梨果采后病害新型拮抗分离、筛选及安全性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水果在采摘、运销、以及储藏过程中因腐烂造成的损失是巨大的,也是全球关注的问题。在发达国家有10%-30%的新鲜产品由于采后病害导致腐烂,而在缺乏贮运冷链设备的发展中国家,果实采后腐烂率则高达40%-50%。
     目前,最常用的有效控制水果腐烂的方法是低温和化学杀剂处理。近年来虽然冷藏技术在我国得到了广泛的发展,但是在低温贮藏情况下,仍有相当数量的病原可以在水果上面生长,从而引起腐烂。化学杀剂处理,虽然效果显著,但是在杀死病原的同时也杀死了有益微生物,且药物残留对人体健康和环境的危害很大。化学农药对环境的污染和由此带来的食品安全问题已成为当今世界各国关注的热点,用生物拮抗控制水果采后病害是替代或减少化学药剂使用的有效途径和发展方向。
     本研究从多种途径分离筛选拮抗并确定其生物学分类地位,筛选到生防效果性能优良的种。研究了生物防治拮抗株的生物安全性,并对生防拮抗商品化制剂的生产工艺和保藏方法进行了初步的探讨。得到了如下的结论:
     (1)通过体外试验和活体试验筛选,酵母Y20和Y21,对梨果灰霉病(Botrytis cinerea)、桃果青霉病(Penicillium expansum)两种病原表现出较好的抑效果。对Y20和Y21三株株进行形态特征、营养特征和生理特性试验以及DNA分子序列测定,鉴定Y20为胶红酵母(Rhodotorula mucilaginosa),Y21为接合酵母(Zygoascus hellenicus)。目前,尚未见到Y20和Y21两种酵母在采后病害生物防治应用中的报道。
     (2)酵母Y20和Y21两株株的生长速度很快,没有明显的迟滞期。Y20和Y21两种拮抗酵母都能显著地抑制梨果的灰霉病和青霉病,在1×107CFU/mL、1×108CFU/mL和1×109CFU/mL的浓度下都能显著降低梨果的腐烂率,且酵母浓度越高效果越好。拮抗酵母在1×108CFU/mL浓度下对梨果灰霉病和青霉病具有稳定的生防效果。拮抗酵母Y20、Y21(浓度1×108CFU/mL)处理的梨果,在常温下(20℃)放置45d后,梨果实的发病率显著低于对照组,并且不会对梨果的贮藏品质造成不良的影响。
     (3)急性经口毒性试验研究表明,胶红酵母Y20和接合酵母Y21经口急性毒性的MTD>21.5g/kg,根据GB15193.3-2003附录急性毒性剂量分级表的规定,均无毒级。Ames试验、小鼠骨髓嗜多染红细胞微核试验、小鼠精子畸形试验等遗传毒性试验表明,胶红酵母Y20和接合酵母Y21对小鼠无致畸、致突变作用。在30d喂养试验中,没有发现拮抗酵母对小鼠生长,血液常规指标、理化指标、生理功能以及主要器官组织(肝脏、脾脏、肾脏等)产生不良影响。
     (4)用廉价的糖蜜为原料对Y20进行培养基的优化,均匀试验的结果表明以最优的培养基组合:糖蜜16.58%,硫酸镁0.05%,磷酸二氢钾0.05%,尿素0.3%培养酵母,可以得到最大生物量1.402g/100mL
     (5)对Y20和Y21的冻干保藏制剂的研究表明,Y20和Y21在6个月内的活性可以保持在储藏前的75.6%以上。两株酵母冻干粉贮藏在4℃的条件下,可以在6个月内保持良好的生物活性。对Y20和Y21液体保藏制剂的研究表明,在室温20℃、4℃保存条件下的Y20悬液保存效果最好组为:10%海藻糖、0.0176%Vc和PBS混合保存液体。在室温20℃、4℃保存条件下的Y21悬液保存效果最好组为:5%海藻糖、0.0176%Vc和PBS混合保存液体。
     (6)Y20和Y21保藏期内对梨果腐烂发病率的研究结果表明,无论采用冻干保藏还是液体保藏的体制剂,对于梨果的病害仍然具有良好的生防效果。
     综上所述,拮抗酵母Y20和Y21作为梨果采后病害生物防治拮抗,为梨果采后病害生物防治提供了两株生防性能优良的株。通过对拮抗酵母Y20和Y21生防效果研究、安全性研究、商品化工艺的研究表明两株酵母的生物防治效果显著,安全无毒,具备商品化应用的潜质,为拮抗酵母Y20和Y21在水果采后生物保鲜技术的研究、株安全性研究以及商品化应用奠定了基础。
A huge loss has been made by spoilage in the course of fruit picking, distribution and storage, which is also globally concerned. In developed countries,10-30% fresh fruits perished caused by postharvest disease, while this number was up to 40-50% in developing countries, where the freezing storage and transportation facilities are limited.
     At present, effective control methods of low temperature and synthetic fungicide treatment are most commonly used. Although refrigeration technology was widely developed in our country recent years, there was still a considerable number of pathogens could grow on fruits and result in decay under low temperature storage. Synthetic fungicide treatment was significantly effective, but it killed both of the pathogens and the beneficial microorganisms. Moreover, fungicide residues do great harm to human health and the environment. Environmental pollution caused by chemical pesticides and the resulting food safety problem has become the focus of attention around the world. To control postharvest diseases of the fruits and vegetables, antagonistic bacteria and yeasts has became an effective way to substitute or reduce the using of synthetic agents and has been proved to be the new developing trend.
     In this research, the antagonistic bacteria and yeasts were isolated, screened and identified with various methods. The research has discovered strains with excellent biocontrol effect. The biological safety of the antagonistic strains was investigated and the production processes of their commercial preparation as well as the preservation method were preliminary discussed. Main conclusions of the research are as follows:
     (1) The antagonistic yeast Y20 and Y21 were sieved by in virto and in vivo experiments which were tested to show preferable antibacterial effect to pathagens of Botrytis cinerea in pears and Penicillium expansum in peachs. Experiments on morphological characteristics, nutritional characteristics and physiological characteristics as well as the DNA molecule sequencing analysis of Y20 and Y21 were conducted. The results identified that Y20 is Rhodotorula mucilaginosa and Y21 is Zygoascus hellenicus. There is no report on these two kinds of yeasts (Y20, Y21) used in postharvest diseases control currently.
     (2) The two strains of Y20 and Y21 grow up fast without apparent lagging period. The gray mold and blue mold in pome fruit were significantly inhibited by antagonistic yeasts Y20 and Y21. The fruits'disease incidence could be prominently reduced at the concentration of 1×107CFU/mL, 1×108CFU/mL and 1×109CFU/mL, and the higher the yeast concentration was the better the effect was. Antagonistic yeast B19 at the concentration of 1×108CFU/mL had a stable biocontrol effect on gray mold and blue mold in pome fruit. Treated by antagonistic yeasts Y20 and Y21(1×108CFU/mL), then stored at room temperature(20℃) for 45 days, the desease incidence of pome fruit was remarkablely lower than that of the control fruit, and had no adverse effect was found on storage quality of the fruits.
     (3) Acute oral toxicity test indicated that the acute peroral toxicity MTD of yeastsY20 and Y21>21.5g/kg. Based on acute toxicity dose classification of the GB15193.3-2003 appendix, Y20 and Y21 both belonged to non-toxic level. Ames test, mouse bone marrow cells, micronucleus test, mouse sperm abnormality test and other genetic toxicity tests showed that Y20 and Y21 yeasts had no teratogenic and mutagenic effect to mice. In the 30-day feeding trial, no harmful effects of antagonistic yeas were found on mice's growth, normal blood index, physicochemical index, physiological functions and major organs and tissues (liver, spleen, kidney, etc.).
     (4) Optimizeing Y20 medium using cheap molasses, uniform experimental result showed that using the optimal medium combination:16.58% of molasses, 0.05% of magnesium sulfate,0.05% of potassium dihydrogen phosphate and 0.3% of urea to conduct yeast culture could get the maximum biomass 1.402g/100mL.
     (5) Research on freeze-dried agent of Y20 and Y21 indicated that the activity of Y20 and Y21 could be maintained over 75.6% within 6 months. Stored at 4℃, the biological activity of the two yeasts'freeze-dried powder could be well kept within 6 months. Research on Y20 and Y21's liquid agent showed that under the condition of 20℃and 4℃, the best storage group of Y20 was 10% of trehalose,0.0176% of Vc and PBS mixing liquid, and the best storage group of Y21 was 5% of trehalose, 0.0176% of Vc and PBS mixing liquid.
     (6) During the storage period of Y20 and Y21, research on the rotten incidence of pome fruit indicated that both of the freeze-dried and liquid storage bacterial agents had a good effect on the diseases of pome fruit.
     In summary, as postharvest disease biocontrol antagonists of pome fruit, antagonistic yeast Y20 and Y21 have significant and safe control effect. Research on biocontrol effect, safety, and commercialization technology indicated that the two antagonistic yests of Y20 and Y21 were effective, security and has the potential of commercial application. This research lay a good foundation for studies of postharvest biocontrol preservation, security of strains and commercialization of antagonistic yests of Y20 and Y21.
引文
[1]范青,田世平,徐勇.丝孢酵母对苹果采后灰霉病和青霉病抑制效果的影响[J].中国农业科学.2001.34.(2):163-168
    [2]Zahavi T, Cohen L, Weiss B. Biological control of Botrytis, A spergillums and Rhizopus rots on table and wine grapes in Israel [J]. Postharvest Biology and Technology.2000.20:115-124
    [3]Wilson C L, Wisniewki M E. Biological Control of Postharvest Diseases of Fruits and Vegetables-Theory and Practice [J]. Boca Raton, Florida, USA, CRC, Press.1994
    [4]Jones R W, Prusky D. Expression of an antifungal peptide in Saccharomyces:Anew approach for biological control of the postharvest disease caused by Colletotrichum coccodes [J]. Physiopatholgy.2002.92(1):33-37
    [5]范青,田世平.水果采后生物防治进展[J].植物科学进展.2000.202-217
    [6]Cursey D G, Booth R H.The postharvest pHytopathology of perishable tropicalproduce [J]. Annual Review of PHytopathology.1972.51:751-765
    [7]EI-Ghaouth A, Wilson C L. Biologically based technologies for the control of postharvest diseases [J]. Postharvest News and Information.1995.6:5-11
    [8]张红印,蒋益虹,郑晓东,等.酵母对水果采后病害防治的研究进展[J].农业工程学报,2003.19(4):23-27.
    [9]Wilson C L, Wisniewki M E. Biological Control of Postharvest Diseases [J]. Annual Review of PHytopathology.1989.27:425-441
    [10]Eckert J W, Ogawa J M. The chemical control of postharvest diseases:Deciduous fruits, berries, vegetables and root tuber crops [J]. Annual Review of PHytopathology.1988.26:433-469
    [11]Palou L, Smilanick J L, Usall J, et al. Control of postharvest blue and green molds of oranges by hot water, sodium carbonate, and sodium bicarbonate[J]. Plant Disease.2001.85:371-376
    [12]Palou L, Usall J, A.Munoz J, et al. Hot water, sodium carbonate, and sodium bicarbonate for the control of postharvest green and blue molds of clementine mandarins[J]. Postharvest Biology and Technology.2002.24:93-96
    [13]Benbow J M, Sugar D. Fruit surface colonization and biological control of postharvest disease of pear by preharvest yeast applications [J]. Plant Disease.1999.83:839-844
    [14]Fan Q, Tian S P. Biological control of postharvest brown rot in peach and nectarine fruits by Bacillus subtilis (B-912) [J]. Acta Botanica Sinica.2000.42:1137-1143.
    [15]Fan Q, Tian S P. Postharvest biological control of Rhizopus rot of nectarine fruits by Pichia membranefaciens [J]. Plant Disease.2000.84:1212-1216.
    [16]李艳萍,郑服丛.草莓果实采后病害及保鲜技术[J].热带农业科学.2002.22(2):64-49
    [17]张维一,毕阳.水果采后病害与控制[J].北京.中国农业出版社.1994:10-23
    [18]Brodhagen M, Keller N P. Signaling pathways connecting mycotoxin production and Sporulation [J]. Molecular Plant Pathology.2006.7:285-301
    [19]Dombrink-Kurtzman M A, Blackburn J A. Evaluation of several culture media for production of patulin by Penicillium species [J]. International Journal of Food Microbiology.2005.98: 241-248
    [20]Martins M L, Gimeno A, Martins H M, et al. Co-occurrence of patulin and citrinin in Portuguese apples with rotten spots [J]. Food Additives and Contaminants.2002.19:568-574
    [21]Morales H, Marin S, Rovira, A, et al. Patulin accumulation in apples by Penicillium expansum during postharvest stages [J]. Letters in Applied Microbiology.2007.44:30-35
    [22]Latorre B A, Spadaro I, Rioja M E. Occurrence of resistant strains of Botrytis cinerea to anilinopyrimidine fungicides in table grapes in Chile [J]. Crop Protection.2002.21:957-961
    [23]Wilson C L, Wisniewki M E. Biological Control of Postharvest Diseases of Fruits and Vegetables:rencent advances [J]. Hort Science.1992.27:94-98
    [24]Nunes C, Usall J, Teixido N, et al. Post-harvest biological control by Pantoea agglomerans (CPA-2) on Golden Delicious apples [J]. Journal of Applied Microbiology.2002.92:247-255
    [25]Zhou T, Northover J, Schneider K E, et al. Interactions between Pseudomonas synngae MA-4 and cyprodinil in the control of blue mold and gray mold of apples [J]. Can.J.Plant Pathology.2002.24:154-161
    [26]Mercier J, Jimenez J I. Control of fungal decay of apples and peaches by the Biofumigant fungus Muscodor albus [J]. Postharvest Biology and Technology.2004.31:1-8
    [27]El-Neshawy S M, Wilson C L. Nisin enhancement of biocontrol of postharvest diseases of apple with Candida oleopHila [J]. Postharvest Biology and Technology.1997.10:9-14
    [28]Vero S, Mondino P, Burgueno J, et al. Characterization of biocontrol activity of two yeast strains from Uruguay against blue mold of apple [J]. Postharvest Biology and Technology.2002.26:91-98
    [29]Droby S, Wisniewski M, Ghaouth A E, et al. Influence of food additives on the control of postharvest rots of apple and peach and efficacy of the yeast-based biocontrolproduct Aspire [J]. Postharvest Biology and Technology.2003.27:127-135
    [30]Zheng X Y.Sinclair J B. The effects of traits of Bacillus megaterium on seed and root colonization and their correlation with the suppression of Rhizoctonia root rot of soybean [J]. Biological Control.2000.45(2):223-243
    [31]Kim D S, Cook R J, Weller D M. Bacillus sp.L324-92 for biological control of three root diseases of wheat grown with reduced tillage [J]. PHytopathology.1997.87(5):551-558.
    [32]廖晓兰,罗宽.油菜花上细的分离及其对的拮抗作用[J].湖南农业大学学报.2000.16(4):296-298
    [33]Chalutz E, Wilson C L. Postharvest biocontrol of green and blue mold and sour rot of citrus fruit by Debaryomyces hansenii [J]. Plant Diseas.1990.74:134-137
    [34]Benbow J M, Sugar D. Fruit surface colonization and biological control of postharvest diseases of pear by prehar-vest yeast applications [J]. Plant Diseases.1999.9:839-843
    [35]Zahavi T, Cohen L, Weiss B. Biological control of Botrytis, Aspergillus and Rhizopus rots on table and wine grapes in Israel [J]. Postharvest Biology and Technology.2000.20.115-124
    [36]Karabulut O A, Baykal N. Biological Control of Postharvest Diseases of Peaches and Nectarines by Yeasts [J]. PHytopathology.2003.151:130-134
    [37]Tian S P, Qin G Z, Xu Y. Survival of antagonistic yeasts under field conditions and their biocontrol ability against postharvest diseases of sweet cherry [J]. Postharvest Biology and Technology.2004.33:327-331
    [38]Zhang H Y, Zheng X D, Fu C X. Postharvest biological control of gray mold rot of pare with Cryptococcus laurentii [J]. Postharvest Biology and Technology.2005.35:79-86
    [39]El-Ghaouth A,Smilanick J L,Brown G E, et al. Control of Decay of Apple and Citrus Fruits in Semicommercial Tests with Candida saitoana and 2-Deoxy-D-glucose [J]. Biological Control.2001.20:96-101
    [40]Droby S, Chalutz E. Mode of action of biocontrol agents for postharvest diseases [J]. Biological control.1994:63-75
    [41]Sugar D, Spotts R A. Control of postharvestdecay in pear by four laboratery grown yeasts and two registered biocontrol products [J]. Plant Diseases.1999.83:155-158
    [42]武峥.防治苹果采后病害拮抗酵母的分离、筛选及其抑效果的研究[M].华中农业大学.2005.6:30
    [43]张红印.罗伦隐球酵母对水果采后病害的生物防治及其防治机理研究[M].浙江大学.2004:2-3
    [44]Zheng X D, Zhang H Y, Sun P. Biological control of postharvest green mold decay of oranges by Rhodotorula glutinis [J]. European Food Research and Technology.2005.220:353-357.
    [45]B. Guijarro, P. Melgareio, A. De Cal. Influence of additives on adhesion of Penicillium frequentans conidia to peach fruit surfaces and relationship to the biocontrol of brown rot caused by Monilinia laxa [J]. International Journal of Food Microbiology.2008.126:24-29
    [46]Ting Zhou, Karin E, Xiu-Zhen Li. Development of biocontrol agents from food microbial isolates for controlling post-harvest peach brown rot caused by Monilinia fructicola [J].International Journal of Food Microbiology.2008.126:180-185
    [47]Ting Yu, Jishuang Chen, Rongle Chen. Biocontrol of blue and gray mold diseases of pear fruit by integration of antagonistic yeast with salicylic acid [J]. nternational Journal of Food Microbiology.2007.116:339-345
    [48]Yonas Kefialew, Amare Ayalewb.Postharvest biological control of anthracnose (Colletotrichum gloeosporioides) on mango (Mangifera indica) [J]. Postharvest Biology and Technology.2008.50:8-11
    [49]Y.A. Batta. Postharvest biological control of apple gray mold by Trichoderma harzianum Rifai formulated in an invert emulsion [J]. Crop Protection.2004.23:19-26
    [50]Fravel D R. Role of antibiosis in the biocontrol of plant diseases [J]. Annual Review of PHytopathology.1988:26-75
    [51]Spadaro D, Vola R, Piano S, Gullino M L. Mechanisms of action and efficacy of four isolates of the yeast Metschnikowia pulcherrima active against postharvest pathogens on apples [J]. Postharvest Biology and Technology.2002.24:123-134
    [52]Wszelaki A L, Mitcham E J. Effect of combinations of hot water dips biological control and controlled atmospHeres for control of gray mold on harvested strawberries [J]. Postharvest Biology and Technology.2003. (27):255-264
    [53]Droby S,Wisniewski M,Ghaouth A E, et al.Influence of food additives on the control of postharvest rots of apple and peach and efficacy of the yeast-based biocontrol product Aspire[J]. Postharvest Biology and Technology.2003. (27):127-135
    [54]李萌,张海涛,虞星炬,等.蔬菜内生的分离及其生防功能初探[J].江苏农业科学.2003.5:60-64
    [55]Schema L, Ippolito A, Zahavi T, et al. Genetic diversity and biocontrol activity of Aureobasidium pollutants isolates against postharvest rots [J]. Postharvest Biology and Technology,1999.17:189-199
    [56]Nunez C, Usall J, Teixido N, Vinas I. Biological control of postharvest pear diseases using abacterium, Pantoea agglomerans CPA-2[J]. International Journal of Food Microbiology.2001.70:53-61
    [57]宋聪.果实采后病害拮抗的分离、筛选及其抑效果的研究[M].重庆大学.2007.4:16
    [58]张纪忠.微生物分类学.上海.复旦大学出版社.1990:364-398
    [59]Lodder, Kreger-van Rij.The Yeasts, A Taxonomy Study.3rd edn, Elsevier, Amsterdam.
    [60]东秀珠,蔡妙英.常见细系统鉴定手册.北京.科学出版社.2001:409-412
    [61]周小玲,沈微,饶志明,等.一种快速提取真染色体DNA的方法[J].微生物学通报.2004.31:89-91
    [62]保健食品安全性毒理学评价规范[M].北京.中华人民共和国卫生部.2003:7-20
    [63]孙萍,郑晓冬,张红印,等.粘红酵母与金离子结合使用对柑橘采后青霉病的抑制效果[J].果树学报.2003.20:169-172
    [64]李树品,蒋千里,楚杰,等.产酸克雷伯氏(Klebsiella oxytoca)的分离及其特性的研究[J].山东科学.1991.4(3):19-25
    [65]Franco Baldi, Andrea Minacci, Milva Pepi, et al. Gel sequestration of heavy metals by Klebsiella oxytoca isolated from iron mat [J]. FEMS Microbiology Ecology,2001.36:169-174
    [66]Ryosuke Sugihara, Masayasu Yoshimura, et al. Prevention of collagen-induced arthritis in DBA/1 mice by oral administration of AZ-9, a bacterial polysaccharide from Klebsiella oxytoca [J]. ImmunopHarmacology.2000.49:325-333
    [67]Weidong Cui. Studies on characterization of polysaccharide from Klebsiella oxytoca and enzymatic modification of selected polysaccharides [D]. New York:State University of New York.1996
    [68]马龙传.SA、MeJA及O3增强拮抗酵母对水果采后病害的控制效应[M].江苏大学.2009.6:18-19
    [69]Larrigaudiere C, Pons J, Torres R, et al. Storage performance of Clementine's treated with hot water, sodium carbonate and sodium bicarbonate dips [J]. Hortic. Sci. Biotech.2002.77:314-319.
    [70]杨宏福,黄宛春,黄巧华.GB 12293-90水水果菜制品的可滴定酸度的测定[S].2003
    [71]Reissig J L, Strominger J L, Leloir L F.A modified colorimetric method for the estimation of N-acetylamino sugars [J]. J. Biol. Chem.1955.217:959-967.
    [72]王振,刘学敏,李立军.水果产后病害生物防治研究进展[J].东北农业大学学报.2007.10(38):685
    [73]Madden J.M.Microbial pathogens in fresh produce---the regulatory perspective [J]. Food Prot.1992.55:821
    [74]Janisiewcz W J, Jeffers S N. Efficacy of commercial formulation of two biofungicides for control of blue mold and gray mold of apple in cold storage [J]. Crop Pretection.1997.16:629-630
    [75]Appel D J, Grees R, Coffey M D. Biological control of the postharvest pathogen Penicillium digitiatum on Eureka lemons [J]. PHytopathol.1988.78:1593
    [76]Rammelsburg M, Radler F.Antibacterial polypeptides of Lactobacillus specie [J]. Appl. Bacterial.1990.69:177
    [77]王雷,姜松,张红印,等.罗伦隐球酵母冻干粉在贮藏期的活性及安全性研究[J].食品研究与开发.2006.27(6):162-164
    [78]刘密凤,彭双清,盛治国,等.7种化合物细胞毒性与小鼠急性毒性的相关性研究[J].中国临床药理学与治疗学.2008.Jan.13:42-45
    [79]保健食品检验与评价技术规范[M].北京.中华人民共和国卫生部.2003:177-204
    [80]戴寅,马凤楼,郭世萍.GB 15193.3-2003急性毒性试验[S].2003
    [81]戴寅,丁兰,金钟初,等.GB 15193.4-2003鼠伤寒沙门氏哺乳动物微粒体酶试验[S].2003
    [82]李厚勇,王蕊,高晓奇,等.YF 21杀剂对小鼠致畸作用研究[J].环境与职业医学.2002.2(19):106-107
    [83]陈永红,邹志飞,王岚,等.曲酸对动物的毒性研究及安全性评价[J].食品科学.2007.28(09):536-538
    [84]徐凤丹,韩驰,赵硕.GB 15193.05-2003骨髓细胞微核试验[S].2003
    [85]徐晋康,龚幼菊,陈似兰.GB 15193.7-2003小鼠精子畸形试验[S].2003
    [86]Andy Pickett, Roderic O'Keeffe, Andy Judge, et al. The in vivo rat muscle force model is a reliable and clinically relevant test of consistency among botulinum toxin preparations [J]. Toxicon.2008.52:455-464
    [87]Chintan Patel, Paresh Dadhaniya, Lal Hingorani, et al. Safety assessment of pomegranate fruit extract:Acute and subchronic toxicity studies [J]. Food and Chemical Toxicology.2008.46:2728-2735
    [88]戴寅,徐晋康,姚小曼.GB 15193.13-2003 30天和90d喂养试验[S].2003
    [89]Thomas P. Monath, Gwendolyn A. Myers, et al. Beck. Safety testing for neurovirulence of novel live attenuated flavivirus vaccines:Infant mice provide an accurate surrogate for the test in monkeys [J]. Biologicals.2005.33:131-144
    [90]Carmines E L, Lemus R, Gaworski C L. Toxicologic evaluation of licorice extract as a cigarette ingredient [J]. Food and Chemical Toxicology.2005.43:1303-1322
    [91]Frances G. Boyle, Jacqueline M. Wrenn, et al. Safety evaluation of oligofructose:13 Week rat study and in vitro mutagenicity [J]. Food and Chemical Toxicology.2008.46:3132-3139
    [92]王心如.毒理学试验方法与技术[M].北京:人民卫生出版社.2003:59-62
    [93]丁晓斐,陈宗道.柑橘皮水提取液急性毒性和致突变性[J].癌变·畸变·突变.2005.17(6):383-384
    [94]邱逸斯,于莉.采后水果病害生物防治研究进展.中国农学通报.2006.22(9):351-352
    [95]Jia Liu, Shi-Ping Tian, Bo-Qiang Li, et al. Enhancing viability of two biocontrol yeasts in liquid formulation by applying sugar protectant combined with antioxidant [J]. Biological Control. Published online.2009.9
    [96]杨卫明,桑文毅.糖蜜酒精连续发酵最佳工艺条件的选择[J].中国甜菜糖业.2007.1:47-48
    [97]李宁,柯晓静,林杨,等.产β-胡萝卜素红酵母的筛选及其发酵废糖蜜的研究[J].农产品加工学刊.2009.6(6):42-45
    [98]朱明军,杜顺堂,梁世中.红发夫酵母以糖蜜为原料的培养基优化[J].河南工业大学学报(自然科学版).2005.26(1):32-35
    [99]解玉红,郑岩,丁宏亮,等.酒精发酵培养基优化过程中两种试验设计方法的比较研究[J].酿酒科技.2009.6:20-23
    [100]黄时海,李灿明,夏小斌,等.甘蔗糖蜜发酵生产麦角固醇工艺研究[J].食品工业科技.2009.(4):147-149
    [101]高世伟,王欢,阎英凯,等.一株红酵母的色素分析及发酵条件优化[J].食品科技.2008.1:10-12
    [102]陶申傲,蔡永峰,岳国海,等.采用均匀设计法优化榆耳液态发酵培养基的研究[J].食品与发酵工业.2008.34(1):73-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700