生物质发酵制氢过程基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在化石能源日益枯竭和环境污染日趋严重的背景下,开发可再生新能源,解决人类面临的能源和环境危机,成为当今世界共同关注和亟待解决的问题。生物质发酵制氢技术因具有能源和环保双重功效,得到了广泛重视,并取得了大量研究成果。但是,该技术尚处于实验研究阶段,种稳定性差、底物利用率低、过程机理尚不明晰等成为其向产业化发展的瓶颈。基于此,本文在现有基础上,对牛粪堆肥为种的生物质发酵制氢过程进行了关键工艺条件优化、机理探讨、过程动力学和相关流体相平衡研究及废液资源化利用,具有重要的学术理论意义和工程应用价值。
     运用响应面法进行生物质发酵制氢种富集实验设计和实验,建立以比产氢量为优化目标的响应面模型,预测出生物质发酵制氢种的最优富集条件。5批验证实验的蔗糖比产氢量重复性好,均值为270.26mL/(g·sucrose),与模型预测值一致。
     提出玉米秸秆稀酸辅助蒸汽爆破再Fe2+催化水解预处理技术。进行了该技术的响应面优化设计和实验,建立了以糖化率为目标的响应面模型。在模型预测的优化工艺条件下,玉米秸秆的糖化率达到35.5%,比产氢量为151.50mLH2/(g·corn stalk)。
     研究表明,对生物质发酵制氢种有毒害作用的是生物质预处理过程中生成的糠醛、5-羟甲基糠醛、乙酸等副产物。提出对玉米秸秆水解液进行活性炭吸附脱毒。在所得吸附脱毒较优条件下,糠醛、5-羟甲基糠醛、乙酸等的脱除率分别为91.5%、87.86%、20.52%,总还原糖损失率7.09%。对活性炭吸附糠醛、5.羟甲基糠醛、乙酸及还原糖过程的吸附动力学研究表明,活性炭对各物质的吸附过程均符合拟二级动力学模型。经脱毒后,玉米秸秆比产氢量提高至(?)169.74mL H2/(g·corn stalk)。
     在30L反应器中实验测得蔗糖、葡萄糖、木糖、玉米秸秆等4种底物发酵制H2过程动力学数据,建立4种底物发酵制H2过程中微生物生长、H2生成、底物消耗3类动力学模型。对比4种底物3类动力学模型参数表明,葡萄糖最有利于生物质发酵制氢。添加3.0g/L葡萄糖时玉米秸秆发酵制H2过程的比产氢量达213.4mL H2/(g·corn stalk),秸秆利用率达60.85%,反应稳定期气相产物中H2浓度大于50%。探讨了生物质发酵制氢过程的机理,以牛粪堆肥富集种进行的玉米秸秆发酵制氢过程,是以丁酸型发酵为主的发酵过程。
     采用激光动态法测定了生物质发酵制氢过程关键中间体木糖和葡萄糖在脂肪酸、混合脂肪酸、脂肪酸+水混合溶剂中的溶解度,运用Apelblat模型进行了关联,确定方程参数。由溶解度数据计算出木糖、葡萄糖在脂肪酸、混合脂肪酸、脂肪酸+水混合溶剂中的标准溶解焓△solH°、标准溶解熵△solS°和标准溶解吉布斯自由能变△solG°。△solH°>0,表明木糖、葡萄糖分子与溶剂分子之间的交互作用弱于分子间的缔合作用,木糖、葡萄糖溶于溶剂的过程中缔合键的断裂占主导地位,为吸热过程。△solH°>0,表明木糖、葡萄糖分子溶解进入溶剂中时扰乱了溶剂分子的排列,使体系的有序度降低,混乱度增大,熵增加。△solH°、△solHS°均为正值,说明木糖、葡萄糖在溶剂中的溶解为熵驱动过程。
     以磷酸三丁酯一正辛醇为络合剂,对玉米秸秆发酵制氢废液中主要副产物混合酸进行络合萃取回收。在优化所得萃取、反萃取条件下,三级错流萃取混合酸的萃取率达98.76%,二级反萃取混合酸的反萃取率达99.10%,经10次萃取.反萃取的络合剂,对废液中混合酸的萃取效果基本不变。
     研究结果既将加快生物质发酵制氢技术进步,也将在一定程度上促进相关学科发展。
Under the background of increasing depletion of fossil energy and environmental pollution worsening, development of renewable energy to deal with current energy and environmental crisis has become problems common concerned and to be solved in the world today. Bio-hydrogen production from biomass has been attracting extensive attention as an environmentally friendly process that does not consume fossil fuels. And a lot of research results have been made. However, this technology remains in an early stage of experimentation and investigation. Strains of poor stability, low utilization rate of substrate, and process mechanism of fuzzy become the bottlenecks which hinder its industrial development. Based on this and existing research, optimization of critical process conditions, discussion on mechanism, study on kinetics and relevant fluid phase equilibria, and resource utilization of fermentation liquid waste were conducted on process of bio-hydrogen production from biomass with dairy manure compost as strains. The results will have a great significance in science theory and engineering applications.
     Experimental design and experiments of strains enrichment process for bio-hydrogen production were carried out by response surface method. Response surface model with yield of hydrogen production as the optimization goal was built. Optimum conditions of strains enrichment of bio-hydrogen production from biomass was forecasted. The yield of hydrogen production of sucrose of5batch verifying experiments had excellent repetition. The average value was270.26mL/(g·sucrose) which was consistent with the model prediction.
     Two-stage pretreatment of corn stalk by dilute sulfuric acid assisted steam explosion and enhancement of dilute acid hydrolysis with Fe2+was proposed. Experimental design and experiments of this technology were carried out. Response surface model with saccharification rate of corn stalk as the optimization goal was built. Under the optimal conditions of model prediction, saccharification rate of corn stalk reached35.5%, and the yield of hydrogen production was151.50mL H2/(g·corn stalk).
     The study showed that byproducts of biomass pretreatment process such as furfural,5-hydroxymethylfurfural, acetic acid were toxic to strains of bio-hydrogen production from biomass. Activated carbon adsorption detoxification of corn stalk hydrolysate was proposed. Under the optimal conditions of detoxification, removal rate of furfural,5-hydroxymethylfurfural, acetic acid were91.5%,87.86%, and20.52%, respectively. And the loss ratio of total reducing sugar was7.09%. The results of kinetics studies of activated carbon adsorption of furfural,5-hydroxymethylfurfural, acetic acid, and total reducing sugar indicated that activated carbon adsorption process of each substance followed the pseudo-second-order kinetics. And the yield of hydrogen production of corn stalk increased to169.74mL H2/(g·corn stalk) after detoxification.
     Kinetics data of bio-hydrogen production of sucrose, glucose, xylose, and corn stalk in30L reactor were obtained. The kinetic models of microbial growth, hydrogen generation, and substrate consumption of the four substrates were built. The comparison of three kinds of kinetic model parameters of four substrates showed that glucose was best for the bio-hydrogen production. The yield of hydrogen production of bio-hydrogen production from corn stalk by adding glucose of3.0g/L reached213.4mL H2/(g·corn stalk). The utilization rate of corn stalk reached60.85%, and H2concentration in gas products at the reaction stationary phase was more than50%. The discussion of process mechanism of bio-hydrogen production showed that the hydrogen was mainly produced by the butyric acid type fermentation in the process of bio-hydrogen production from corn stalk with dairy manure compost as strains.
     Using the laser monitoring observation technique, the solubilities of xylose and glucose which are the key intermediates of bio-hydrogen production process in fatty acid, mixed fatty acids, and mixed solvents of fatty acids+water were determined. The experimental data were correlated with Apelblat model, and the equation parameters were obtained completely. The standard enthalpy, standard entropy and standard Gibbs free energy change of xylose and glucose in fatty acid, mixed fatty acids, and mixed solvents of fatty acids+water were calculated.△solH>0reveals that the interactions between the xylose, or glucose and solvent molecules are weaker than those between the solvent molecules. The dissolved process is endothermic and the break of association bond is principal.△solS>0shows that when xylose, or glucose dissolved into solvents, the array of solvents molecular was disturbed, the degree of order decrease, randomness increases and entropy increases. The positive△solH and AsolS reveal that the dissolution process of xylose, or glucose in the studied systems were entropy-driven processes.
     The complexation extraction with tributyl phosphate-octanol as complexing agent was used to recover the mixed carboxylic acid in the fermentation liquid waste of bio-hydrogen production from corn stalk. Under the optimized extraction and back extraction conditions, the extraction rate of mixed carboxylic acid reached98.76%, and the back-extraction rate reached99.10%. The extraction effect of complexing agent was essentially unchanged after ten times of extraction and back-extraction.
     The results not only will be expedite technological progress of bio-hydrogen production from biomass, but also will be sure to promote the development of relevant subjects.
引文
[1]Dincer I. Renewable energy and sustainable development:a crucial review [J]. Renewable and Sustainable Energy Reviews,2000,4 (2):157-175.
    [2]Bechberger M, Reiche D. Renewable energy policy in Germany.-pioneering and exemplary regulations [J]. Energy for Sustainable Development,2004,8 (1):47-57.
    [3]Lund H. Renewable energy strategies for sustainable development [J]. Energy,2007,32 (6):912-919.
    [4]毛宗强.氢能:21世纪的绿色能源[M].北京:化学工业出版社,2005.
    [5]Appleby A. J. Fuel cell handbook [J]. New York:Van Nostrand Reinhold Co. Inc.,1988.
    [6]Dunn S. Hydrogen futures:toward a sustainable energy system [J]. International journal of hydrogen energy,2002,27 (3):235-264.
    [7]赵亚.CO厌氧发酵制氢工艺基础及反应器性能研究[J].大连:大连理工大学,2011,5-6.
    [8]Chalk S. G., Miller J. F. Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems [J]. Journal of Power Sources,2006,159 (1): 73-80.
    [9]Ma S., Zhou H. C. Gas storage in porous metal-organic frameworks for clean energy applications[J]. Chem. Commun.,2009,46 (1):44-53.
    [10]Doenitz W., Schmidberger R., Steinheil E., et al. Hydrogen production by high temperature electrolysis of water vapour [J]. International Journal of Hydrogen Energy,1980,5 (1): 55-63.
    [11]Simpson A. P., Lutz A. E. Exergy analysis of hydrogen production via steam methane reforming [J]. International Journal of Hydrogen Energy,2007,32 (18):4811-4820.
    [12]Kanade K.G., Baeg J.O.K., Kale B.B., et al. Rose-red color oxynitride Nb2Zr6O17-xNx: A visible light photocatalyst to hydrogen production [J]. International Journal of Hydrogen Energy,2007,32 (18):4678-4684.
    [13]Dominguez A., Fidalgo B., Fernandez Y., et al. Microwave-assisted catalytic decomposition of methane over activated carbon for CO2-free hydrogen production [J]. International Journal of Hydrogen Energy,2007,32 (18):4792-4799.
    [14]Kvesitadze G., Sadunishvili T., Dudauri T., et al. Two-stage anaerobic process for bio-hydrogen and bio-methane combined production from biodegradable solid wastes [J]. Energy,2012,37 (1):94-102.
    [15]Wu T. Y., Hay J. X. W., Kong L. B., et al. Recent advances in reuse of waste material as substrate to produce biohydrogen by purple non-sulfur (PNS) bacteria [J]. Renewable and Sustainable Energy Reviews,2012,16 (5):3117-3122.
    [16]蔡炽柳.氢能及其应用前景分析[J].能源与环境,2008,24(5):39-41.
    [17]左宜,左剑恶,张薇.利用有机厌氧发酵生物制氢的研究进展[J].环境科学与技术,2004,27(1):97-99.
    [18]Das D., Veziroglu T. N. Hydrogen production by biological processes:a survey of literature [J]. International Journal of Hydrogen Energy,2001,26(1):13-28.
    [19]Wang J., Wan W. Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge [J]. International Journal of Hydrogen Energy,2008,33 (12):2934-2941.
    [20]Ueno Y., Haruta S., Ishii M., et al. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost [J]. Applied microbiology and biotechnology, 2001,57 (4):555-562.
    [21]Zhang M. L., Fan Y. T., Xing Y., et al. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures [J]. Biomass and Bioenergy,2007,31 (4):250-254.
    [22]Hallenbeck P. C. Fermentative hydrogen production:principles, progress, and prognosis [J]. International Journal of Hydrogen Energy,2009,34 (17):7379-7389.
    [23]Fan Y. T., Zhang Y. H., Zhang S. F., et al. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost [J]. Bioresource Technology,2006,97 (3) 500-505.
    [24]Liu X., Ren N., Song F., et al. Recent advances in fermentative biohydrogen production [J]. Progress in natural science,2008,18 (3):253-258.
    [25]Hallenbeck P. C., Ghosh D., Skonieczny M. T., et al. Microbiological and engineering aspects of biohydrogen production [J]. Indian Journal of Microbiology,2009,49 (1) 48-59.
    [26]Lee K. S., Hsu Y. F., Lo Y. C., et al. Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora [J]. International journal of hydrogen energy,2008,33 (5):1565-1572.
    [27]苏欣.基于PLC的生物制氢反应器的设计及暗发酵制氢的启动[D].厦门大学,2009.
    [28]Guo W. Q., Ren N. Q., Wang X. J., et al. Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor [J]. International journal of hydrogen energy,2008,33 (19):4981-4988.
    [29]Cavalcante de Amorim E. L., Barros A. R., Rissato Zamariolli Damianovic M. H., et al. Anaerobic fluidized bed reactor with expanded clay as support for hydrogen production through dark fermentation of glucose [J]. International Journal of Hydrogen Energy,2009, 34 (2):783-790.
    [30]Venkata Mohan S., Lalit Babu V., Sarma P. N. Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate [J]. Bioresource technology,2008,99 (1):59-67.
    [31]Li M., Zhao Y., Guo Q., et al. Bio-hydrogen production from food waste and sewage sludge in the presence of aged refuse excavated from refuse landfill [J]. Renewable Energy,2008,33 (12):2573-2579.
    [32]Manish S., Banerjee R. Comparison of biohydrogen production processes [J]. International Journal of Hydrogen Energy,2008,33 (1):279-286.
    [33]王建龙,文湘华.现代环境生物技术[M].清华大学出版社,2000,360-364.
    [34]Gabor Rakhely, Akos T. Krvacs, Gergely Maroti, et al.Cyanobacterial-type, heterpentameric, NAD+-reducing NiFe hydrogenase in the purple sulfur photosynthetic bacterium Thiocapsa roseopersincina [J]. Applied and Environmental Micorobiology, 2004,70 (2):722-728.
    [35]Kovacs A T., Rakhely G., Kovacs K. L. Genes involved in the biosynthesis of photosynthetic pigments in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina [J]. Applied and environmental microbiology,2003,69(6):3093-3102.
    [36]Benemann, J. R. The technology of biohydrogen [M]. New York:Plenum Press,1998: 19-30.
    [37]Schrope M. Which way to energy utopia [J]. Nature,2001,414(13):682-684.
    [38]Levin D. B., Pitt L., Love M., Biohydrogen production:prospects and limitations to practical application [J]. International Journal of Hydrogen Energy,2004,29 (2):173-185.
    [39]Jen C. J., Chou C. H., Hsu P. C., et al. Flow-FISH analysis and isolation of clostridial strains in an anaerobic semi-solid bio-hydrogen producing system by hydrogenase gene target [J]. Applied microbiology and biotechnology,2007,74 (5):1126-1134.
    [40]牛坤Klebsiella pneumoniae ECU-15株暗发酵产氢过程分析及其利用木质纤维素水解液的实验研究[D].上海:华东理工大学,2010:4-5.
    [41]Taguchi F., Chang J.D., Tadiguchi S., et al. Efficient hydrogen production from starch by a bacterium isolated from termites [J]. Journal of Fermentation and Bioengineering,1992, 73 (3):244-245.
    [42]Karube I., Urano N., Matsunaga T., et al. Hydrogen production from glucose by immobilized growing cells ofClostridium butyricum [J]. Applied Microbiology and Biotechnology,1982,16 (1):5-9.
    [43]Chang J. S., Lee K. S., Lin P. J. Biohydrogen production with fixed-bed bioreactors [J]. International Journal of Hydrogen Energy,2002,27 (11):1167-1174.
    [44]Wu K. J., Chang C. F., Chang J. S. Simultaneous production of biohydrogen and bioethanol with fluidized-bed and packed-bed bioreactors containing immobilized anaerobic sludge [J]. Process Biochemistry,2007,42 (7):1165-1171.
    [45]Wang C. H., Chang J. S. Continuous Biohydrogen Production from Starch with Granulated Mixed Bacterial Microflora [J]. Energy & Fuels,2007,22 (1):93-97.
    [46]Kvesitadze G., Sadunishvili T., Dudauri T., et al. Two-stage anaerobic process for bio-hydrogen and bio-methane combined production from biodegradable solid wastes [J]. Energy,2012,37 (1):94-102.
    [47]Saratale G. D., Chen S. D., Lo Y. C., et al. Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation--A review [J]. Journal of Scientific and Industrial Research,2008,67 (11):962-979.
    [48]Lee K. S., Lin P. J., Chang J. S. Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers [J]. International Journal of Hydrogen Energy,2006,31 (4):465-472.
    [49]Van Ginkel S., Sung S., Lay J. J. Biohydrogen production as a function of pH and substrate concentration [J]. Environmental science & technology,2001,35 (24):4726-4730.
    [50]Vijayaraghavan K, Ahmad D, Samson M. Biohydrogen generation from beer brewery wastewater using an anaerobic contact filter[J]. Journal of the American Society of Brewing Chemists,2007,65(2):110-115.
    [51]Sinha P., Pandey A. An evaluative report and challenges for fermentative biohydrogen production [J]. International Journal of Hydrogen Energy,2011,36 (13):7460-7478.
    [52]Zhang Z. P., Show K. Y., Tay J. H., et al. Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community [J]. Process Biochemistry, 2006,41 (10):2118-2123.
    [53]Reche I., Pace M. L., Cole J. J. Interactions of photobleaching and inorganic nutrients in determining bacterial growth on colored dissolved organic carbon [J]. Microbial Ecology, 1998,36 (3):270-280.
    [54]Ren N. Q., Gong M. L. Acclimation Strategy of a Biohydrogen Producing Population in a Continuous-Flow Reactor with Carbohydrate Fermentation [J]. Engineering in Life Sciences,2006,6 (4):403-409.
    [55]Lay C. H., Kuo S. Y., Sen B., et al. Fermentative biohydrogen production from starch-containing textile wastewater [J]. International Journal of Hydrogen Energy,2012, 37 (2):2050-2057.
    [56]Cappelletti M., Buccbi G., De Sousa Mendes J., et al. Biohydrogen production from glucose, molasses and cheese whey by suspended and attached cells of four hyperthermophilic Thermotoga strains [J]. Journal of Chemical Technology and Biotechnology,2012,81 (9):1291-1301.
    [57]Jiunn-Jyi Lay, Young-Joon Lee, Tatsuya Noike.Feasibility of biological hydrogen production from organic fraction of municipal solid waste[J].Water Research,1999,33 (11):2579-2586.
    [58]Annika T. Nielsen, et al.Hydrogen production from organic waste[J].International Journal of Hydrogen Energy,2001,26 (6):547-550.
    [59]ChunShuang L., DongFeng Z., Yadong G., et al. Conditions optimization for biohydrogen production from kitchen garbage applying response surface [J]. Kezaisheng Nengyuan/Renewable Energy Resources,2012,30 (2):82-85.
    [60]任保增,唐大惠,李扬,等.厌氧发酵生物制氢实验研究[J].郑州大学学报(工学版),2004,25(4):64-65.
    [61]李涛,孙学习,周淑珍,等.玉米秸秆厌氧发酵生物制氢放大试验研究[J].可再生能源,2009,27(5):66-70.
    [62]孙学习,李涛,任保增,等.玉米秸秆厌氧生物发酵制氢的特性研究[J].北京理工大学学报,2010,30(5):599-602.
    [63]Wang Y. B., Li R.J., Li W. W., et al. Effects of pretreatment of natural bacterial source and raw material on fermentative biohydrogen production [J]. International Journal of Hydrogen Energy,2012,37 (1):831-836.
    [64]吴迪,谢育红,刘常青,等.厌氧发酵产氢反应器研究进展[J].化学工程与装备,2012(004):111-114.
    [65]刘敏,陈滢,任南琪.利用不同类型种泥启动生物制氢反应器的试验研究[J].四川大学学报(工程科学版),2009,41(1):86-90.
    [66]史继祥.连续流生物制氢反应系统的启动及产氢微生物的强化[D].厦门大学,2007.
    [67]邢德峰.产氢—产乙醇细群落结构与功能研究[D].哈尔滨:哈尔滨工业大学,2006:8-10.
    [68]Mathews J., Wang G. Metabolic pathway engineering for enhanced biohydrogen production [J]. International Journal of Hydrogen Energy,2009,34 (17):7404-7416.
    [69]袁传敏,颜涌捷,曹建勤.生物质制氢气的研究[J].煤炭转化,2002,25(1):18-22.
    [70]任南琪.有机废水处理生物产氢原理与工程控制对策研究[M].哈尔滨:哈尔滨建筑大学出版社,1993.
    [71]Larcher S., Yargeau V. The effect of ozone on the biodegradation of 17 a-ethinylestradiol and sulfamethoxazole by mixed bacterial cultures [J]. Applied Microbiology and Biotechnology,2012,97 (5):1-10.
    [72]Song Z. X., Dai Y., Fan Q. L., et al. Effects of pretreatment method of natural bacteria source on microbial community and bio-hydrogen production by dark fermentation [J]. International Journal of Hydrogen Energy,2012,37 (7):5631-5636.
    [73]Chuang Y. S., Huang C. Y., Lay C. H., et al. Fermentative bioenergy production from distillers grains using mixed microflora [J]. International Journal of Hydrogen Energy, 2012,37 (20):15547-15555.
    [74]Sen B., Suttar R. R. Mesophilic fermentative hydrogen production from sago starch-processing wastewater using enriched mixed cultures [J]. International Journal of Hydrogen Energy,2012,37 (20):15588-15597.
    [75]Karthic P., Joseph S. Comparison and Limitations of Biohydrogen Production Processes [J]. Research Journal of Biotechnology,2012,7 (2):59-64.
    [76]Lay J. J. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen [J]. Biotechnology and Bioengineering,2000,68 (3):269-278.
    [77]李建政,王淑静,昌盛等.活性污泥的热处理及其发酵产氢特性[J].科技导报,2009,27(12):75-78.
    [78]Oh S. E., Van Ginkel S., Logan B. E. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production [J]. Environmental science& technology,2003,37 (22):5186-5190.
    [79]王淑静.发酵法生物制氢系统接种污泥预处理方法及效果研究[D].哈尔滨:哈尔滨工业大学,2009:12.
    [80]张雪松.生物质秸秆利用化学-活性污泥法制取氢气的初步研究.南京:南京工业大学,2005:34-42.
    [81]郭婉茜,任南琪,王相晶,等.接种污泥预处理对生物制氢反应器启动的影响[J].化工学报,2008,59(5):1283-1287.
    [82]计新静.生物质发酵制氢细的富集优化研究及产氢过程分析[D].郑州:郑州大学,2011.
    [83]Hu B., Chen S. Pretreatment of methanogenic granules for immobilized hydrogen fermentation [J]. International journal of hydrogen energy,2007,32(15):3266-3273.
    [84]Venkata Mohan S., Lalit Babu V., Sarma P. N. Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate [J]. Bioresource technology,2008,99 (1):59-67.
    [85]刘义,樊绍群,徐耀伟,等.源处理方式对发酵产氢微生物群及产氢性能的影响[J].化工学报,2010,61(6):1545-1549.
    [86]李宇亮,李小明,郭亮,等.污泥发酵制氢技术的现状和展望[J].中国沼气,2008,26(1):3-7.
    [87]辛亮.株X9利用玉米秸秆的产氢能力及影响因素研究[D].哈尔滨:哈尔滨工业大学,2007.
    [88]Ma H., Liu W. W., Chen X., et al. Enhanced enzymatic saccharification of rice straw by microwave pretreatment [J]. Bioresource technology,2009,100 (3):1279-1284.
    [89]宋安东.生物质(秸秆)纤维燃料乙醇生产工艺试验研究[D].郑州:河南农业大学,2003.
    [90]Datar R., Huang J., Maness P. C., et al. Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process [J]. International Journal of hydrogen energy,2007,32 (8):932-939.
    [91]Chen H., Liu L., Yang X., et al. New process of maize stalk amination treatment by steam explosion [J]. Biomass and Bioenergy,2005,28 (4):411-417.
    [92]Zheng Y., Lin H. M., Tsao G T. Pretreatment for cellulose hydrolysis by carbon dioxide explosion [J]. Biotechnology progress,2008,14(6):890-896.
    [93]Emmel A., Mathias A. L., Wypych F., et al. Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion [J]. Bioresource technology,2003,86(2):105-115.
    [94]Oliva J. M., Saez F., Ballesteros I., et al. Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus [J]. Applied biochemistry and biotechnology,2003,105 (1): 141-153.
    [95]贾天宇,廖克俭,佟名友,等.玉米秸秆稀酸蒸汽爆破协同作用机制研究[J].当代化工,2012,41(12)-1224-1227.
    [96]Lloyd T. A., Wyman C. E. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids [J]. Bioresource technology,2005,96 (18):1967-1977.
    [97]Kadam K. L., Wooley R. J., Aden A., et al. Softwood forest thinnings as a biomass source for ethanol production:A feasibility study for California [J]. Biotechnology progress, 2008,16 (6):947-957.
    [98]Ojumu T. V., Ogunkunle O. A. Production of glucose from lignocellulosic under extremely low acid and high temperature in batch process, auto-hydrolysis approach[J]. Journal of Applied Sciences,2005,5 (1):15-17.
    [99]Sanchez O. J., Cardona C. A. Trends in biotechnological production of fuel ethanol from different feedstocks [J]. Bioresource technology,2008,99 (13):5270-5295.
    [100]Nguyen Quang A, Tucker Melvin P. Dilute acid/metal salt hydrolysis of lignocellulosics [P]. US6423145,2002.
    [101]蒋崇文,肖豪,邓慧东,等.金离子助催化稀酸水解纤维素工艺的研究[J].纤维素科学与技术,2010,18(1):24-28.
    [102]Chang V. S., Holtzapple M. T. Fundamental factors affecting biomass enzymatic reactivity[J]. Applied Biochemistry and Biotechnology,2000,84 (1):5-37.
    [103]Sun Y., Cheng J. Hydrolysis of lignocellulosic materials for ethanol production:a review [J]. Bioresource technology,2002,83 (1):1-11.
    [104]Hatakka A. Lignin-modifying enzymes from selected white-rot fungi:production and role from in lignin degradation[J]. FEMS Microbiology Reviews,1994,13 (2):125-135.
    [105]Mandels M., Hontz L., Nystrom J. Enzymatic hydrolysis of waste cellulose [J]. Biotechnology and Bioengineering,2004,16 (11):1471-1493.
    [106]曾召刚,孙学习,李涛,等.玉米秸秆预处理对厌氧发酵制氢影响的研究[J].可再生能源,2010,28(2):59-61.
    [107]Mussatto S. I., Roberto I. C. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes:a review [J]. Bioresource Technology, 2004,93 (1):1-10.
    [108]Palmqvist E., Grage H., Meinander N. Q., et al. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts [J]. Biotechnology and Bioengineering,2000,63 (1):46-55.
    [109]何北海,林鹿.木质纤维素化学水解产生可发酵糖研究[J].化学进展,2007,19(7):1141-1146.
    [110]王永伟,王异静,张五九.生物质原料稀酸预处理水解液中发酵抑制物研究进展[J].酿酒科技,2009,184(10):91-94.
    [111]Fangkum A., Reungsang A. Biohydrogen production from mixed xylose/arabinose at thermophilic temperature by anaerobic mixed cultures in elephant dung [J]. International Journal of Hydrogen Energy,2011,36 (21):13928-13938.
    [112]Lo Y. C., Su Y. C., Cheng C. L., et al. Biohydrogen production from pure and natural lignocellulosic feedstock with chemical pretreatment and bacterial hydrolysis [J]. International Journal of Hydrogen Energy,2011,36 (21):13955-13963.
    [113]Cui M., Shen J. Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation [J]. International Journal of Hydrogen Energy, 2012,37 (1):1120-1124.
    [114]Millati R., Niklasson C., Taherzadeh M. J. Effect of pH, time and temperature of overliming on detoxification of dilute-acid hydrolyzates for fermentation by Saccharomyces cerevisiae [J]. Process Biochemistry,2002,38 (4):515-522.
    [115]Silva C. J. S. M., Roberto I. C. Statistical screening method for selection of important variables on xylitol biosynthesis from rice straw hydrolysate by Candida guilliermondii FTI 20037 [J]. Biotechnology techniques,1999,13 (11):743-747.
    [116]Van Zyl C., Prior B. A., Du Preez J. C. Production of ethanol from sugar cane bagasse hemicellulose hydrolyzate byPichia stipites [J]. Applied biochemistry and biotechnology, 1988,17 (1):357-369.
    [117]Jonsson L. J., Palmqvist E., Nilvebrant N. O., et al. Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor [J]. Applied microbiology and biotechnology,1998,49 (6):691-697.
    [118]Canilha L., De Almeida e Silva J., B., Solenzal A. I. N. Eucalyptus hydrolysate detoxification with activated charcoal adsorption or ion-exchange resins for xylitol production [J]. Process biochemistry,2004,39 (12):1909-1912.
    [119]Orozco R.L., Redwood M. D., Leeke G. A, et al. Hydrothermal hydrolysis of starch with CO2 and detoxification of the hydrolysates with activated carbon for bio-hydrogen fermentation [J]. International Journal of Hydrogen Energy,2012,37 (8):6545-6553.
    [120]Eken-Saracoglu N., Arslan Y. Comparison of different pretreatments in ethanol fermentation using corn cob hemicellulosic hydrolysate with Pichia stipitis and Candida shehatae [J]. Biotechnology letters,2000,22 (10):855-858.
    [121]赵亚.CO厌氧发酵制氢工艺基础及反应器性能研究[D].大连:大连理工大学,2011:48-49.
    [122]阳广凤,沈李东,金仁村,等.发酵产氢的动力学模型[J].环境污染与防治,2011,33(10):79-85.
    [123]Zwietering M. H., Jongenburger I., Rombouts F. M., et al. Modeling of the bacterial growth curve [J]. Applied and environmental microbiology,1990,56(6):1875-1881.
    [124]Mu Y., Wang G, Yu H. Q. Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures [J]. Bioresource technology,2006,97 (11):1302-1307.
    [125]Mu Y., Yu H. Q., Wang G. A kinetic approach to anaerobic hydrogen-producing process [J]. Water research,2007,41 (5):1152-1160.
    [126]Wang J. L., Wan W. The effect of substrate concentration on biohydrogen production by using kinetic models [J]. Science in China Series B: Chemistry,2008,51(11):1110-1117.
    [127]Kumar N., Monga P. S., Biswas A. K., et al. Modeling and simulation of clean fuel production by Enterobacter cloacae DT-BT 08 [J]. International journal of hydrogen energy,2000,25 (10):945-952.
    [128]Ntaikou I., Gavala H. N., Komaros M., et al. Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus alb us [J]. International Journal of Hydrogen Energy,2008,33 (4):1153-1163.
    [129]Sasikala C. H., Ramana C. H. V, Rao P. R. Regulation of simulataneous hydrogen photoproduction during growth by pH and glutamate in Rhodobacter sphaeroides O. U. 001 [J]. International Journal of Hydrogen Energy,1995,20(2):123-126.
    [130]Harker M., Tsavalos A. J., Young A. J. Factors responsible for astaxanthin formation in the Chlorophyte Haematococcus pluvialis [J]. Bioresource Technology,1996,55(3):207-214.
    [131]Borowitzka M. A., Huisman J. M., Osborn A. Culture of the astaxantbin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type [J]. Journal of Applied Phycology,1991,3 (4):295-304.
    [132]Winsor C. P. The Gompertz Curve as a Growth Curve [J]. Proceedings of The National Academy of Sciences,1932,18 (1):1-8.
    [133]Cho H. Y., Yousef A. E., Sastry S. K. Growth kinetics of lactobacillus acidophilus under ohmic heating [J].1996,49 (3):334-340.
    [134]Zwietering M. H., Rombouts F. M., Riet K. Comparison of definitions of lag phase and the exponential phase in bacterial growth [J]. Journal of Applied Bacteriology,1992,72 (2): 139-145.
    [135]戚以政,汪叔雄.生物反应动力学与反应器[M].北京:化学工业出版社,2007,71-73.
    [136]Luedeking R., Piret E. L. A Kinetic Study of the Lactic Acid Fermentation. Batch Process at Controlled pH [J]. Journal of Biochemical and Microbiological Technology and Engineering,1959,1 (4):393-412.
    [137]Mu Y., Wang G., Yu H. Q. Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures [J]. Bioresource Technology,2006,97 (11):1302-1307.
    [138]Gadhamshetty V., Arudchelvam Y., Nirmalakhandan N., et al. Modeling dark fermentation for biohydrogen production:ADMl-based model vs. Gompertz model [J]. International Journal of Hydrogen Energy,2010,35 (2):479-490.
    [139]Rasdi Z., Mumtaz T., Abdul Rahman N. A., et al. Kinetic analysis of biohydrogen production from anaerobically treated POME in bioreactor under optimized condition [J]. International Journal of Hydrogen Energy,2012,37 (23):17724-17730.
    [140]Song Z. X., Wang Z. Y., Wu L. Y., et al. Effect of microwave irradiation pretreatment of cow dung compost on bio-hydrogen process from corn stalk by dark fermentation [J]. International Journal of Hydrogen Energy,2012,37 (8):6554-6561.
    [141]Fan Y., Li C., Lay J. J, et al. Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost [J]. Bioresource Technology,2004,91 (2):189-193.
    [142]Pan C. M., Fan Y. T., Zhao P., et al. Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3 [J]. International Journal of Hydrogen Energy, 2008,33 (20):5383-5391.
    [143]Fan Y. T., Xing Y., Ma H. C., et al. Enhanced cellulose-hydrogen production from corn stalk by lesser panda manure [J]. International Journal of Hydrogen Energy,2008,33(21): 6058-6065.
    [144]Pan C, Zhang S, Fan Y, et al. Bioconvcrsion of corncob to hydrogen using anaerobic mixed microflora [J]. International Journal of Hydrogen Energy,2010,35(7):2663-2669.
    [145]Ren N. Q., Chua H., Chan S. Y., et al. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors [J]. Bioresource technology,2007,98 (9):1774-1780.
    [146]Call D, Logan B E. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane [J]. Environmental science & technology,2008,42(9):3401-3406.
    [147]齐亚林.微生物发酵制氢系统的研究[D].厦门:厦门大学,2007.
    [148]Ganguly S. K., Goswami A. N. Surface diffusion kinetics in the adsorption of acetic acid on activated carbon [J]. Separation science and technology,1996,31 (9):1267-1278.
    [149]Bianchi C. L., Ragaini V., Pirola C., et al. A new method to clean industrial water from acetic acid via esterification [J]. Applied Catalysis B:Environmental,2003,40(2):93-99.
    [150]Kertes A. S., King C. J. Extraction chemistry of fermentation product carboxylic acids [J]. Biotechnology and bioengineering,2004,28 (2):269-282.
    [151]Wang J., Wan W. Factors influencing fermentative hydrogen production:a review [J]. International journal of hydrogen energy,2009,34 (2):799-811.
    [152]唐大慧.玉米秸秆发酵产氢实验研究[D].郑州:郑州大学,2005.
    [153]李扬.玉米秸秆厌氧发酵制氢实验研究[D].郑州:郑州大学,2006。
    [154]胡庆丽.玉米秸秆厌氧发酵生物制氢放大实验研究[D].郑州:郑州大学,2007.
    [155]宋亚婵.秸秆厌氧发酵制氢研究[D].郑州:郑州大学,2008.
    [156]李涛.秸秆厌氧发酵制氢研究[D].郑州:郑州大学,2009.
    [157]曾召刚.玉米秸秆预处理及对发酵产氢效果影响研究[D].郑州:郑州大学,2010.
    [158]计新静.生物质发酵制氢细的富集优化研究及产氢过程分析[D].郑州:郑州大学,2011.
    [159]孙学习.玉米秸秆厌氧发酵制氢的基础研究[D].郑州:郑州大学,2011.
    [1]Lay J. J., Lee Y. J., Noike T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste[J]. Water Research,1999,33(11):2579-2586.
    [2]李涛.生物质厌氧发酵制氢工艺条件及影响规律研究[D].郑州:郑州大学,2009.
    [3]Ren B. Z., Chong H. G., Li. W. R., et al. Solubility of potassium p-chlorophenoxyacetate in ethanol+water from (295.61 to 358.16) K [J]. J. Chem. Eng. Data,2005,50 (3): 907-909.
    [4]Wu J. H., Wan. J. K. Solubility of cefazolin sodium pentahydrate in aqueous 2-propanol mixtures[J]. J. Chem. Eng. Data,2005,50 (3):980-982.
    [5]Ren B. Z., Hou. C. H., et al. Solubility of o-phthalic in methanol+butyl acetate from (295.87 to 359.75) K [J]. J. Chem. Eng. Data,2006,51 (6):2022-2025.
    [6]李玉.头孢类药物在模拟生物溶液中热力学行为研究[D].郑州:郑州大学,2011.
    [7]王福荣.生物工程分析与检验[M].北京:中国轻工业出版社,2005.
    [8]李谊轩,黄广民.参薯干粉中总还原糖含量的测定[J].食品科技,2011,36(9):322-326.
    [9]江秀明,李建伟,肖咏梅.葡萄糖氧化酶—过氧化物酶偶联体系葡萄糖分析[J].郑州大学学报(工学版),2003,24(2):85-87.
    [10]王俊丽,聂国兴,曹香林,等.不同DNS试剂测定木糖含量的研究[J].食品研究与开发,2010,31(007):1-4.
    [11]胡庆丽.玉米秸秆厌氧发酵生物制氢放大实验研究[D].郑州:郑州大学,2007.
    [12][澳]V.B.D.斯克尔曼.细菌属的鉴定指导[M].蔡妙英译.北京:科学出版社,1978.
    [1]Nandi R., Sengupta S. Microbial production of hydrogen:an overview [J]. Critical reviews in microbiology,1998,24 (1):61-84.
    [2]Giallo J., Gaudin C., Belaich J. P. Metabolism and solubilization of cellulose by clostridium cellulolyticum H10 [J]. Applied and environmental microbiology,1985,49 (5):1216-1221.
    [3]Rood J. I., McClane, B. A., Songer J. G. The clostridia:molecular and pathogenesis [M]. New York:Academic Press,1997,21-32.
    [4]Lay J. J. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen [J]. Biotechnology and Bioengineering,2000,68 (3):269-278.
    [5]计新静.生物质发酵制氢细的富集优化研究及产氢过程分析[D].郑州:郑州大学,2011.
    [6]孙学习.玉米秸秆厌氧发酵制氢的基础研究[D].郑州:郑州大学,2011.
    [7]Box G. E. P., Wilson K. B. On the experimental attainment of optimum conditions [J]. Journal of the Royal Statistical Society,1951,13(1):1-45.
    [8]周德庆.微生物学教程[M].北京:高等教育出版社,2002:175,153.
    [9]Lin C. Y., Hung W. C. Enhancement of fermentative hydrogen/ethanol production from cellulose using mixed anaerobic cultures [J]. International journal of hydrogen energy, 2008,33:3660-3667.
    [10]辛亮.株X9利用玉米秸秆的产氢能力及影响因素研究[D].哈尔滨:哈尔滨工业大学,2007.
    [11]Liguras D. K., Kondarides D. I., Verykios X. E. Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts [J]. Applied Catalysis B: Environmental,2003,43 (4):345-354.
    [12]曾召刚.玉米秸秆预处理及对发酵产氢效果影响研究[D].郑州:郑州大学,2010.
    [13]Emmel A., Mathias A. L., Wypych F., et al. Fractionation of Eucalyptus grandis chips by dilute acid-catalysed steam explosion [J]. Bioresource technology,2003,86(2):105-115.
    [14]樊耀亭,侯红卫,任保增.天然混合厌氧产氢微生物的筛选方法[P].中国:CN1488758A,2004.
    [15]潘春梅,边传周,樊耀亭.玉米秸秆稀酸水解液发酵生产纤维素乙醇的研究[J].中国酿造,2012,31(1):57-60.
    [16]Morjanoff P. J., Gray P. P.. Optimization of steam explosion as method for increasing susceptibility of sugarcane bagasse to enzymatic saccharification [J]. Biotechnology and Bioengineering,1987,6 (29):733-744.
    [17]Martinez J., Negro M. J., Saez F., et al. Effect of acid steam explosion on enzymatic hydrolysis of O. nervosum and C. cardunculus [J]. Applied Biochemistry and Biotechnology,1990,24 (1):127-134.
    [18]Morjanoff P. J., Gray P. P. Optimization of steam explosion as a method for increasing susceptibility of sugarcane bagasse to enzymatic saccharification [J]. Biotechnology and Bioengineering,1987,29 (6):733-741.
    [19]Deschamps F. C., Ramos L. P., Fontana J. D. Pretreatment of sugar cane bagasse for enhanced ruminal digestion [J]. Applied Biochemistry and Biotechnology,1996.57-58 (1):171-182.
    [20]Tsuda M., Aoyama M., Cho N. S. Catalyzed steaming as pre-treatment for the enzymatic hydrolysis of bamboo grass culms [J]. Bioresource Technology,1998,64(3):241-243.
    [21]叶红,李家璜,陈彪,等.甘蔗渣的蒸爆及水解技术的研究[J].化工生产与技术,2001, 8(3):3-5.
    [22]卢波,经艳,蔡爱华,等.酸催化蒸汽爆破预处理提高蔗渣酶解性能研究[J].广西科学,2009,16(4):441-445.
    [23]Tanahashi M., Tamabuchi K., Goto T., et al. Characterization of Steam-Exploded Wood II: Chemical Changes of Wood Components by Steam Explosion [J]. Wood research:bulletin of the Wood Research Institute Kyoto University,1988,75:1-12.
    [24]Nguyen Q. A., Tucker M. P. Dilute acid/metal salt hydrolysis of lignocellulosics [P]. US6423145,2002.
    [25]颜涌捷,任铮伟.纤维素连续催化水解研究[J].太阳能学报,1999,20(1):57-58.
    [26]蒋崇文,肖豪,邓慧东,等.金离子助催化稀酸水解纤维素工艺的研究[J].纤维素科学与技术,2010,18(1):24-28.
    [27]伯永科,崔海信,刘琪.基于金盐助催化剂的秸秆纤维素稀酸水解研究[J].中国农学通报,2008,24(9):435-438.
    [28]李涛.生物质厌氧发酵制氢工艺条件及影响规律研究[D].郑州:郑州大学,2009.
    [29]戚峰.生物质高效水解及发酵产氢的机理研究[D].杭州:浙江大学,2007.
    [30]Shimada N., Kawamoto H., Saka S. Solid-state hydrolysis of cellulose and methyl α- and P-d-glucopyranosides in presence of magnesium chloride [J]. Carbohydrate Research, 2007,342 (10):1373-1377.
    [31]申曙光,韩勇,陈春晓.亚铁离子催化棉纤维常压两段酸水解研究[J].可再生能源,2010,28(2):33-37.
    [32]Palmqvist E., Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. I:inhibition and detoxification [J]. Carbohydrate Research,2007,342 (10); 1373-1377. Bioresource Technology,2000,74 (1):17-24.
    [33]张强,孙立志,王一东.纤维质酒精预处理液中抑制剂脱毒方法研究进展[J].化工进展,2012,31(1):53-56.
    [34]Boyer L. J., Vega J. L., Klasson K.T., et al. The effects of furfural on ethanol production by saccharomyces cereyisiae in batch culture [J]. Biomass and Bioenergy,1992,3 (1): 41-48.
    [35]王永伟,王异静,张五九.生物质原料稀酸预处理水解液中发酵抑制物研究进展[J].酿酒科技,2009,184(10):91-94.
    [36]Taherzadeh M. J., Gustafsson L., Niklasson C., et al. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae [J]. Applied microbiology and biotechnology,2000,53 (6):701-708.
    [37]Fangkum A., Reungsang A. Biohydrogen production from sugarcane bagasse hydrolysate by elephant dung:Effects of initial pH and substrate concentration [J]. International Journal of Hydrogen Energy,2011,36 (14):8687-8696.
    [38]Fangkum A., Reungsang A. Biohydrogen production from mixed xylose/arabinose at thermophilic temperature by anaerobic mixed cultures in elephant dung [J]. International Journal of Hydrogen Energy,2011,36 (21):13928-13938.
    [39]Lo Y. C., Su Y. C., Cheng C. L., et al. Biohydrogen production from pure and natural lignocellulosic feedstock with chemical pretreatment and bacterial hydrolysis [J]. International Journal of Hydrogen Energy,2011,36 (21):13955-13963.
    [40]Cui M., Shen J. Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation [J]. International Journal of Hydrogen Energy, 2012,37 (1):1120-1124.
    [41]Cao G. L., Ren N. Q., Wang A. J., et al. Effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16 [J]. International Journal of Hydrogen Energy,2010,35 (24):13475-13480.
    [42]Parajo J. C., Dominguez H., Dominguez J. M. Biotechnological production of xylitol. Part 3:Operation in culture media made from lignocellulose hydrolysates [J]. Bioresource Technology,1998,66 (1):25-40.
    [43]Wang B., Wan W., Wang J. Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production [J]. International Journal of Hydrogen Energy,,2008,33 (23):7013-7019.
    [44]Van Niel E. W. J., Claassen P. A. M., Stams A. J. M. Substrate and Product Inhibition of Hydrogen Production by the Extreme Thermophile, Caldicellulosiruptor saccharolyticus [J]. Biotechnology and Bioengineering,2003,81 (3):255-262.
    [45]Modig T., Liden G., Taherzadeh M. J. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase [J]. Biochemical Journal,2002,363 (3):769-776.
    [46]Taherzadeh M. J., Gustafeson L., Niklasson C., et al. Inhibition effects of furfural on aerobic batch cultivation of Saccharomyces cerevisiae growing on ethanol and/or acetic acid [J]. Journal of Bioscience and Bioengineering,2000,90 (4):374-380.
    [47]Zaldivar J.. Martinez A., Ingram L. O. Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli [J]. Biotechnology and Bioengineering,2000,68 (5):524-530.
    [48]Tian S., Zhou G., Yan F., et al. Yeast strains for ethanol production from lignocellulosic hydrolysates during in situ detoxification [J]. Biotechnology Advances,2009,27 (5): 656-660.
    [49]Weil J. R., Dien B., Bothast R., et al. Removal of fermentation inhibitors formed during pretreatment of biomass by polymeric adsorbents [J]. Industrial & engineering chemistry research,2002,41 (24):6132-6138.
    [50]兰涛.活性炭吸附技术去除水中氯贝酸和磺胺甲恶哇的研究[D].上海:华东理工大学,2011.
    [51]Ho Y. S., McKay G. Pseudo-second order model for sorption process [J]. Process Biochemistry,1999,34 (5):451-465.
    [52]Yang X., Alduri B. Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon [J]. Journal of Colloid and Interface Science,2005,287 (1):25-34.
    [1]Labbe R. G, Shih, N. J. R. Physiology of sporulation of clostridia. In The clostridia: molecular and pathogenesis[M]. New York:Academic Press,1997,21-32.
    [2]冯荣宝.L-谷氨酸发酵动力学建模分析[J].生化工程,1985,4(1):48-53.
    [3]马文漪,杨柳燕.环境微生物工程[M].南京:南京大学出版社,1998,36.
    [4]孙学习,李涛,计新静,等.木糖在5种醇类溶剂中溶解度的测定和关联[J].郑州大学学报(工学版),2011,9(5):42-45.
    [5]邵佩兰,朱小红,徐明,等.蒸煮法从玉米芯提取木糖的研究[J].宁夏农学院报,2002,23(1):7-38.
    [6]尤新.米深加工技术[M].北京:中国轻工业出版社,2004:334.
    [7]Ren B. Z., Chong H. G., Li. W. R., et al. Solubility of potassium p-chlorophenoxyacetate in ethanol+water from (295.61 to 358.16) K[J].J. Chem,Eng. Data,2005,50 (3): 907-909.
    [8]Wu J. H., Wan. J. K. Solubility of cefazolin sodium pentahydrate in aqueous 2-propanol mixtures[J]. J. Chem. Eng. Data,2005,50 (3); 980-982.
    [9]Ren B. Z., Hou. C. H., et al. Solubility of o-phthalic in methanol+butyl acetate from (295.87 to 359.75) K [J]. J. Chem. Eng. Data,2006,51 (6):2022-2025.
    [10]刘光启,马连湘,刘杰.化学化工物性数据手册(有机卷).北京:化工出版社,2002,52.
    [11]Apelblat A., Manzurola E. Solubilities of o-acetylsalicylic,4-aminosalicylic,3, 5-dinitrosalicylic, and p-toluic acid, and magnesium-DL-aspartate in water fromT= (278 to 348) K[J]. The Journal of Chemical Thermodynamics,1999,31 (1):85-91.
    [12]Chen F, Zhao M, Ren B, et al. Solubility of diosgenin in different solvents [J]. The Journal of Chemical Thermodynamics,2011,47:341-346.
    [13]Buchowski H., Khiat A. Solubility of solids in liquids:one-parameter solubility equation [J]. Fluid phase equilibria,1986,25(3):273-278.
    [14]M.W. Stanley. Phase equilibria in chemical engineering [M]. Boston:Butterworth,1985.
    [15]Rowe R. D., Parks G. S. Studies on Glass. XVIII. The Heats of Solution of Crystalline and Glassy Glucose; the Heat of Mutarotation of a-Glucose [J]. The Journal of Chemical Physics,1946,14(6):383-388.
    [16]Walas S. M. Phase Equilibria in Chemical Engineering,1st ed [M]. Boston:Butter Worth, 1985.
    [17]Prausnitz J. M., Lichtenthaler R. N., Azevedo E. G.流体相平衡的分子热力学[M].陆小华,刘洪来译.北京;化学工业出版社,2006.
    [18]王福安,蒋元力.分子热力学与色谱保留[M].北京:气象出版社,2001.
    [19]王亮,尚会建,王丽梅,等.葡萄糖检测方法研究进展[J].河北工业科技,2010,27(002): 132-135.
    [20]Zhang H., Wang J., Chen Y., et al. Soluiliy of sodium cefotaxime in aqueous 2-propanol mixtures [J]. Journal of Chemical & Engineering Data,2006,51(6):2239-2241.
    [1]Call D., Logan B. E. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane[J]. Environmental science & technology,2008,42 (9):3401-3406.
    [2]戴猷元,徐丽莲,杨义燕,等.基于可逆络合反应的萃取技术[J].化工进展,1991,10(1):30-34.
    [3]San-Martin M., Pazos C., Coca J. Liquid-liquid extraction of lactic acid with Alamine 336 [J]. Journal of Chemical Technology and Biotechnology,1996,65:281-285.
    [4]王运东,李屹,李玉鑫,等.三烷基氧膦络合萃取一元有机羧酸[J].化学工程,31(6):8-11.
    [5]李振宇,秦炜,戴猷元.三辛胺萃取一元羧酸的平衡规律(I)萃取平衡特性[J].化工学报,2004,55(1):54-58.
    [6]King C.J. Handbook of separation process technology [M]. New York:John Wiley&Sons, 1987:760-773.
    [7]Yang S. T., White S. A., Hsu S. T. Extraction of carboxylic acids with tertiary and quaternary amines:effect of pH [J]. Industrial & engineering chemistry research,1991,30 (6):1335-1342.
    [8]管国锋,马晓龙,姚虎卿.磷酸三丁酯络合萃取丁酸的研究[J].南京化工大学学报,2000,22(6):18-22.
    [9]王晶仪,吴洪发,鲍妮娜,等.玉米化工醇重组分中有机羧酸络合萃取过程[J].化工进展,2010(6):1023-1026.
    [10]冯小海,陈飞,姚忠,等.络合萃取法分离发酵液中丙酸[J].化工进展,2010,(5):812-816.
    [11]王建军,李秀芬,刘和,等.萃取条件对TBP络合萃取混合有机酸的影响[J].工业微生物,2011,41(5):62-65.
    [12]Ingale M. N., Mahajani V. V. Recovery of carboxylic acids, C2-C6, from an aqueous waste stream using tributylphosphate (TBP):Effect of presence of inorganic acids and their sodium salts [J]. Separations Technology,1996,6 (1):1-7.
    [13]田恒水,霍文军,苏元复.溶剂萃取法回收稀醋酸[J].华东理工大学学报,1991,17(2):123-128.
    [14]戴酞元,秦烩,张瑾等.有机物络合萃取技术(修订版)[M].北京:化学工业出版社,2007:56-68.
    [15]徐晨.醋酸稀溶液络合萃取过程研究[D].南京:南京工业大学,2004:26.28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700