中国兽医学报,1999,19(5):479-482.
    [22] JulianR J. Ascites in Poultry. Avian Pathology, 1993, 22: 419-454
    [23] Julian R J and Mirsalimi S M. Blood oxygen concentration of fast-growing and slow-growing broiler chickens, and chickens with ascites from right ventricular failure. Avian Dis. 1992, 36(3): 730-732.
    [24] Julian R J and Squires E J. Haematopoietic and right ventricular response to intermittent hypobaric hypoxia in meat-type chickens. Avian Pathol. 1994, 23(3): 539-545.
    [25] Julian R J. Lung volume of meat-type chickens. Avian Disease, 1989; 33: 174-176.
    [26] Julian R J. The influence of genetic on right heart failure and aseites in poultry caused by the pulmonary hypertension syndrome. Proceeding National Breeders Roundtable, 1990, May, pp 14-19(St. Louis, Missouri, USA)
    [27] Acar, N., Sizemore, F. G., Leach, G. R., Wideman, R. F. Jr., Owen, R. L., and Barbato, G. F. Growth of broiler chickens in response to feed restriction regimes to refuee aseites. Poultry Sci., 1995, 74: 833-843.
    [28] Arce, J, Berger, M., and Coello, C. L. Control of ascites syndrome by feed restriction techniques. J. Appl. Poultry Res., 1992, 1: 1-5.
    [29] Decuypere, E., Vega, C. and Bartha, T. Increased sensitivity to triiodothyronine (T_3) of broiler lines with a high susceptibility for ascites. British Poultry Science, 1994, 35: 287~297.
    [30] Wideman, R. F. Jr., Kirby, Y. K., Ismail, M., Botije, W. G., Moore, R. W. and Vardeman, R. C. Supplemental L-arginine attenuates pulmonary hypertension syndrome (aseites) in broilers. Poultry Science, 1995, 74: 323-330.
    [31] Julian, R. J. Ascites in poultry (review article). Avian Pathology. 1993, 22: 419-454.
    [32] Havenstein G B, Ferket P R, Scheideler S E, et al. Carcass composition and yield of 1991 vs 1957 broilers when fed typical 1957 and 1991 broiler diets. Poult Sci., 1994, 73: 1795-1804.
    [33] Julian T J, Frazier J A, Gorge M. The effect of cold and dietary energy on right ventricular hypertrophy, right ventricular failure and ascites in meat-type chickens. Avian Pathology, 1989, 18: 678-684.
    [34] Sahlosberg A, Zadikov I, Bendhem U, et al. The effects of poor ventilation, low temperatures, type of feed and sex of bird on the development of ascites in broilers. Phhysiopathological factors. Avian Pathol., 1992, 21(3): 369-382.
    [35] Moye R J, Washburn K W, Huston T M. Efffects of environmental temperature on erythrocyte numbers and size. Poultry Science, 1969, 48: 1683-1686.
    [36] Julian R J, Gorgo M. Pulmonary aspergillosis causing fight ventricular failure and ascites in meat-type chicken. Avian Pathology, 1990, 19: 643-654.
    [37] Julian, R. J. The effect of increased sodium in the drinking water on right ventricular failure and ascites in broiler chickens. Avian Pathology, 1987, 17: 11-21.
    [38] Scrivner, L. H. Experimental edema and ascites in poults. Journal of the American Veterinary Medical Association, 1946, 108: 27-32.
    [39] Ruch, F. E. & Hughes, M. R. The effect of hypertonic sodium chloride injection on body water distribution in ducks (Anas platyrhynchos), gulls (Larus glaucescens) and roosters (Gallus domesticus). Comparative Biochemistry and Physiology, 1975, 52A: 21-28.
    [40] Mirsalimi, S. M., O'Brien, P. J. & Julian, R. J. Changes in erythrocyte deformability in NaCl-induced right-sided cardac failure in broiler chickens. American Journal of Veterinary Research, 1992, 53: 2359-2363.
    [41] 程显声.肺动脉高压:进展与问题.中华结核与呼吸杂志,1990,13(5):259-260.
    [42] Maxwell M H, Robertson G W, Spence G W. Studies on ascites syndrome in young broilers. Haematology and Pathology, Avian Pathology, 1986, 15: 511-524.
    [43] Owen R L, Wideman R F, Hatrel A L, et al. Use of a hypobaric chamber as a model system for investigating ascites in broilers. Avian Dis, 1990; 34: 754-758.
    [44] 孙卫东,王小龙,张克春,李锦春。高钠所致肉用雏鸡肺动脉高压模型的心电图学研究.畜牧兽医学报,1999,2:
    [45] 李锦春,王小龙,孙卫东,张克春。高钠所致肺动脉高压肉鸡肺细小动脉病理改变的图象分析.畜牧兽医学报,2000,31(5):441-447.
    [46] 章建梁,杨向群.高血压血管重构.国外医学心血管疾病分册,1997;(1):26-29.
    [47] 王金勇,王小龙,向瑞平,孙卫东.日粮中添加L-NAME对肉鸡肺动脉高压综合征发生的影响及其机理.中国兽医学报,2001,21(6):603-605.
    [48] Vanhooser S L, Beker A, and Teeter R G. Bronchodilator, oxygen level and temperature effects on ascites incidence in broiler chickens. Poultry Science, 1995, 74: 1586-1590.
    [49] 李晓瑜.曰粮酸碱平衡也许与猝死综合征和腹水症有关.国外畜牧科技,1996,23(4):32-35.
    [50] Ocampo L, Cortez U, Sumano H, et al. Use of low doses of clenbuerol to reduce incidence of ascites syndrome in broilers. Poult Sci. 1998, 77 (9): 1297-1299.
    [51] Bond J M, Julian R J, Squires E J. Effect of dietary flax oil and hypobaric hypoxia on right ventricular hypertrophy and ascites in broiler chickens. British Poult Sci, 1996, 37 (4): 731-741.
    [52] Wideman R F Jr, lsmail M, Kirby Y K, Bottje W G, Moore R W and Vardeman R C. Furosernide reduces the incidence of pulmonary hypertension syndrome (ascites) in broilers exposed to cool environmental temperatures. British Poultry Science, 1994, 35: 663-667.
    [53] Ruiz-Feria C A, Kidd M T, Widemand R F Jr. Pllasma levels of arginine, ornithine, and urea and growth performance of broilers fed supplemental L-arginine during cool temperature exposure. Poult Sci, 2001, 80(3): 358-369.
    [54] Balog J M, Juff G R, Rath N C, et al. Effect of dietary aspirin on ascites in broilers raised in a hypobarec chamber. Poult Sci, 2000, 79(8): 1101-1105.
    [55] Wideman, R. F. and Tackett, C. D. Cardio-pulmonary function in broilers reared at warm or cool temperatures: Effect of acute inhalation of 100% oxygen. Poultry Science, 2000, 79: 257-264.
    [56] Wideman, R. F. and Kirby, Y. K. Cardio-pulmonary function during acute unilateral occlusion of the pulmonary artery in broilers fed diets containing normal or high levels of arginine-HCL. Poultry Science, 1996, 75: 1587-1602
    [57] 王金勇,王小龙,向瑞平,孙卫东.L-精氨酸对肉鸡肺动脉压和肺动脉高压综合征发生的影响.南京农业大学学报,2001,24(2):98-101.
    [58] 谭勋,李锦春.王小龙.L-肉碱对低温诱导的肉鸡肺动脉高压综合征发病率的影响.南京农业大学学报.2004,27(4):85~88
    [59] Buys N, Buse J, Hassanzadeh-Ladmakhi M. Intermitent lighting reduces the incidence of ascites in broilers: an interaction with protein content of feed on performance and the endocrine system[J]. Poult Sci, 1998, 77(1): 54-61.
    [60] Hassanzadeh M, Fard M H, Buys J. Beneficial effects of alternative lighting schedules on the incidence of ascites and on metabolic parameters of broille chickens[J]. Acta Vet Hung, 2003, 51(4): 513-520.
    [1] Maxwell M H and Robertson G W. World broiler ascites survey. Poultry International, 1997, 36(4): 16~30
    [2] Scheele C W. Ascites in chickens. Thesis. Landbouwuniversiteit Wageningen. 1996
    [3] Wideman, R. F., and Bottle, W.G. Current understanding of the ascites syndrome and future research directions. Proceedings of the Novus International Inc. Nutritional and Technical Symposium, Springdale AR and Atlanta GA. 1993, pp: 1-22.
    [4] Wideman, R. F, Kirby, Y. K., Tackett, C. T., Marson, N. E., and McNew, R.W. Cardio-pulmonary function during acute unilateral occlusion of the pulmonary artery in broilers fed diets containing normal or high levels of arginie-HCl. Poultry Science, 1996, 75: 1587-1602.
    [5] Owen, R. L, Wideman, R. F., Barbato, G. F., Cowen, B. S., Ford, B. C., and Hattel, A. L. Morphometric and histologic changes in the pulmonary system of broilers raised at simulated high altitude. Avian Pathology, 1995, 24: 293-302.
    [6] Owen, R. L, Wideman, R. F., and Cowen, B.S. Changes in pulmonary arterial and femoral arterial blood pressure upon acute exposure to hypobaric hypoxia in broiler chickens. Poultry Science, 1995, 74: 708-715.
    [7] Wideman, R. F, and Kirby, Y. K. A pulmonary artery clamp model for inducing pulmonary hypertension syndrome (ascites) in broilers. Poultry Science, 1995, 74: 805-812.
    [8] Wideman, R. F, Ismail, M., Kirby, Y. K., Bottle, W. G., Moore, R. W., and Vardeman, R. C. Furosemide reduced the incedence of pulmonary hypertension syndrome (ascites) in broilers exposed to cool environmental temperatures. Poultry Science, 1995, 74: 314-322.
    [9] Wideman, R. F, Kirby, Y. K., Owen, R. L., and French, H. Chronic unilateral occlusion of an extrapulmonary primary bronchus initiates pulmonary hypertension syndrome (ascites) in male and female broilers. Poultry Science, 1997, 76: 400-404.
    [10] Acar, N, Sizemore, F. G., Leach, G. R., Wideman, R. F. Jr., Owen, R. L., and Barbato, G.F. Growth of broiler chickens in response to feed restriction regimes to reduce ascites. Poultry Sci., 1995, 74: 833-843.
    [11] Arce, J, Berger, M, and Coello, C. L. Control of ascites syndrome by feed restriction techniques. J. Appl. Poultry Res., 1992, 1: 1-5.
    [12] Owen, R. L, Wideman, R. E, Leach, R. M., Cowen, B. S., Dunn, P. A., and Ford, B.C. Effect of age of exposure and dietary acidification or alkalinization on mortality due to broiler ppulmonary hypertension syndrome. J. Appl. Poultry Res. 1994, 3: 244-252.
    [13] Wideman, R. F, Kirby, Y. K., Ismail, M., Bottje, W. G., Moore, R. W., and Vardeman, R. C. Supplemental L-Arginine attenuates pulmonary hypertension syndrome (ascites) in broilers. Poultry Science, 1995, 74: 323-330.
    [14] Hill J R and Goldberg J M. P-wave morphology and atrial activation in the domestic fowl. American Journal of Physiology, 1980, 239: R483~R488
    [15] Shmakov D N, Kliushina I V and Roshehevskii M P. Sequence of the spread of excitation in bird heart ventricles. Fhiologicheskii Zharnsl Sssr Imeni I. M. Sechenova, 1979, 65: 872~880
    [16] Lu Y, James T N, Yamamoto S and Terasaki F. Cardiac conduction system in the chicken: gross anatomy plus light and electron microscopy. Anatomical Record, 1993, 236: 493~510
    [17] Acar N, Sizemore F G and Leach G R, et al. Growth of broiler chickens in response to feed restriction regimes to reduce ascites. Poultry Science, 1995, 74: 833~843
    [18] 李锦春,王小龙,孙卫东,向瑞平.肉鸡肺动脉高压综合征自然病例肺细小动脉病理改变的图像分析.中国兽医学报,1999,19(5):479-482
    [19] 向瑞平,王小龙,王金勇等.肉鸡肺动脉高压综合征自然病例肺微细动脉肌型化的观察.南京农业大学学报,2001,24(1):85-88
    [20] Wideman R F Jr, Wing T and Kirby Y K et al. Evaluation of minimally invasive indices for predicting ascites susceptibility in three successive hatches of broilers exposed to cool temperatures. Poultry Science, 1998, 77: 1565~1573
    [21] Schelling P M, Fischer H and Ganten D. Angiotensin and cell growth: a link to cardiovascular hypertrophy. Journal of Hypertension, 1991, 9: 3~15
    [22] Dell'Italia L J, Meng Q C and Balcells, et al. Increased ACE and chymase-like activity in cardiac tissue of dogs with chronic mitral regurgitation. American Journal of Physiology, 1995, 269(6): H2065~H2073
    [23] Liu Y, Led A and Wang X, et al. Angiotensin Ⅱ stimulation in vitro induces hypertrophy of normal and postinfarcted ventricular myocytes. Circulation Research, 1998, 82: 1145~1159
    [24] Tamura K, Umemura S and Nyui N, et al. Activation ofangiotensinogen gene in cardiac myocytes by angiotensin Ⅱ and mechanical stretch. American Journal of Physiology, 1998, 275(I): R1~R9
    [25] Mazzolai L, Nussberger J and Aubert J F, et al. Blood pressure-independent cardiac hypertrophy induced by locally activated reninangiotensin system. Hypertension, 1998, 31: 1324~1330
    [26] Azuma J, Harada H and Sawamura A, et al. Beneficial effects of coenzyme Q on myocardial slow action potentials in hearts subjected to decreased perfusion pressure-hypoxia-substrate free perfusion. Basic Research in Cardiology, 1985, 80: 147~155
    [27] Maxwell M H, Robertson G W and Mitchell M A. Ultrastructural demonstrations ofmitochondrial calcium overload in myocardial cells from broiler chickens with ascites and induced hypoxia. Research in Veterinary Science, 1993, 54: 267~277
    [28] Olkowski A A and Classen H L. Progressive bradycardia, a possible factor in the pathogenesis of ascites in fast growing broiler chickens raised at low altitude. British Poultry Science, 1998, 39: 139~146
    [29] Currie R J W, Dukes-McEwan J, French A T and Corcoran B M. Cardiac disease in poultry. Proceedings of the Veterinary Cardiovascular Society, Coventry, April, 1998, p:63
    [30] Olkowski A A and Classen H L. High incidence if cardiac arrhythmias in broiler chickens. Zentralblatt Fur Veterinarmedizin. Reihe A, 1998, 45: 83~91
    [31] Olkowski A A, Classen H L, Riddell C and Bennett C D. A study of electrocardiographic patterns in a population of commercial broiler chickens. Veterinary Research Communications, 1997, 21: 51~62
    [32] Katus H A, Remppis A and Neumann G J, et al. Diagnostic efficiency of troponin-T measurements in acute myocardial infarction. Circulation, 1991, 83: 902~912
    [33] Hamm C W. Pavkilde J and Gerhardt W, et al. The prognosis value of serum troponin-T in unstable angina. New England Journal of Medicine, 1992, 327: 146~150
    [34] Maxwell M H, Robertson G W and Moseley D. Potential role of serum troponin T in cardiomyocyte injury in the broiler ascites syndrome. British Poultry Science, 1994, 35: 663~667
    [35] Maxwell M H, Robertson G W and Bautista-Ortega J et al. A preliminary estimate of the heritability of plasma troponin Tin broiler chickens. British Poultry Science, 1998, 39: 16~19
    [36] Maxwell M H, Robertson G W and Moseley D. Serum troponin T values in 7-day-old hypoxia and hyperoxia treated and 10day-old ascitic and debilitated commercial broiler chicks. Avian Pathology, 1995, 24: 333~346
    [37] 李锦春,王小龙.肉鸡肺动脉高压综合征研究进展.中国兽医杂志,1998,24(2):44~46
    [38] 潘家强,谭勋.王小龙.低温所致肉鸡肺动脉高压综合征模型的肺动脉压与心电图学变化.南京农业大学学报 2005,28(2):94~98
    [1] Moncada, S., and Higgs, A. The L-arginine-nitric oxide pathway. N Engl J Med, 1991, 329: 2002-2011.
    [2] 任丽华.一氧化氮相关制剂在心血管疾病中的作用.医学综述,1999,7(5):319-320.
    [3] Dinh-Xuan, A. T. Endothelial modulation of pulmonary vascular tone. Eur Respir J 1992, 5: 757-762.
    [4] Koizumi, T., Gupta, R., Banerjee, M., Newman, J. H. Changes in pulmonary vascular tone during exercise: effects of nitric oxide synthase inhibition, L-arginine infusion and nitric oxide inhalation. J Clin Invest, 1994, 94: 2275-2282.
    [5] Nishiwaki, K., Nyhan, D. P., Rock, P., et al. N(G)-nitro-L-arginine and pulmonary vascular pressure-flow relationship in conscious dogs. Amm J Physiol, 1992, 262: H1331-H1337.
    [6] Leeman, M., Zegers de Beyl, V., Delcroix, M., Naeije, R. Effects of endogenous nitric oxide on pulmonary vascular tone in intact dogs. Am J Physiol, 1994, 266: H2343-H2347.
    [7] Stamler, J. S., Loh, E., Roddy, M. A., Currie, K. E., Creager, M. A. Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Ciirculation, 1994, 89: 2035-2040.
    [8] McGregor, M., Sniderman, A. On pulmonary vascular resistance: the need for more precise definition. Am J Cardiol, 1985, 55: 217-221.
    [9] Bamard, J. W., Wilson, P. S., Moore, T. M., Thompson, W. J., Taylor, A. E. Effect of nitric oxide and cyclo-oxygenase products on vascular resistance in dog and rat lungs. J Appl Physiol, 1993, 74: 2940-2948.
    [10] Rodman, D. M., Yamaguchi, T., Hasuuma, K., O'Brien, R. E, McMurtry, I. F. Effect of hypoxia on endothelium-dependent relaxation of rat pulmonary arery. Am J Physiol, 1990, 258: L207-L214.
    [11] Adnot, S., Raffestin, B., Eddahibi, S., Braquet, P., Chabrier, P. E. Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia. J Clin Invest, 1991, 87: 155-162.
    [12] Dinh-Xuan, A. T, Higenbottam, T. W., Clelland, C. A., et al. Impairment of endothelium-dependent pulmonary artery relaxation in chronic obstructive lung disease. N Engl J Med, 1991, 324: 1539-1547.
    [13] Isaacson, T. C., Hampl, V., Weir, K. L., Nelson, D. R, Archer, S. L. Increased endothelium-derived NO in hypertensive pulmonary circulation of chronically hypoxic rats. J Appl Physiol, 1994, 76: 933-940.
    [14] Zhao, L., Crawiey, D. E., Hughes, J. M. B., Evans, T. W., Winter, R. J. D. Endothelium-derived relaxing factor activity in rat lung during hypoxic pulmonary vascular remodeling. J Appl Physiol, 1993, 74: 1061-1065.
    [15] Barer, G., Emery, C., Stewart, A., Bee, D., Howard, F. Endothelial control of the pulmonary circulation in normal and chronically hypoxic rats. J Physiol, 1993 463: 1-16.
    [16] Xue, C., Rengasamy, A., Le Cras, T.D., Koberna, P. A., Dailey, G. C., Johns, R.A. Distritution of NOS in normoxic vs hypoxic rat lung: upregulation of NOS by chronic hypoxia. Am J Physiol, 1994, 267: L667-L678.
    [17] Hampl, V., Comfield, D. N., Cowan, N. J., Archer, S.L. Hypoxia potentiates NO synthesis and transiently increases cytosolic calcium levels in pulmonary artery endothelial cells. Eur Respir J, 1995, 8: 515-522.
    [18] Vaxlav Hampl and Jan Herget. Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension. Physiological Reviews, 2000, (80)4: 1337~1372
    [19] Vender, R. L. Chronic hypoxic pulmonary hypertension: cell biology and pathophysilogy. Chest, 1994, 106: 236.
    [20] 冯晓冬,蔡英年.ET-1和NO对肺动脉平滑肌细胞DNA合成的作用及缺氧对其调制的研究.中国医学科学院学报,1995,17(3):372-376
    [21] 郑惠珍,安国顺,聂思怀,等.一氧化氮抑制内皮素促血管平滑肌细胞增殖作用的信号转导途径.生理学报,1998,50(4):379-384
    [22] Kurembanas, S, Mcquinllan, L. R, Leung, G. K. E. T. A.L. Nitric oxide regulates the expression of vascular constrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest, 1993, 92: 99-104.
    [23] Voelkel, N. F., Tuder, R. M. Cellular and molecular mechanisms in the pathogenesis of severe puhnonary hypertension. Eur Respir J, 1995, 8: 2129-2138.
    [24] Kouyoumdjian, C., Adnot, S., Levame, M., et al. Continuous inhalation of nitric oxide protects against devdlopment of pulmonary hypertension in chronically hypoxic rats. J Clin Invest, 1994, 94 (2): 578-584.
    [25] Nunokawa, Y., and Tanaka, S. Interferon-gamma inhibits proliferation of rat vascular smooty muscle cells by nitric oxide generation. Biochem. Biophys. Res. Commun, 1992, 188: 409-415.
    [26] 谭勋,刘艳娟,李锦春,王小龙.L-精氨酸对肺动脉高压肉鸡肺小动脉平滑肌细胞凋亡的影响.畜牧兽医学报,2005,36(9),937~941.
    [27] Owen, R. L., Maxwell, M. H., Barbato, G. F., et al. Morphometric and histologic change in the pulmonary system of broilers raised at simulated high altitude. Avain Pathology, 1995, 24: 293-302.
    [28] Enkvetchakul, B., Beasley, J., and Bottje, W. Pulmonary arteriole hypertrophy in broilers with pulmonary hypertension syndrome. Poultry Science, 1995, 74: 1676-1682
    [29] 李锦春,王小龙,孙卫东,向瑞平.肉鸡肺动脉高压综合征自然病例肺细小动脉病理改变的图象分析.中国兽医学报,1999,19(5):479-482.
    [30] Wideman, R. F., Ismail, M., Kirby, Y. K., et al. Supplimental L-arginine attenuates pulmonary hypertension syndrome in broilers. Poultry Science, 1995, 74: 323-330.
    [31] 王金勇,王小龙,向瑞平,孙卫东.L-精氨酸对肉鸡肺动脉压和肺动脉高压综合征发生的影响.南京农业大学学报,2001,24(2):98-101.
    [32] 谭勋,潘家强,李锦春,王小龙.L-精氨酸对肺动脉高压肉鸡肺动脉NOS活性的影响.南京农业大学学报,2005,28(3):79~82
    [33] Rabarevic, Z., Tisljar, M., and Artukovic, B., et al. The influence of BPC 157 on amic oxide agonist and antagonist induced lesions in broiler chicks. J Physiology Pads, 1997, 91: 139-149
    [1] 毕铭华,张淑文,王宝恩等.大鼠内毒素血症早期肝细胞线粒体的氧化损伤及中药912液的干预作用[J].中华急诊医学杂志,2001,10(2):79-81.
    [2] 杨鹤鸣,陆松敏.内毒素休克大鼠肝脏线粒体质子跨膜转运的改变[J].生物化学与生物物理进展,1999,26(1):43-46.
    [3] Trumbeckaite, Sonata, Opalka, et al. Different sensitivity of rabbit and skeletal muscle to endotoxin-inducesd impairmengt of mitochondrial function[J]. European Journal of Biochemist. 2001, 268(5): 1422-1429.
    [4] 潭余庆,霍海如.苯巴比妥钠诱导细胞色素对内毒素所致鼠毒性的保护作用[J].中国药学杂志,2001,36(2):97-99.
    [5] 唐兆新,王炫英,高洪等.内毒素血症诱导的红细胞过氧化损伤及山莨菪碱的保护效应.中国兽医学报,1998,18(2):182-184
    [6] 唐兆新,王炫英,高洪等.内毒素休克时山羊血液流变性的变化及山莨菪碱对其影响.畜牧兽医学报,1999,30(1):75-80
    [7] 高洪,潭丽勤,李卫真等.内毒素诱导山羊肝线粒体膜流动性的变化及654-2效应[J].动物医学进展,1999,20(4):31-33.
    [8] 黎君友,吕艺,胡森等.缺血—再灌注复合内毒素血症大鼠血酮体变化及意义[J].中国危重病急医学,2002,14(6):344-346.
    [9] 张春翌,冼万华.线粒体与神经系统退行性疾病[J].生命的化学,2001,21(5):427-428.
    [10] 丁正同.帕金森病与线粒体功能障碍[J].中国临床神经科学,2000,8(2):145-147.
    [11] 刘学源.自由基与Alzheimer病[J].医学综述,2001,7(5):284-285.
    [12] Crouser ED, Julian MW, Blaho DV, et al. Endotoxin-induced mitochondrial dmage correlates with impaired respirarory activity[J]. Crit Care Med. 2002, 30(2): 483-484.
    [13] Crouser, Elliott D, Blaho, Doro V, Julian, Mark W, et al. Hetatic mitochondrial oxygen metabolism is impaired during endotoxaemia[J]. Free Radical Biology & Medicine, 1999, 27(SUPPL. 1): S104.
    [14] 祁克宗,檀华容,田超.内毒素血症山羊血浆氨基酸含量变化与氧自由基代谢的关系研究[J].畜牧兽医学报,1999,30(4):353-357.
    [15] Boczkowski, Jorge, lisdero, et al. Endogenous peroxynitrite mediates mitochondrial dysfunction in rat diaphragm during endotoxaemia[J]. FASEB Journal, 1999, 13(12): 1637-1647.
    [16] Markley, Michele A, and Pierro, et al. Hepatocyte mitochondrial metabolism is inhibited in neonatal rat endotoxaemia: Effects of glutamine [J]. Clinical Science (London), 2002, 102(3): 337-344.
    [17] Bottje W G and Wideman R F Jr. Potential role of free radicals in the pathogenesis of pulmonary hypertension syndome. Poultry and Avian Biology Reviews, 1995, 6: 211~231
    [18] Peacock, A. J., C Pickett, K Morris, et al. Spontaneous hypoxaemia and fight ventricular hypertrophy in fast growing broiler chickens reared at sea level. Comp Biochem Physiol, 1990; 97A: 537-541.
    [19] Katusic, Z. S., Schugel J, Cosention F, et al. Endothelium-dependent contraction to oxygen-derived free radicals in the canine basilar artery. Am J Physiology, 1993, 264(33): H859-H864.
    [20] Cartier, R., Pearson, P. J., Lin, P. J., et al. Time course and extent of recovery of endothelium-dependent contraction and relaxations after direct arterial injury. J Thorac Cardiocase Surg, 1991, 102: 371-377.
    [21] Maxwell, M. H., Robertson, G. W., and Spence, S. Studies on an ascitic syndrome in young broilers. 1 Haematology and pathology. Avian Pathol. 1986, 15: 511-524.
    [22] 邱小忠,陈瑗,周玫.线粒体氧化应激损伤的防御体系[J].生命的化学,2001,21(2):141-143.
    [23] Wenk J, Brenneisen P, Wlaschek M, et al. Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix-degrading metalloprotease-1 [J]. Biol Chem. 1999, 274(36): 25869-76.
    [24] Shigenaga MK, Hagen TM, Ames BN, et al. Oxidative damage and mitochondrial decay in aging [J]. Proc Natl Acad Sci U S A, 1994, 91(23): 10771-10778.
    [25] Babcock GT, Wikstrom M. Oxygen activation and the conservation of energy in cell respiration[J]. Nature, 1992, 356(6367): 301-309.
    [26] Sobll S. Thyroid hormone action on mitochondrial energy transfer[J]. Biochim Biophys Acta, 1993, 1144(1): 1-16.
    [28]Cassarino DS, Parks JK, Parker WD, et al. The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism [J]. Biochim Biophys Acta, 1999, 1453(1):49-62.
    [29]Bottje W G, Wang S and Kelly F J, et al. Antioxidant defenses in lung lining fluid of broilers: impact of poor ventilation condition. Poultry Science, 1998, 77:516--522
    [30]Cooke M S, Herbert K E and Butler P C, et al. Further evidence for a possible role of conformation in the immunogenicity and antigenicity of the oxidative DNA lesion, 8-oxxo-2'-deoxyguanosine. Free Radical Research, 1998, 28:459—469
    [31]Lass A and Sohal R S. Electron transport-linked ubiquinone-dependent recycling of alpha-tocopherol inhibits autooxidation of mitochondrial membranes. Archives of Biochemistry and Biophysics, 1998, 352:229—236
    [32]Bello-Klein A, Oliveira A R and Miranda M F, et al. Effect of trolox C on cardiac contracture induced by hydrogen peroxide. Brazzilian Journal of Medical and Biological Research, 1997, 30:1337-1342
    [33]Maxwell M H, Robertson G W and Mitchell M A. Ultrastructural demonstration of mitochondrial calcium overload in myocardial cells from broiler chickens with ascites and induced hypoxia. Research in Veterinary Science, 1993, 54:267—277
    [34]Grabarevic Z, Tisljar M and Artukovic B, et al. The influence of BPC 157 on amic oxide agonist and antagonist induced lesions in broiler chicks. Journal of Physiology Paris, 1997, 91::139- 149
    [35]Gryer M J. The possible role of nitric oxide and impaired mitochondrial function in ataxia due to severe vitamin E deficiency. Medical Hypotheses, 1998, 50:353—354
    [36]Maxwell H M, Robertson G W and Farquharsin C. Evidence of ultrastructural mitochondria-derived hydrogen peroxide activity in myocardial cells from broiler chickens with an ascites syndrome. Research in Veterinary Science, 1996, 61:7—12
    [37]MaxweIl H M, Robertson G W and Farquharsin C. Evidence of ultrastructural mitochondria-derived hydrogen peroxide activity in myocardial cells from broiler chickens with an ascites syndrome. Research in Veterinary Science, 1996, 61:7—12
    [38]M Hassanzadeh, Ladmakhi, Nadine Buys, etal. The prophylactic effect of vitamin C supplementation on broiler ascites incidence and plasma thyroid hormone concentration. Avian Pathology, 1997,26:33-44.
    [39] Bond, J.M., Julian, R.J., Squires, E.J. Effect of dietary flax oil and hypobaric hypoxia on fight ventricular hypertrophy and ascites in broiler chickens. British Poult Sci, 1996, 37: 731-741.
    [40] 向瑞平.中草药防治肉鸡PHS的疗效观察.中兽医医药杂志,1998,89(2):11—12.
    [41] 康国贵,郭仁寿,陈重义等.自由基清除剂对环磷酰胺致大鼠血清和卵巢MDA含量及SOD活性的影响.中国病理生理杂志,1995,11(3):311-313.
    [42] 罗正曜,宋德坤,王燕如等.油酸引起肺水肿的机制探讨.中国病理生理杂志,1992,8(1):5-9.
    [1] Das UN,Ells G, Begin ME.Free radicals as possible mediators of the actions of interferon. Free Radic Biol Med, 1986,2: 183
    [2] Vondracek J .Effects of recombinant rat tumor necrosis factor-alpha and interferon-gamma on the respiratory burst of rat polymorphonuclear leukocytes in whole blood. Folia Biol (Praha), 1997, 43(3): 115
    [3] Salisbury SM ,Calhoun WJ. Modulation of human peripheral blood monocyte superoxide release by interferon-gamma and lipopolysaccharide. Wis Med J, 1990, 89(6): 271
    [4] Tennenberg SD, solomkin JS. Activation of neutrophils by cachectin/tumor necrosis factor: priming of N-formyl-methionyl-leucyl-phenylalanine-induced oxidative responsiveness via receptor mobilization without degranulation. J Leukoc Biol, 1990, 47:217
    [5] Munakaga T. TNF-α and IL-1α induce mannose receptors and apoptosis in glomerular mesangial but not endothelial cells.An J Physical, J Immunol, 1985, 134:2449
    [6] Kasama T, Koboyashi K. Production of interleukin 1 -like factor from human peripheral blood monocytes and polymorphonuclear leukocytes by superoxide anion: the role of interleukin 1 and reactive oxygen species in inflamed sites. Clin Inununol Immunopathol, 1989, 53:439
    [7] Spickett C,. Apoptosis after intestinal ischemia-reperfusion injury-a morphological study. Clin Chim Acts, 1998, 270(2): 115
    [8] Gamalei IA, Post-receptor formation of active forms of oxygen in nonphagocytic cells . Tsitologiia.1999,41(5): 394
    [9] Greenberger JS .Epperly MW,Zeevi A. Role of bone marrow stromal cells in irradiation leukemogenesis. Acta Haematol, 1996,96(1): 1
    [10]Dekaris I. Lipid peroxidation and mechanisms of toxicity.Inununophanmacol .Immunotoxicol, 1998,20(1): 103
    [11]Houze TA. Glutathione correlates with lipid peroxidation in liver mitochondria of triiodothyronine injected hypophysectomized rats .Cell Biol Int, 1996, 20(9): 589
    [12]Bocci V . The free radical basis of air pollution: focus on ozone. Endothelium-dependent contraction to oxygen-derived free radicals in the canine basilar artery. J Biol Regul Homeost Agents, 1998, 12(3): 67
    [13]Kasma T . Mitochondria as a source of reactive oxygen species during refuctive stress in rat hepatocytes. Clin Immunol Immunopathol, 1989, 53 (3 ): 439
    [14]Kawashima S . J The possible role of nitric oxide and impaired mitochondrial function in ataxia due to severe vitamin E deficiency. Interferon Cytokine Res, 1998, 18(6): 423
    [15]Schoonbroodt S. Oxidant-mediated repression of mitochondrial transcription indiabetic rats .Biochem J, 1997,321 (Pt 3) : 777
    [16]Triozzi PL. Antrioxdants reduce peroxyl-mediated inhibition of mitochondrial . Int J Immunopharmacol,1993, 15 (1) : 47
    [17]Niess AM . Early impairment of oxidative metabolism and energy production in sever septic .Free Radic Biol Med, 1999, 26(1-2): 184
    [18]Fernandez-Checa JC . Nitric oxide decrease oxidative metabolism in the diaphragm during endotoxaemia by the formation of oxygen active species and peroxynitrite inmitochondrial .Am J Physiol, 1997, 273( 1 Pt 1): G7
    [19]Sauri H. Growth, carcass characteristics, and incidence of ascites in broilers exposed to environmental fluctuations and oiled litter. J Surg Res, 1995, 58(5): 526
    [20]Perez-Ruiz M,Ros J,Morales-Ruiz M. Vascular endothelial growth factor production in peritoneal macrophages of cirrhotic patients: regulation by cytokines and bacterial lipopolysaccharide .Hepatology, 1999,29(4): 1057
    [21]Anasagasti. Analysis of right ventricular areas to assess the severity of ascites syndrome in broiler chickens.Hepatology, 1997, 25(4): 840
    [22]Homandberg GA,Hui F. Fibronectin fragment mediated cartilage chondrolysis. II. Reparative effects of anti-oxidants. Biochim Biophys Acta, 1996,1317(2): 143
    [23]Homandberg GA . Electron transport chain defect and inefficient respiration may underlie pulmonary hypertension syndrome (ascites)-associated mitochondrial dysfunction in broilers.Biochim-Biophys-Acta, 1996,1317(2): 134
    [24]Sattler M . Probabilistic neural network prediction of ascites in broilers based on minimally invasive physiological factors.Blood, 1999,93(9): 2928
    [25]Gamaley IA,Kirpichinikova KM,Klyubin IV. Superoxide release is involved in membrane potential changes in mouse peritoneal macrophages. Free Radic Biol Med, 1998,24(1): 168
    [26]Laucella SA,Rottenberg ME,de Titto EH. Role of cytokines in resistance and pathology in Trypanosoma cruzi infection. 1996,28(2): 99
    [27]Tsitologiia . Pathogenesis of ascites in broilers raised at low altitude: aetiological considerations based on echocardiographic findings. Med Sci Res, 2000, 20(3):34
    
    [28]Pelletier JP.Mineau F.FemendEs JC . Diacerhein and rhein reduce the interleukin 1beta stimulated inducible nitric oxide synthesis level and activity while stimulating cyclooxygenase-2 synthesis in human osteoarthritic chondrocytes. J Rheumatol. 1998, 25(12): 2417
    [29]Kimura M . Frataxin deficiency and mitochondrial dysfunctionPsychiatry .Clin Neurosci, 1999, 53(2): 105
    [30]Nagasaki T, Ishimura E,Koyama H.Alphav integrin regulates TNF-alpha-induced nitric oxide synthesis in rat mesangial cells—possible role of osteopontin .Nephrol Dial Transplant. 1999, 14(8): 1861
    [31]Deetjen C,Frede S, Smolny M. Seibel M.Inhibition of inducible nitric oxide synthase gene expression and nitric oxide synthesis in vascular smooth muscle cells by granulocyte-colony stimulating factor in vitro. Immunopharmacology. 1999, 43(1): 23
    [32]Krupinski J, Vodovotz Y,Li C.Inducible nitric oxide production and expression of transforming growth factor-betal in serum and CSF after cerebral ischaemic stroke in man. Nitric Oxide, 1998, 2(6): 442
    [33]Mason GL, Yang Z,Olchowy TW.Nitric oxide production and expression of inducible nitric oxide synthase by bovine alveolar macrophages .Vet Immunol Immunopathol, 1996, 53(1): 15
    [34]Koedel U, Bematowicz A,Frai K. Systemically (but not intrathecally) administered IL-10 attenuates pathophysiologic alterations in experimental pneumococcal meningitis. J Immunol, 1996, 157(11):5185
    [35]Chae HJ, Park RK,Chung HT.Nitric oxide is a regulator of bone remodelling. J Pharm Pharmacol, 1997,49(9): 897
    [36]Hukkanen M, Hughes HG, Buttery LD.Cytokine-stimulated expression of inducible nitric oxide synthase by mouse, rat, and human osteoblast-like cells and its functional role in osteoblast metabolic activity. Endocrinology, 1995, 136(12): 5445
    [37]Lo YY,Konquer JA,Grinstein S. Interleukin-1 beta induction of c-fos and collagenase expression in articular chondrocytes: involvement of reactive oxygen species. J Cell Biochem, 1998, 69(1): 19
    [38]Peng HB, Libby P,Liao JK.Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. Biol Chem, 1995, 270(23), 17050
    [1] 赵宝路.氧自由基和天然抗氧化剂.科学出版社.1999,64-72
    [2] 姜海洪,谢燕,刘泽军.线粒体呼吸链功能调控机制的研究进展.生理科学进展,2001,32(4): 359-361
    [3] 敖杰男,倪静波,钱振坤等.家兔内毒素性DIC病理过程中的自由基反应与红细胞膜损伤[J].中国病理生理杂志,1993,9(1):25-27
    [4] 黄巧冰,武一曼.线粒体介导细胞凋亡的机制.医学综述,2001,7(2):81—82
    [5] 龚建新,孙晓武,符移才等.活性氧自由基与微量元素关系的研究.自由基生命科学进展, 1998,(6):115-118
    [6] 梁晚益.线粒体在缺血再灌注细胞损伤中的作用.国外医学.生理病理科学与临床分册,2000, 20(5):364—365
    [7] 曾昭惠,张宝玉.自由基对线粒体DNA的氧化损伤及衰老.生物化学与生物物理进展,1995, (22): 429-430
    [8] 蒋秉坤.线粒体DNA和疾病.生物化学与生物物理进展,1995,22(1):18-19
    [9] 廖明芳,景在平.NO供体及NO合酶抑制剂与动脉疾病.中国现代普通外科进展,2002, 5(2):74-76
    [10] 丁正同.帕金森病与线粒体功能障碍.中国临床神经科学,2000,8(2):145-147
    [11] 王琳琳,凌文化.线粒体DNA氧化损伤机制的探讨.疾病控制杂志,2000,4(1):80-82
    [12] 刘景生.细胞信息与调控.北京:北京医科大学出版社.1998
    [13] 邱小忠,陈瑗,周玫.线粒体氧化应激损伤的防御体系.生命的化学,2001,21(2):141-143
    [14] 李兴武.一氧化氮研究进展.蚌埠医学院学报,2003,28(1):87-89
    [15] 张春翌,冼万华.线粒体与神经系统退行性疾病.生命的化学,2001,21(5):427-428
    [16] 朱敏生,沈月,许祥裕等.细胞性NO的供体的建立及其对肿瘤细胞调亡的诱导效应.中华微生物及免疫学杂志,1998,18(3):223-225
    [17] 陈宁,王玉芬,潘焰.氧自由基与多器官衰竭[J].中国病理生理,1991,7(5):477-481.
    [18] 杨四军,姚茂忠,姚宝安等.NO合酶与寄生虫感,动物医学进展,2003,4(1)26-28
    [19] 杨福愉..生物化学与生物物理学报,1999,31(4):353-356
    [20] 赵卫华,徐建兴,陈清棠.脑线粒体抗氰呼吸的测定与衰老的电子漏说.北京医科大学报, 1997,29(4):377-379
    [21] 赵云罡,徐建兴.线粒体、活性氧和细胞凋亡.生物化学与生物物理进展,2001,28(2):169-171
    [22] 吴建光,郭定宗,熊道焕.肺动脉高压综合征肉鸡氧自由基变化规律.中国兽医学报.2001, 211(6):594-596
    [23] 杨四军,郭定宗,李家奎.肉鸡肺动脉高压肝脏和心脏线粒体氧自由基变化研究.黄冈职业技术学院学报.2002,4(1):63-66
    [24] Tang Z, IqbalD, Cawthon W. Defects in hearts and breast muscle mitochondrial eletctron transport of broilers with pulmonary hypertension syndrome. Free Rad Biol.Med, 2000, 29:25
    [25] Tang Z,Iqbal M,Cawthon D and Bottje W G.. Heart and breast mitochondrial dysfunction in pulmonary hypertension syndrome in broilders. Comparative Biochemiastry and Physiology part A, 2002, 132: 527-540
    [26] Thiemermann C. Nitric oxide and septic shock. Gen. Pharmac, 1997, 29(2): 159-166
    [27] Toyomizu M, Okamoto Tanaka KM. et al. Effect of 2,4—dinitrophenol on growth and body composion of broilers. Poultry science, 1992, 71:1096-1100
    [28] Trumbeckaite, Sonata, Opalka, et al.. Different sensitivity of rabbit and skeletal muscle to endotoxin-inducesd impairmengt of mitochondrial function. European Journal of Biochemist, 2001, 268(5): 1422-1429
    [29] Wang YP, Sato C, Mizoguchi K et al. Lipopolysaccharide Triggers late preconditioning against myocardial infarction via inducible nitric oxide synthase. Cardiovascular research, 2002, 56:33-42
    [30] Wenk J, Brenneisen P, Wlaschek M, et al.. Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix-degrading metalloprotease-1. Biol Chem, 1999, 274(36): 25869-76
    [31] Aaron SD, Valenza F, Volgyesi G et al. Inhibition of exhaled nitric oxide production during sepsis does not prevent lung inflammation. Crit Care Med., 1998, 26(2): 309-314
    [32] Abad B, Mesonero JE, Salvador MT et al. The administration of lipopolysaccharide, in vivo, induces alteration in L-leucine intestinal absorption. Life Sciences, 2001, 70 (6): 615-628
    [33] Akira K, Emiko K, Ishihara et al. ONO-5046, an elastase inhibitor, attenuates liver mitochondrial dysfunction after endotoxin. Critical Care Medicine, 1998, 26 (1): 138-141
    [34] Ali O, Ismail C, Ali Uet al. Poly(ADP-ribose) synthetase inhibition prevents lipopolysaccharide-induced peroxynitrite mediated damage in diaphragm. Pharmacological Research, 2002, 46(1): 67-73
    [35] Astiz M, Rackow EC, Well MH et al. Early impairment of oxidative metabolism and energy production in sever septic. Circ shock, 1988, 26(4): 311-320
    [36] Babcock GT, Wikstrom M. Oxygen activation and the conservation of energy in cell respiration. Nature, 1992, 356(6367): 301-309
    [37] Bachetti T, Pasini E, Suzuki H et al. Species-specific modulation of the nitric oxide pathway after acute experimentally induced endotoxemia. Crit Care Med. 2003, 31(5): 1509-1514
    [38]Baykal A. Kavuklu B. Iskit AB et al. Experimental study of the effect of nitric oxide inhibition on mesenteric blood flow and interlerkin-10 levels with a lipopolysaocharide challenge. World J Surg, 2002, 24(9): 1116-20
    [39]Bottje W, Tang Z, Iqbal M et al. Assoation of et al.with feed efficiency within a single genetic line of male broilders. Poultry Science, 2002, 8(4): 546-555
    [40]Boyle WA 3rd, Parvathaneni LS, Boulier V,et al. iNOS gene expression modulates microvascular responsiveness in endotoxin-challenged mice. Circ Res, 2000, 87(7): E18-24
    [41]Brown GC , Foxwell N, Moncada S. Transcelluar regulation by nitric oxide generated by activated macroph.ages.FEBS Letter, 1998, 439: 321-324
    [42]Callahan LA, Stofan DA, Szweda LI et al. Free radicals alter maximal diaphragmatic mithochondrial oxygen consumption in endotoxin-induced sepsis. Free Padical Biology & Medicine, 2001, 30(1): 129-138
    [43]Cassarino DS, Parks JK, Parker WD et al. The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim Biophys Acta, 1999, 1453(1): 49-62
    [44]Cawthon D, Bottje W. Locaized defects in the electron transport chain(ETC) and alterations of pronton leak may underlie ascites-associated mitochondrial dysfunction in broilers. Poultry science, 1999, 78(suppl. 1): 30
    [45]Cawthon D, Iqbal M , Bottje W et al. Improved mitochondrial function following sequential additions of adenosine diphosphate(ADP) is observed in male broilers and leghorns but not in broiles with ascites(Pulmonary hypertension syndrome PHS). Poultry science, 1999, 78(suppl. 1): 111
    [46]Cawthon,D, Beers, k, Bottje.W et al. Electron transport chain defect and inefficient may underlie pulmonary hypertension syndrome (ascites)-associated mitochondrial dysfunction in broilers. Poultry science, 2001, 80(4): 474-484
    [47]Chuai M, Ogata T, Morino T et al. Prostagandin El analog inhibits the microglia function: suppression of lipopolysaccharide-induced nitric oxide and TNF-αrelease. Journal of Orthopaedic Research, 2002, 20: 1246-1252
    [48]Crouser ,Elliott D, Mark Wet al. Hetatic mitochondrial oxygen metabolism is impaired during endotoxaemia. Free Radical Biology & Medicine, 1999, 27(SUPPL.1): S104
    [49]Crouser ED Julian MW, Blaho DV, et al. Endotoxin-induced mitochondrial dmage correlates with impaired respirarory activity. Crit Care Med, 2002, 30(2): 483-484
    [50]Emmerson DA . Commercial approaches to genetic selection for growth and feed conversion in domestic poultry. Poultry science, 1997, 76: 1121-1125
    [51]Eva Morschl , Jmre Pavoo , Gabor Varga et al. Endogenous bacteria-triggered inducible nitric oxide synthase activation protects the ovariectomized rat stomach. Journal of Physiology-Paris, 2001, 95: 137-140
    [52]Flint M., Beal. Energetics in the pathogenesis of neurodegenerative diseases. Trends in Neurosciences, 2000, 23: 98-304
    [53]Frech J F. thomas C E, Downs T R et al.. Protective effects of a cyclic nitrone antioxidant in animal models of endotoxic shock and chronic bacteremia. Circ shock, 1994, 43: 130-136
    [54]Fujinwara K, Sato H, Bannai S. Involvement of endotoxin or tumor necrosis factor-ain macrophage-mediated oxidation of low density lipoprotein. FEBS Letters, 1998,431: 116-120
    [55]Geller DA, Maurio Di Silvio, Timothy R et al. GTP cyclohydrolase I is coinduced in hepatocytes stimulated to produce nitric oxide. Biochemical and Biophystcal Research Communications, 2000, 276: 633-641
    [56]Herrero A., G. Barja. Hydrogen peroxide production of heart mitochondria and aging rate are slower in canaries and parakeets than in mice:site of free radical generation and mechanisms involed. Mech. Aging Dev, 1998, 103: 133-146
    [57]Iqbal M ,Cawthon D, Beers, k et al. Antioxidant enzyme activities and mitochondrial fatty acids in Pulmonary hypertension syndrome (PHS) in broilers. Poultry science, 2002, 81(2): 252-260
    [58]Iqbal M, Cawthon D, Wideman R.F.Jr, et al. Lung mitochondrial dysfunction in pulmonary hypertension syndrome II. Oxidative stress and inability to improve function with repeated additions of adenosine diphosphate. Poultry science, 2001, 80(5): 656-665
    [59]Iqbal M, Cawthon D, Wideman RFJ et al. Lung mitochondrial dysfunction in pulmonary hypertensionsyndrome I. Sitespecific defects in the electon transport chain. Poultry science, 2001, 80(4): 485-495
    [60]Iqbal,M.; FreiburgerJDet al. Immunohistochemical evidence of cytorme C oxidase subunit II involement in pulmonary hypertension syndrome (PHS) in broilers. Poultry science, 2002, 81(8): 1231-1235
    [61]Ishii T , Sunami O , Saitoh N. Ihibition of skeletal muscle sarcoplasmic reticulum Ca2+ -ATPase by nitric oxide. FEBS Letters, 1998, 440: 218-222
    [62]Jackman MR, W.T.willis. Characteristics of mitochondrial isolated from type Iand type IIb skeletal muscle. Am. J. physiol, 1996, (270): 673-678
    [63]Kinnula V 1, Crapo J D,Raivio K O. Generation and disposal of reactive oxygen metabolites in lung. Lab Invest, 1995, 73(1): 3-19
    [64]Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J, 1994. 298(pt2): 249-258
    [65]Kristal,B., B.Park, B.P.Yu. Ntrioxdants reduce peroxyl-mediated inhibition of mitochondrial. Free Rad . Biol.Med, 1994, 216: 653-660
    [66]Kristal, B., B.Park, B.P.Yu . Antrioxdants reduce peroxyl-mediated inhibition of mitochondrial. Free Rad . Biol.Med, 1994, 216: 653-660
    [67]Kristal,B.,S. Koopmans, C.T. Jackson et al. Oxidant-mediated repression of mitochondrial transcription I ndiabetic rats. Free Rad . Biol.Med, 1997, 22: 813-822
    [68]Kwong LK, R.S.Sohal. Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria.Arch. Biophys, 1998, 350: 118-126
    
    [69]Lass A, B.H.Sohal,R, Weindruch et al. Caloric restriction prevents age-associated accrul of oxidative damage tomouse skeletal muscle mitochondrial. Free Rad . Biol.Med, 1998, 25: 1089-1097
    
    [70]Lisdero CL, Lanone S, Carreras M.C et al. Nitric oxide decrease oxidative metabolism in the diaphragm during endotoxaemia by the formation of oxygen active species and peroxynitrite inmitochondrial Japanese Journal of Pharmacology, 1997, 75(suppl. 1): 12P
    [71]Markley, Michele A, Pierro et al. Hepatocyte mitochondrial metabolism is inhibited in neonatal rat endotoxaemia: Effects of glutamine. Clinical Science(London), 2002, 102(3): 337-344
    [72]Michael A,Titheradge. Nitric oxide in septic shock. Biochimica et Biophysica Acta, 1999,437-455.
    [73]Mitsuyoshi S, Shozo B, Arata I . Possible involvement of nitric oxide in the lipopolysaccharide-induced impairment of hepatic mitochondrial respiration in vivo. Biomedical Research (Tokyo), 1999, 20(3): 169-180
    
    [74]Moellering D , Andrew JM , Rakesh P et al. The induction of synthesis by nanomolar concentrations of NO in endothelial cell: a role for r-glutamylcysteine synthetase and r-glutamyl transpeptidase. FEBS Letters, 1999, 448: 292-296
    
    [75]Mooradian DL, Hutsell TC,Keefer LK. Nitric oxide (NO) donor molecules: effect of NO release rate on vascular smooth muscle cell proliferation in vitro. J Cardiovasc phanmacol, 1995, 25(4): 674-678
    
    [76]Moms DC,Dinarello CA,Munford RS et al. ASN News, 1994, 60: 479-481
    [77]Muzaffar S, Jeremy JY, Angelini GD et al. Role of the endothelium and nitric oxide synthases in modulation superoxide formation inducible by endotoxin and cytokines in porcine pulmonary arteries. Thorax, 2003, 58(7): 598-604
    [78]Nussler A K,Billiar T R. Inflammation, immnoregulation and inducible nitric oxide synthesis. J LeukocBiol, 1993, 54: 171-176
    [79]Parrot PF, Vellucci SV, loyd DML . Effects of intravenous Nitric oxide Inhibitors on Enditoxin-induced Fever in Prepubertal Pigs. Gen. Pharmac, 1998, 31(3): 371-376
    [80]RichardH, Hilderman EF. Christensen. Pl,P4-diadenosine5/teraphosphate induces nitric oxide release from bovine aortic endothelial cells. FEBS Letters, 1998, 427: 320-324
    [81]Sakaguchi S, Iizuka Y, Furusawa S et al. Role of selenium in endotoxin-induced lipid peroxide in the rats liver and in nitric oxide production in J774A,1 cells. Toxicology Letters, 2000, 118: 69-77
    [82] Shan Q. Bourreau J. Cardiac and vascular effects of nitric oxide synthase inhibition in lipopolysaccharide-treated rats. Eur J Pharmacol, 2000, 406(2): 257-64
    [83]Shigenaga MK, Hagen TM, Ames BN et al. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci US A, 1994, 91(23): 10771-10778
    [84] Silva AT, Cohen J. Role of interferon-r in experimental gram-negative sepsis. JinfectDis, 1992, 166(2): 331-335
    [85]Simonson S G, Welty-Wolf k, Huang Y C-T et al. Altered mitochondrial redox responses in gram-negative septic shock inpramites. Circ shock, 1994, 43(1): 34-43
    [86]Sobll S. Thyroid hormone action on mitochondrial energy transfer. Biochim Biophys Acta, 1993, 1144(1): 1-16
    [87]Soszynski D. Inhibition of nitric oxide synthase delays the development of tolerance to LPS in rats. Physiology & Behavior, 2002, 76: 159-169

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700