苜蓿中华根瘤PcoR基因的克隆、表达载体构建和原核表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在长期重金污染的环境中,许多微生物产生了对多种重金及其复合污染物较高的抗性,产生许多由重金诱导作用而产生的抗性基因及蛋白质。重金基因可以激活和编码金硫蛋白、操纵子、金运输酶和透性酶等,通过这些物质结合重金,形成失活晶体或促进重金排出体外等机制对重金进行解毒。
     PcoR基因的合成根据GenBank中Klebsiella pneumoniae (GeneID:NP_943472)基因,设计并合成了1对引物(由TaKaRa公司合成),用于扩增PcoR基因。PCR反应程序为:95℃5min; 94℃1min 30 s; 58℃1min 30 s; 72℃3 min; 34个循环;最后72℃延伸10min。对扩增产物进行电泳鉴定,最后将PCR产物经胶回收试剂盒纯化,以备酶切。按照DNA凝胶回收试剂盒的操作说明,回收纯化PCR产物。将回收的PCR产物插入pGEM-Teasy载体,构建重组质粒pGEM-PcoR,转化DH5α感受态细胞,37℃培养12~16 h。挑取白色落接种于含有Amp的LB肉汤中,37℃振荡培养12~16 h,提取重组质粒进行PCR和酶切鉴定。用EcoR I和Hind III酶切pET-41a载体及PcoR基因片段,酶切后进行产物回收,在T4 DNA连接酶的作用下做定向连接。连接产物转化至BL21感受态细胞,涂板、挑选单克隆进行落PCR。落PCR、酶切验证均为阳性的克隆即为含有目的重组pET-41a-PcoR的阳性克隆。选取一个阳性克隆送至南京金思特科技有限公司进行测序。以pET-41a空质粒转化为对照,将测序鉴定后的重组质粒转入BL21 RIL感受态细胞中,在含100 mg/L氨苄青霉素(Amp)的LB培养板上,37℃下培养过夜。次日,从LB培养板上挑取含有重组质粒的转化及空质粒转化各一个,分别接种到5 mL LB培养液中(含100 mg/L Amp),37℃摇床培养。待液OD600值=0.5时,按照IPTG终浓度为1.0 mmol/L诱导不同时间(1、2、3、4和5h),或不同IPTG浓度(0.1、0.25、0.5、0.75和1.0mmol/L)下诱导5h,比较重组蛋白的产量,确定最佳诱导条件。
     抗铜基因的BLASTn分析,苜蓿中华根瘤pcoR与大肠杆(E. coli)、阪崎肠杆(E. sakazakii)、克雷伯杆(K. pneumoniae)和粘质沙雷氏(S.marcescens)的质粒或基因组上的铜抗性基因的同源性达到99%。抗铜蛋白的BLASTp同源性搜索与分析,发现抗铜蛋白PcoR与大肠杆(E. coli)、克雷伯杆(K. pneumoniae)和克雷伯杆(K. pneumoniae subsp.)的转录调控蛋白PcoR、粘质沙雷氏(S. marcescens)的双组分抗铜应答调控子的同源性达到100%,与布克氏(Burkholderia multivorans)、罗尔斯顿(Ralstonia pickettii)和假单胞(Pseudomonas putida)等的重金应答调控子的同源性在57%以上。
     采用PCR法可以成功合成长度为687 bp的苜蓿中华根瘤PcoR基因。重组子pET-41a-PcoR在大肠杆表达株系BL21 (RIL)中、28℃200 r/min经1mmol/L IPTG诱导5 h,可以大量表达可溶性的GST—PcoR融合蛋白。
In long-term heavy metal contaminated environment, many microbes produce high resistance to a wide range of heavy metals and composites, resulting in induction of many heavy metal resistance genes and proteins. Metal genes can activate and coding metallothionein, operon,metal transport enzymes and permease, heavy metals through the combination of these substances to form crystals or inactivation mechanisms such as the promotion of excretion of heavy metals detoxification of heavy metals.
     PcoR gene synthesis according to GenBank, Klebsiella pneumoniae (GeneID: NP_943472) gene, were designed and synthesized one pair of primers (synthesized by the TaKaRa Company) for the amplification PcoR gene. PCR reaction program was: 95℃5min; 94℃1min 30 s; 58℃1min 30 s; 72℃3 min; 34 cycles; final extension at 72℃10min. Electrophoresis of the PCR products was identified, and finally PCR product was purified by gel extraction kit to prepare for digestion. According to the instructions of DNA gel extraction kit, recover purified PCR product. The recovered PCR products were inserted into pGEM-Teasy vector, the recombinant plasmid pGEM-PcoR, transformed into DH5αcompetent cells, 37℃train 12 ~ 16 h. Picked white colonies were inoculated in LB broth containing Amp, 37℃shaking culture 12 ~ 16 h, extraction of recombinant plasmid PCR and restriction enzyme digestion. With EcoR I and Hind III digested pET-41a vector and PcoR gene fragment was recovered after digestion, in the role of T4 DNA ligase to do under the direction connection. The products were transformed into BL21 competent cells, coated plates, select monoclonal colony PCR. Colony PCR, enzyme restriction shall contain both positive recombinant clone pET-41a-PcoR positive clones. Choose a clone sent for sequencing Technology Co., Ltd. Nanjing Jin Site. With pET-41a as the control empty plasmid was transformed into bacteria, the DNA sequencing after plasmid into BL21 RIL competent cells, containing 100 mg / L ampicillin (Amp) of the LB culture plate, 37℃incubated overnight. The next day, picked from the LB culture plate containing the recombinant plasmid, empty vector transformed E. coli bacteria and one each were inoculated into 5 mL LB medium (containing 100 mg / L Amp), 37℃shaking culture. When bacteria OD600 value = 0.5, in accordance with IPTG final concentration of 1.0 mmol / L induced at different times (1,2,3,4 and 5h), or different IPTG concentrations (0.1,0.25,0.5,0.75 and 1.0mmol / L ) under the induction of 5h, more recombinant protein production, to determine the optimal induction conditions.
     BLASTn analysis of copper resistance genes showed the homology of the copper resistance gene on plasmid or the genome of Sinorhizobium pcoR and E. coli, E. sukiyaki, K. pneumonia, and S. marcescens is 99%. Anti-copper protein BLASTp homology search and analysis showed the homology of anti-copper protein pcoR and E. coli, K. pneumonia and transcriptional regulation protein pcoR of K. pneumonia subsp, two-component response regulators in anti-copper of S. marcescens is 100%, homology with Booker's bacteria, Ralston bacteria and Pseudomonas and other heavy metal response regulator is more than 57%.
     The length of 687 bp of Sinorhizobium pcoR gene can be successfully synthesized by PCR. Recombinant pET-41a-PcoR in E. coli strain BL21 (RIL) in 28℃, 200 r / min by 1mmol / L IPTG induction 5 h, express a large number of soluble fusion protein GST-PcoR.
引文
安正阳,江映翔,文军.污染土壤的生物修复技术进展及其应用前景.广州环境科学, 2003, 18(4): 5-7.
    陈怀满.土壤—植物系统中的重金污染.北京:科学出版社, 1996.
    曹启民,王华,郑良永,等.污染土壤的微生物修复机理及研究进展.华南热带农业大学学报, 2006, 12(1): 29-33.
    丁克强,骆永明.生物修复石油污染土壤.土壤, 2001, 33(4): 179-184.
    耿春女,李培军.根生物修复技术在沈抚污水灌区的应用前景.环境污染治理技术与设备, 2002, 3(7): 51-55.
    黄铭洪,骆永明.矿区土地修复与生态恢复.土壤学报, 2003, 40(2): 161-169.
    黄巧云,陈雯莉.根瘤与土壤胶体,氧化铁对重金的吸附:Ⅰ.铜的吸附.华中农业大学学报, 1998, 17(1): 29-34.
    蒋先军,骆永明.土壤重金污染的植物提取修复技术及其应用前景.农业环境保护, 2000, 19(3): 179-183.
    刘爱民.耐镉细筛选与吸附镉机理研究及其在镉污染土壤修复中的应用.南京:南京农业大学, 2005.
    龙健,黄昌勇.矿区重金污染对土壤环境质量微生物学指标的影响.农业环境科学学报, 2003, 22(1): 60-63.
    茆灿泉,薛沿宁.微生物展示技术在重金污染生物修复中的研究进展.生物工程进展, 2001, 21(5): 49-51.
    萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯T.分子克隆实验指南(第三版).北京:科学出版社, 1998.
    宋静,朱荫湄.土壤重金污染修复技术.农业环境保护, 1998, 17(6): 271-273.
    唐世荣,黄昌勇.污染土壤的植物修复技术及其研究进展.上海环境科学, 1996, 15(12): 37-39.
    王建林,刘芷宇.水稻根际中铁的形态转化.土壤学报, 1992, 29(4): 358-364.
    杨宇峰,费修绠.大型海藻对富营养化海水养殖区生物修复的研究与展望.青岛海洋大学学报:自然科学版, 2003, 33(1): 53-57.
    杨兴洪,张海瑜.苜蓿中华根瘤042B与公共结瘤基因nodABC有关的大片段物理图谱的构建.农业生物技术学报, 1998, 6(4): 319-326.
    叶锦韶,尹华.微生物抗重金毒性研究进展.环境污染治理技术与设备, 2002, 3(4): 1-4.
    俞慎,何振立,黄昌勇.重金胁迫下土壤微生物和微生物过程研究进展.应用生态学报, 2003, 14(4): 618-622.
    张炳华,张彦琼,王吉伟,等.微生物重金抗性的研究进展.中国医学工程, 2006, 14(2): 153-155.
    张甲耀,李静.生物修复技术研究进展.应用与环境生物学报, 1996, 2(2): 193-199.
    张甲耀,宋碧玉,郑连爽,等.环境微生物学.北京:科学出版社, 2004.
    周长涛,季秀玲,林连兵,等.粘质沙雷氏抗铜基因的克隆及性质研究.云南大学学报:自然科学版, 2008, (1): 92-97.
    周俊初,史巧娟.绿色荧光蛋白基因(gfp)在华癸中生根瘤与紫云英共生固氮作用研究中的应用.中国科学基金, 2001, 15(5): 302-305.
    Adams T K, Saydam N, Steiner F, et al. Activation of Gene Expression by Metal-Responsive Signal Transduction Pathways. Environmental Health Perspectives Supplements, 2002, 10(5): 813-817.
    Avery S V. Caesium accumulation by microorganisms: uptake mechanisms, cation competition, compartmentalization and toxicity. Journal of Industrial Microbiology and Biotechnology, 1995, 14(2): 76-84.
    Avery S V, Smith S L, Ghazi A M, et al. Stimulation of strontium accumulation in linoleate-enriched Saccharomyces cerevisiae Is a result of reduced Sr2+ efflux. Applied and Environmental Microbiology, 1999, 65(3): 1191-1197.
    Bang S W, Clark D S, Keasling J D. Engineering hydrogen sulfide production and cadmium removal by expression of the thiosulfate reductase gene (phsABC) from Salmonella enterica serovar typhimurium in Escherichia coli. Applied and Environmental Microbiology, 2000, 66(9): 3939-3944.
    Bertini I, Hartmann H J, Klein T, et al. High resolution solution structure of the protein part of Cu7 metallothionein. European Journal of Biochemistry, 2000, 267(4): 1008-1018.
    Brown N L, Lee B T O, Silver S. Bacterial transport of and resistance to copper. Metal Ions in Biological Systems, 1994, 30: 405-434.
    Brown N L, Barrett S R, Camakaris J, et al. Molecular genetics and transport analysis of the copper-resistance determinant(pco) from Escherichia coli plasmid pRJ1004. Molecular Microbiology, 1995, 17(6): 1153-1166.
    Carrasco J A, Armario P, Pajuelo E, et al. Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biology and Biochemistry, 2005, 37(6): 1131-1140.
    Chen W M, Wu C H, James E K, et al. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. Journal of Hazardous Materials, 2008, 151(2-3): 364-371.
    Cooksey D A. Copper uptake and resistance in bacteria. Molecular Microbiology, 1993, 7(1): 1-5.
    Cooksey D A. Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS microbiology reviews, 1994, 14(4): 381-386.
    Delorme T A, Gagliardi J V, Angle J S, et al. Phenotypic and genetic diversity of rhizobia isolated from nodules of clover grown in a zinc and cadmium contaminated soil. Soil Science Society of America Journal, 2003, 67(6): 1746-1754.
    Eitinger T, Wolfram L, Degen O, et al. A Ni2+ binding motif is the basis of high affinity transport of the Alcaligenes eutrophus nickel permease. Journal of Biological Chemistry, 1997, 272(27): 17139-17144.
    Figueira E, Lima A I G, Pereira S I A. Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. Canadian Journal of Microbiology, 2005, 51(1): 7-14.
    Garcia-Dominguez M, Lopez-Maury L, Florencio F J, et al. A gene cluster involved in metal homeostasis in the cyanobacterium Synechocystis sp. strain PCC 6803. Journal ofBacteriology, 2000, 182(6): 1507-1514.
    Grass G, Fricke B, Nies D H. Control of expression of a periplasmic nickel efflux pump by periplasmic nickel concentrations. Biometals, 2005, 18(4): 437-448.
    Haukka K, Lindstrom K, Young J P W. Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Applied and Environmental Microbiology, 1998, 64(2): 419-426.
    Ibekwe A M, Angle J S, Chaney R L, et al. Enumeration and N2 fixation potential of Rhizobium leguminosarum biovar trifolii grown in soil with varying pH values and heavy metal concentrations. Agriculture, Ecosystems and Environment, 1997, 61(2-3): 103-111.
    Iyer A, Mody K, Jha B. Biosorption of heavy metals by a marine bacterium. Marine Pollution Bulletin, 2005, 50(3): 340-343.
    Jaeckel P, Krauss G, Menge S, et al. Cadmium induces a novel metallothionein and phytochelatin 2 in an aquatic fungus. Biochemical and Biophysical Research Communications, 2005, 333(1): 150-155.
    Jang A, Kim S M, Kim S Y, et al. Effect of heavy metals (Cu, Pb, and Ni) on the compositions of EPS in biofilms. Water Science and Technology, 2001, 43(6): 41-48.
    Klaus T, Joerger R, Olsson E, et al. Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences, 1999, 96(24): 13611-13614.
    Kostal J, Yang R, Wu C H, et al. Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Applied and Environmental Microbiology, 2004, 70(8): 4582-4587.
    Kotrba P, Doleckova L, de Lorenzo V, et al. Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Applied and Environmental Microbiology, 1999, 65(3): 1092-1098.
    Kuroda K, Ueda M. Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Applied Microbiology and Biotechnology, 2003, 63(2): 182-186.
    Kuroda K, Ueda M. Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Applied Microbiology and Biotechnology, 2006, 70(4): 458-463.
    Ledin M. Accumulation of metals by microorganisms-processes and importance for soil systems[J]. Earth Science Reviews, 2000, 51(1-4): 1-31. [1] Nriagu J O. Global metal pollution: Poisoning the biosphere. Environment ENVTAR, 1990, 32(7): 7-32.
    Lee Y A, Hendson M, Panopoulos N J, et al. Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. Journal of Bacteriology, 1994, 176(1): 173-188.
    Lu W B, Shi J J, Wang C H, et al. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. Journal of Hazardous Materials, 2006, 134(1-3): 80-86.
    Macaskie L E, Wates J M, Dean A C R. Cadmium accumulation by a Citrobacter sp. immobilized on gel and solid supports: Applicability to the treatment of liquid wastes containing heavy metal cations. Biotechnology and Bioengineering, 1987, 30(1): 66-73.
    Miersch J, Tschimedbalshir M, BaeRlocher F, et al. Heavy metals and thiol compounds in Mucor racemosus and Articulospora tetracladia. Mycological Research, 2001, 105(7): 883-889.
    Mullen M D, Wolf D C, Beveridge T J, et al. Sorption of heavy metals by the soil fungiAspergillus niger and Mucor rouxii. Soil biology and biochemistry, 1992, 24(2): 129-135.
    Nies D H, Nies A, Chu L, et al. Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proceedings of the National Academy of Sciences, 1989, 86(19): 7351-7355.
    Nies D H. The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. Journal of bacteriology, 1995, 177(10): 2707-2712.
    Nies D H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 2003, 27(2-3): 313-339.
    Odermatt A, Solioz M. Two trans-Acting Metalloregulatory Proteins Controlling Expression of the Copper-ATPases of Enterococcus hirae. Journal of Biological Chemistry, 1995, 270(9): 43-49.
    Ohashi A, Harada H. A novel concept for evaluation of biofilm adhesion strength by applying tensile force and shear force. Water Science and Technology, 1996, 34(5-6): 429-439.
    O'Heben G E I. Innovative engineering technologies for hazardous waste remediation. New York: International Thomson Publishing Company, 1995.
    Riggle P J, Kumamoto C A. Role of a Candida albicans P1-type ATPase in resistance to copper and silver ion toxicity. Journal of Bacteriology, 2000, 182(17): 4899-4905.
    Sar P, K. Kazy S, D'Souza S F. Radionuclide remediation using a bacterial biosorbent. International Biodeterioration and Biodegradation, 2004, 54(2-3): 193-202.
    Sauge-Merle S, Cuine S, Carrier P, et al. Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Applied and Environmental Microbiology, 2003, 69(1): 490-494.
    Silver S, Walderhaug M. Gene regulation of plasmid-and chromosome-determined inorganic ion transport in bacteria. Microbiology and Molecular Biology Reviews, 1992, 56(1): 195-228.
    Silver S. Bacterial resistances to toxic metal ions-a review. Gene, 1996, 179(1): 9-19.
    Silver S. Genes for all metals: a bacterial view of the periodic table the 1996 thom award lecture. Journal of Industrial Microbiology and Biotechnology, 1998, 20(1): 1-12.
    Sousa C, Kotrba P, Ruml T, et al. Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. Journal of Bacteriology, 1998, 180(9): 2280-2284.
    Sriprang R, Hayashi M, Yamashita M, et al. A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. Journal of Biotechnology, 2002, 99(3): 279-293.
    Sriprang R, Hayashi M, Ono H, et al. Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Applied and Environmental Microbiology, 2003, 69(3): 1791-1796.
    Summers A O, Silver S. Mercury resistance in a plasmid-bearing strain of Escherichia coli. Journal of Bacteriology, 1972, 112(3): 1228-1236.
    Tunali S, abuk A, Akar T. Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chemical Engineering Journal, 2006, 115(3): 203-211.
    Valls M, Atrian S, de Lorenzo V, et al. Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nature Biotechnology, 2000, 18(6): 661-665.
    Weast R C. CRC Handbook of Chemistry and Physics. CRC Press Inc., Boca Raton, Florida, 1986.
    Yang Y, Campbell C D, Clark L, et al. Microbial indicators of heavy metal contamination in urban and rural soils. Chemosphere, 2006, 63(11): 1942-1952.
    Zakharova E A, Shcherbakov A A, Brudnik V V, et al. Biosynthesis of indole-3-acetic acid in Azospirillum brasilense: Insights from quantum chemistry. European Journal of Biochemistry, 1999, 259(3): 572-576.
    Zouboulis A I, Loukidou M X, Matis K A. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochemistry, 2004, 39(8): 909-916.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700