用户名: 密码: 验证码:
转基因毛白杨试管苗气孔运动调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛白杨(Populus tomentosa Carr.)属杨柳科(Salicaceae)杨属(Populus L.)白杨派(Sect.Populus)树种,因其生长快、适应性强、树干通直挺拔、树型优美而在城乡环境绿化美化和工农业用材中发挥了重要作用,通过组织培养快速繁殖良种已是目前广泛应用的技术,但试管苗长期在高湿、弱光、恒温、无风的条件下生长,其气孔的形态和生理与自然条件下生长的植株明显不同,并直接影响试管苗的移栽成活率。本文利用指甲油涂抹撕取法对转基因毛白杨试管苗与10年生植株叶片下表皮气孔密度、气孔大小、气孔开度日变化、气孔开张率日变化进行了较为系统的研究,同时从离体和活体两个方面研究了萎蔫、H2O2、CaCl2、ABA、SA、乙烯利、黑暗、培养基中不同浓度ABA、培养基中不同浓度CaCl2、培养基中糖对试管苗气孔开度的影响。本研究对于进一步了解试管苗气孔运动机制及调控具有重要理论意义和实际应用价值。主要研究结果如下:
     1.转基因毛白杨试管苗叶片下表皮气孔密度为255.10个/mm2,10年生植株叶片下表皮气孔密度为374.15个/mm2,试管苗叶片下表皮气孔密度小于10年生植株,二者差异达0.01极显著水平。
     2.转基因毛白杨试管苗叶片下表皮气孔大小为610.86μm2,10年生植株叶片下表皮气孔大小为112.97μm2,试管苗叶片下表皮气孔明显比10年生植株气孔大,二者差异达0.01极显著水平。
     3.转基因毛白杨试管苗叶片下表皮气孔开度在60.53~92.17μm2之间变化,10年生植株则在16.70~18.74μm2之间变化,试管苗叶片下表皮气孔开度大于10年生植株。4.转基因毛白杨试管苗叶片下表皮气孔开度的变化明显,最小值与最大值之比约为0.66:1,日变化呈明显波峰状,两个高峰分别出现在9:00和15:00;10年生植株叶片下表皮气孔开度的变化很小,最小值与最大值之比约为0.89:1,日变化曲线平稳,无明显波动。
     5.转基因毛白杨试管苗叶片下表皮气孔开张率在一昼夜均为100%,10年生植株叶片下表皮气孔开张率在一昼夜的变化呈双曲线,气孔开张率在两高峰处低于100%,晚上21:00到第二天凌晨3:00气孔张开率为0%。
     6.转基因毛白杨试管苗在离体状态下,萎蔫、H2O2都能使转基因毛白杨试管苗叶片下表皮气孔开度降低,但是均不能促进其气孔关闭;Ca2+、ABA、SA、乙烯利在浓度分别达到1mol?L-1、200μmol?L-1、0.1mmol?L-1、0.4%时均可诱导转基因毛白杨试管苗叶片下表皮气孔关闭。
     7.转基因毛白杨试管苗在活体状态下,连续黑暗、0.5mg?L-1~3mg?L-1的ABA不能促进转基因毛白杨试管苗叶片下表皮气孔关闭;37.8g?L-1的CaCl2可诱导其气孔关闭;转基因毛白杨无糖试管苗与有糖试管苗相比,叶片下表皮气孔开度降低,气孔的关闭率为83%。
Populus tomentosa Carr. is a native species of section populus China. It plays an important role in the urban and rural environmental afforestation and industrial and agricultural material as its fast growth, the adaptability with the straight trunk and beautiful shapes. Rapid propagation of improved varieties through tissue culture is a widely used technology, however, the long-term growth of tube seedlings in high humidity, weak light, temperature, no wind conditions make its stomatal morphology and physiology significantly different from that of plants grown under natural conditions, this affacts the survival rate of transplanations of tube seedlings. With nail polish, the change of stomatal density, stomatal size, the daily variation of stomatal aperture, the daily variation of stomatal open percentage of the leaves’lower epidermis of tube seedlings and the 10 years plant of transgenic Populus tomentosa Carr. were compared, and the effect of wilting, H2O2, Ca2+, ABA, SA, ethrel, darkness, different concentrations of ABA in medium, different concentrations of CaCl2 in medium, tube seedlings grown in medium without sugar on stomatal aperture were studied, and analyzed the reason of abnormal stomatal behavior. It is important for the further understanding of the guard cells signal transduction pathways and the mechanisms of tube seedlings. The main results were as follows:
     1. Stomatal density of the leaves’lower epidermis of tube seedlings of transgenic Populus tomentosa Carr. was 255.10/mm2, stomatal density of the leaves’lower epidermis of the 10 years plant was 374.15/mm2, tube seedlings’stomatal density was less than that of the 10 years plant, there was a significant difference in stomatal density between tube seedlings and the 10 years plant.
     2. Stomata of the leaves’lower epidermis of tube seedlings of transgenic Populus tomentosa Carr. was 610.86μm2, stomata of the leaves’lower epidermis of the 10 years plant was 112.97μm2, tube seedlings’stomata was obviously larger than that of the 10 years plant, there was a significant difference in stomata between tube seedlings and the 10 years plant.
     3. Stomatal aperture of the leaves’lower epidermis of tube seedlings of transgenic Populus tomentosa Carr. was 60.53~92.17μm2, stomatal aperture of the leaves’lower epidermis of the 10 years plant was 16.70~18.74μm2, stomatal aperture in tube seedlings was greater than that in the 10 years plant.
     4. The changes of stomatal aperture of the leaves’lower epidermis of tube seedlings of transgenic Populus tomentosa Carr. was evident, the ratio of minimum and maximum was about 0.66:1, changes of stomatal aperture during 24 hours appeared wave crest, the two peaks of stomatal aperture were 9:00 and 15:00; the changes of stomatal aperture of the leaves’lower epidermis of the 10 years plant was not evident, the ratio of minimum and maximum was about 0.89:1, changes of stomatal aperture during 24 hours was steady and no evident fluctuation.
     5. Stomatal open percentage reached 100% in tube seedlings of transgenic Populus tomentosa Carr. during a day, a bimodal curve change was observed in stomatal open percentage of the 10 years plant.
     6. In vitro, wilting , H2O2 can reduce stomatal aperture, but not promote stomatal closing; the Ca2+, ABA, SA, ethrel can induce stomatal closing when their concentration were respectively 1mol?L-1、200μmol?L-1、0.1mmol?L-1、0.4%.
     7. In vivo, continuous darkness, ABA in medium can not promote stomatal closing when their concentration were 0.5mg?L-1~3mg?L-1; CaCl2 in medium can induce stomatal closing when their concentration were 37.8g?L; tube seedlings grown in medium without sugar compared with tube seedlings grown in medium with sugar, stomatal aperture of tube seedlings grown in medium without sugar was reduced, stomatal close percentage of tube seedlings grown in medium without sugar were 83%.
引文
[1]Raschke K. In Haupt W. and Feinleib M. E. eds, Physiology of movements, Encyclopedia of Plant Physiology, n.S, 1979, 7:383-441, Berlin: Springer-Verlag.
    [2]Willmer C, Fricker M. Stomata (second edition) [M].London: Chapman and Hall,1996,126- 160.
    [3]Mott K A, Gibson A C, O’leary J W. The adaptive significance of amphistomatous leaves [J]. Plant Cell Environ, 1982, 5:455-460.
    [4]江苏农学院.植物生理学(农学类专业用)[M].农业出版社,1986.
    [5]Zeiger E. The biology of stomatal guard cells [J].Annu Rev Plant Physiol, 1983, 34:441-475.
    [6]王忠.植物生理学[M].北京:中国农业出版社,2000,66.
    [7]廖建雄,王根轩.植物的气孔振荡及其应用前景[J].植物生理学通讯,2000,36(3):272-275.
    [8]潘瑞炽.植物生理学(第四版)[M].北京:高等教育出版社,2001:17-21.
    [9]刘新,孟繁霞,张蜀秋,等.气孔保卫细胞信号转导中的第二信使[J].植物生理学通讯,2001,37(6):556-561.
    [10]Assmann S M. Signal transduction in guard cells [J].Annu Rev Cell Btol,1993,9:345-375.
    [11]Blatt M R, Grabov A. Signaling gates in abscisic acid-mediate control of guard cell ion channels[J].Physiol Plant,1997,100:481-490.
    [12]曹更生,宋纯鹏.气孔保卫细胞信号转导途径[J].植物生理学通讯,1997,33(3):219-225.
    [13]Cousson A, Cotelle V, Vavasseur A. Induction of stomatal closure by vanadate or a like/ dark transition involves Ca2+-Calmodulin-ependent protein phosphory-lations[J].Plant Pliysiol, 1995,109:491-497.
    [14]Schroeder J I, Allen G J, Hugouvieux V, et al. Guard cell signal transduction [J].Annual Review of Plant Physiology and Plant Molecule Biology,2001,52:627-658.
    [15]Anthony J M, Dale S. Depletion of cytosolic free calcium induced by photosynthesis[J]. Nature,1987,326(26):397-399.
    [16]Michael J H, William H O. Rapid adjustment of guard cell abscisic acid level to current leaf- Water status[J].Plant physiol,1991,95:171-173.
    [17]王恒彬,王学臣,陈伽,等.蚕豆保卫细胞原生质体质膜ABA结合蛋白与气孔对ABA敏感性的关系[J].植物学报,1997,39(2):126-129.
    [18]She X P, Song X G, He J M. The role and relationship of nitric oxide and hydrogen peroxide in Light/dark-regulated stomatal movement in Vicia faba.[J].Acta Botanica sinica,2004, 46(11):1292-1300.
    [19]宋喜贵.过氧化氢和一氧化氮在光/暗与激素调控的蚕豆气孔运动中的作用及相互关系研究[D].西安:陕西师范大学硕士学位论文,2005.
    [20]郭林英.H2O2、NO、Ca2+和PK在光/暗调控蚕豆气孔运动中的作用及其相互关系[D].西安:陕西师范大学硕士学位论文,2006.
    [21]Kaiser H, Kappen L. In situ observations of stomatal movements in different light-dark regimes: the influence of endogenous rhythmicity and long-term adjustments [J].Journal of Experimental Botany, 1997, 48:1583-1589.
    [22]Teramura A H, Tevini M, Iwanzid W. Effects of ultraviolet-B irradiation on plants during mild water stress. l .Effects on diurnal stomatal resistance [J].Physiol Plant,1983,57:175-180.
    [23]Allen D J, Nogues S, Morison J l L, et al. A thirty percent increase in UV-B has no impact on photosynthesis in well-watered and droughted pea plants in the field[J].Global Change Biol ,1999,5:235-244
    [24]Nogues S, Allen D J, Morison J I L , et al. Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants [J].Plant physiol,1998,117: 173-181.
    [25]HE J M, XU H, SHE X P, et al. The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean. [J]. Functional Plant Biology ,2005,32(3):237-247.
    [26]Musil C F, Wand S J E. Responses of sclerophyllous Ericaceae to enhanced level of ultraviolet-B radiation[J].Environ Exp Bot,1993, 33:233-242.
    [27]Eisinger W R, Swartz R E, Bogomolni R A, et al. The ultraviolet action spectrum for stomatal opening in broad bean[J].Plant Physiology,2000,122:99-105.
    [28]Jansen M A K, Noort R E V D. Ultraviolet-B radiation induces complex alterations in stomatal behaviour [J].Physiologia Plantarum,2000,110:189-194.
    [29]Eisinger W R, Swartz R E, Bogomolni R A, et al. The ultraviolet action spectrum for stomatal opening in broad bean [J].Plant physiology ,2000, 122:99-105.
    [30]Eisinger W R, Swartz R E, Bogomolni R A, et al. Interactions between a blue-green reversible photoreceptor and a separate UV-B receptor in stomata guard cells[J].American Journal of Botan,2003,90:1560-1556.
    [31]Nogues S, Allen D J, Morison J I L, et al. Characterization of stomatal closure caused by ultraviolet-B radiation[J].plant physiology,1999,121:489-496.
    [32]Assmann S M. The cellular basis of guard cell sensing of rising CO2 [J].Plant Cell Environ, 1999,22:629-637.
    [33]Drake B G, Gonzalez-Meler M A, Long S R. More efficient Plants: a consequence of rising Atmospheric CO2? Annu. Rev Plant Physiol. Plant MoL.Biol.1997,48:609-639.
    [34]张骁,宋纯鹏,上官周平,等.保卫细胞的ABA信号转导[J].植物生理学报,2001,27(5):361- 368.
    [35]Schroeder J I, Allen G J, Hugouvieux V, et al. Guard cell signal transduction [J].Annual Review of Plant Physiology and Plant Molecular Biology,2001,52:627-658.
    [36]Allan A C, Fricker M D, Ward J L, et al. Two transduction pathways mediate rapid effects of abscisic acid in commelina guard cells [J].Plant Cell,1994,6:1319-1323.
    [37]付士磊,周永斌,王淼,等.外源NO和ABA对杨树气孔运动和SOD及POD活性的影响[J].沈阳农业大学学报, 2004-02,35(1):29-32.
    [38]周晓阳,张辉.钙依赖型蛋白激酶在ABA调控的杨树气孔运动中的作用[J].科学技术与工程,2004,4(2):80-83.
    [39]姜兆玉,王永飞.外源NO、H2O2和ABA对鸡蛋花花冠裂片上气孔关闭的影响[J].植物生理学通讯,2010,46(3):249-252.
    [40]董发才,周云,杨叶,等.ABA和H2O2在NaCl诱导的气孔关闭中的作用[J].河南大学学报(自然科学版),2002,32(3):29-32.
    [41]Davies W J, Mansfield T A. Auxins and stomata,-In: Zeiger E, Farquhar GD, Cowan IR (Eds) [C].Stomatal Function, Stanford CA, Stanford University Press,1987:293-298.
    [42]Marten l, Lohse G, Hedrich R. Plant growth hormones control voltage-dependent activity of anion channels in plasma membrane of guard cells[J].Nature,1991,353:758.
    [43]阎炜,杨利娟,王保军,等.生长素和细胞分裂素在光、暗调控气孔运动中的作用及其机制[J].陕西师范大学学报(自然科学版),2010,38(1):75-78.
    [44]张蜀秋,魏惠利.蚕豆叶片气孔对生长素和脱落酸的反应[J].中国农业大学学报,1999,4(3): 43-47.
    [45]Huang R F, Wang X C, Lou C H. Cytoskeletal inhibitors suppress the stomatal opening of Vicia fata L, induced by fusicoccin and IAA[J].Plant Scirnce, 2000,156,65-71.
    [46]Livne A, VaadiaY. Stimulation of transpiration rate in barley leaves by kinetin and gibberellic acid [J].Physiologia Plantarum,1965,18:658-664.
    [47]Incoll L D, Jewer P C. Cytokinins and stomata.-In: zeiger E, Farquhar G.D, Cowan IR(ed.): Stomatal Function[C].Stanford University Press,Stanford,1987:218-292.
    [48]Diettrich B, Mertinat H, Luckner M. Reduction of water loss during ex vitro acclimatization of micropropagated Digitalis lanata clone plants[J].Biochem Physiol Pflanz,1992,188:23-31.
    [49]Chen S L, Wang S S, Arie A, et al. Cytokinins: Moderators of Stomatal Movement in Poplar Genotypes [J].Joumal of Beijing Forestry University (English Ed.),1996,5:9-22.
    [50]Yoko Tanaka, Toshio Sano, Masanori Tamaoki, et al.. Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene Production in Arabidopsis[J].Journal of Experimental Botany,2006,57(10):2259- 2266.
    [51]张蓓,佘小平,张广斌,等.生长素、细胞分裂素对黑暗和ABA诱导蚕豆气孔关闭的抑制效应[J].作物学报,2008,34(6):1034?1041.
    [52]Levitt L K, Stein D B, Rubinstein B. Promotion of stomatal opening by indoleacetic acid and ethrel in epidermal strips of Vicia faba L [J].Plant physiology,1987,85:318-321.
    [53]Madhavan S, Chrominski A, Smith B N. Effect of ethylene on stomatal opening in tomato and carnation leaves [J].Plant Cell Physiology,1983,24:569-572.
    [54]Tissera P, Ayres P G. Endogenous ethylene affects the behavior of stomata in epidermis isolated from rust infected faba bean (Vicia faba L.) [J].Newphytol,1986,104:536.
    [55]刘新,张蜀秋.水杨酸,茉莉酸和乙烯在调控蚕豆气孔运动中的相互关系[J].植物生理学报,2000,26(6):487-491.
    [56]刘菁,刘国华,侯丽霞,等.胞质pH变化介导乙烯诱导的拟南芥保卫细胞NO产生和气孔关闭[J].科学通报,2010,55(22):2003-2009.
    [57]王娟,佘小平,郭静.乙烯和H2O2在光/暗调控气孔运动中的作用[J].陕西师范大学学报(自然科学版),2009,37(5):74-77.
    [58]刘国华,侯丽霞,刘菁,等.H2O2介导的NO合成参与乙烯诱导的拟南芥叶片气孔关闭[J].自然科学进展,2009,19(8):841-851.
    [59]Tanaka Y, Sano T, Tamaoki M, et al. Cytokinin and auxin Inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis [J].J.ExP.Bot.2006, 57:2259-2266.
    [60]Frommhold I. Effect of ethephon on stomatal opening in detached epidermal strips of tobacco Leaves (Nicotiana tabacum L. cv. Samsun) [J].1982,24(4):303-306.
    [61]刘新,张蜀秋,孟繁霞.不同条件下水杨酸对蚕豆气孔开度的影响[J].应用与环境生物学报,1999, 5(6):638-639.
    [62]Agrios G N. Plant Pathology, 4th edn. San Diego: Academic Press, 1997:46-52.
    [63]Klessig D F, Malamy J. The salicylic acid signal in plants [J].Plant Mol Biol, 1991, 204 (26): 1439-1458.
    [64]刘新,张玉娜.水杨酸及其衍生物对蚕豆气孔开闭的影响[J].莱阳农学院学报,1999,16(2): 104-106.
    [65]刘新,孟繁霞,张蜀秋,等.Ca2+参与水杨酸诱导蚕豆气孔运动时的信号转导[J].植物生理与分子生物学学报,2003, 29(1):59-64.
    [66]杨国辉,车永梅,刘新,等.酪氨酸蛋白磷酸酶(PTPase)参与水杨酸调控蚕豆气孔运动的信号转导[J].植物生理学通讯,2007,43(1):81-84.
    [67]陈珍,陈彤.外源水杨酸介导Cu2+对蚕豆气孔运动的调控研究[J].安徽农业科学,2007,35 (10):2874-2875,2880.
    [68]李凤玲,何金环.水杨酸对蚕豆保卫细胞气孔运动及质膜内向K+电流的影响[J].西北农林科技大学学报(自然科学版),2009,37(7):191-198.
    [69]刘新,张蜀秋,娄成后.一氧化氮参与水杨酸对蚕豆气孔运动的调节[J].科学通报,2003, 48(1):60-63.
    [70]Gehring C A, Irving H R, McConchie R, et al. Jasmonates induce intracellular alkalinizaton and closure of Paphiopedilum guard cells [J].A nn Bot,1997,80:485-489.
    [71]Reinbothe M H. JA induction and the response to water stress [J].Physiol Plant,1992,86:49-56
    [72]刘新,张蜀秋,娄成后,等.Ca2+参与茉莉酸诱导蚕豆气孔关闭的信号转导[J].实验生物学报,2005,38(4):297-302.
    [73]Kenton P, Mur L, Draper J.A requirement for calcium and protein phosphatase in the jasmonate-induced increase in tobacco leaf phosphatase specific activity [J].J Exp Bot,1999, 50(337):1331-1341.
    [74]刘新,石武良,张蜀秋,等.一氧化氮参与茉莉酸诱导蚕豆气孔关闭的信号转导[J].科学通报, 2005,50(5):453-458.
    [75]刘新,李云,孟繁霞,等.H+参与茉莉酸调控蚕豆气孔运动的信号转导[J].植物生理学通讯, 2007,43(2):245-249.
    [76]Raghavendra A S, Bhaskar K. Action of proline on stomata differs from that of Abscisic acid, G-Substances or Methyl Jasmonate [J].Plant physiol,1987,83:732-734.
    [77]董发才,崔香环,安国勇,等.Ca2+在茉莉酸甲酯诱导拟南芥气孔关闭中的信号转导作用[J].植物生理与分子生物学学报, 2002,28(6):457-462.
    [78]崔香环,苗雨晨,董发才,等.茉莉酸甲酯诱导气孔关闭的信号转导机制初探[J].河南大学学报,2001,31(1):75-78.
    [79]杨洪强,接玉玲.植物脱落酸信号转导研究进展[J].合肥教育学院学报,2000,17(2):1-5.
    [80]杨洪强,接玉玲.以脱落酸为信使的植物逆境信号传递[J].山东农业大学学报,2001,32 (4): 549-554.
    [81]Wang X F, Zhang D P. Abscisic acid receptors: multiple signal-perception[J].Ann Bot, 2008, 101:311-317.
    [82]Razem F A, EI-Kereamy A, Hill R D. The RNA-binding protein FCA is an abscisic acid receptor[J].Nature, 2006,439:290-294.
    [83]Shen Y Y, Wang X F, Wu F Q, et al. The Mg-chelatase H subunit is an abscisic acid receptor[J]. Nature,2006,443:823-826.
    [84]Liu X, Yue Y, Li B, et al. A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. [J].Scinece,2007,315:1712-1716.
    [85]Sisler E C, Pain A. Effect of ethylene and cyclic olefins on tobacco leaves [J]. Tobacco Science,1973,17:68-72.
    [86]Beyer E M. A potent inhibitor of ethylene action in plants[J].Plant Physiology,1976, 58:268-271.
    [87]Sisler E C, Serek M. Inhibitors of ethylene responses in plant at the receptor level: Recent developments [J].Physiol Plant,1997,100(3) 577-582.
    [88]Sisler E C, Serek M. Inhibition of ethylene responses by l-Methylcyclopropene and 3- Methylcyclopropene[J].Plant Growth Regulation,1999,27(2):105-111.
    [89]Assman S M, Simoncini L, Schroeder J l. Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba[J].Nature,1985,318(21):285- 287.
    [90]Hsiao T C, Allaway W G, Evans L T. Action spectra for guard cell Rb+ uptake and stomata opening in Vicia faba L[J].Plant Physiol,1973,51:82.
    [91]Karlsson P E, Hoglund H-O, Klockare R. Blue light induces stomatal transpiration in wheat seedlings with chlorophyll deficiency caused by SAN9789[J].Physiology Plant,57-417.
    [92]Karlsson P E, Bogomolni R A, Zeiger E. HPLC of pigments from guard cell protoplasts and mesophyll tissue of Yicia faba L[J].Photobiol Photochem,1992,55:605.
    [93]杨惠敏,王根轩.保卫细胞胞质中Ca2+浓度变化与气孔开闭之间的关系[J].植物生理学通讯, 2001,37(3):269-273.
    [94]Schwartz A. Role of Ca2+and EGTA on Stomatal Movements in Commelina communis L.[J]. Plant Physiol, 1985, 79:1003-1005.
    [95]张永平.东方百合“索邦”叶片气孔运动机理研究[J].北方园艺, 2010(8):57-59.
    [96]Blatt M R, Armstrong F. K+ channels of stomatal guard cells: Abscisic-acid-evoked control of theoutward rectifier mediated by cytoplasmic pH[J].Planta,1993,191(3):330-341.
    [97]McAinsh M R, Gray J E, Hetherington A M , et al. Ca2+ signaling in stomatal guard cells[J]. Bioche Soc Tran,2000, 28(4):476-481.
    [98]Leckie C P, McAinsh M R, Montgomery L, et al. Second messengers in guard cells[J].J Exp Bot,1998,49:339-349.
    [99]Ward J M, Schroeder J l. Calcium-activated K+ channels and calcium-induced calcium release by slow vacuolar ion channels in guard cell vacuoles implicated in the control of stomatal closure[J].Plant Cell,1994, 6:669-683.
    [100]Sanders D, Muir S R, Allen G J. Ligand-and voltage-gated calcium release channels at the vacuolar membrane[J].Biochem Soci Trans,1995,23:856-861.
    [101]Liu J, Zhu J K. An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance[J].Proc Natl Acad Sci USA,1997, 94:1490-1496.
    [102]Li W, Luan S, Schreiber S L, et al. Cyclic AMP stimulates K+ channel activity in mesophyll cells of Vicia fata L[J].Plant Physiol,1994,106:106:857-961.
    [103]Fairley-Grenot K A, Assmann S M. Evidence for G-protein regulation of inward K+ channel current in guard cells of faba bean[J].Plant Cell,1991,3:1037-1044.
    [104]陈玉玲,肖玉梅,陈珈,等.G蛋白可能参与细胞外钙调素促进蚕豆气孔关闭的过程[J].自然科学进展,2003,13(4):343-348.
    [105]周晓阳,张辉.G蛋白在杨树气孔运动中的作用[J].科学技术与工程,2004,4(1):12-14.
    [106]孔令安,汪矛,林金星,等.蛋白质可逆磷酸化调节植物细胞离子跨膜运动研究进展[J].西北植物学报,2008,28 (7):1491-1499.
    [107]王恒彬,王学臣,娄成后.乙酞胆碱与蚕豆气孔运动的关系[J].植物学报,1999,41(2):171- 175.
    [108]王恒彬,张蜀秋,王学臣,等.Ca2+/CaM参与乙酸胆碱调控气孔运动的信号转导[J].科学通报,2003,48(2):154-156.
    [109]王恒彬,王学臣.张蜀秋,等.毒蕈碱型乙酰胆碱受体参与调控乙酰胆碱诱导的气孔开[J].科学通报,1999,44(21):2281-2283.
    [110]王恒彬,王学臣.张蜀秋,等.烟碱型乙酰胆碱受体参与乙酰胆碱调控的气孔运动[J].中国科学,1999,29(1):75-80.
    [111]张蜀秋,王恒彬,孟凡霞,等.百日咳毒素与霍乱毒素对乙酸胆碱诱导气孔运动的影响[J].自然科学进展,2002, 12(12):1314-1317.
    [112]Liu K, Fu H, Bei QX, et al. Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements[J].Plant Physiolog,2000,124:1315-1326.
    [113]苗雨晨,董发才,宋纯鹏.过氧化氢—植物体内的一种信号分子[J].生物学杂志,2001,18(2): 4-6.
    [114]Veal E A, Day A M, Morgan B A. Hydrogen peroxide sensing and signaling[J]. Mol cell, 2007, 26(1):1-14.
    [115]安国勇,宋纯鹏,张骁,等.过氧化氢对蚕豆气孔运动和质膜K+通道的影响[J].植物生理学报,2000,26(5):458-464.
    [116]张霖,赵翔,王亚静,等.NO与Ca2+对蚕豆保卫细胞气孔运动的互作调控[J].作物学报, 2009,35(8):1491?1499.
    [117]袁惠君,宋占午,丁兰,等.人参果试管苗与移栽成活苗气孔行为的比较[J].西北师范大学学报,2001,37(4):89-92.
    [118]曹孜义,强维亚,李唯.葡萄试管苗在移栽锻炼过程中气孔开度的变化[J].葡萄栽培与酿酒, 1987, (3):5-8.
    [119]李唯,曹孜义,张利平.湿度对葡萄、樱桃离体繁殖株气孔行为和移栽成活率的影响[J].植物学报,1993,35(2):157-160.
    [120]曹孜义,李唯,王希圣.环境因素和ABA对葡萄试管苗气孔开闭的影响[J].植物生理学报, 1993,19(4):317-378.
    [121]袁惠君,宋占午,杨红,等.草莓试管苗与土培苗气孔形态和气孔密度的比较[J].兰州理工大学学报,2004,30(5):79-80.
    [122]Brainerd K E, Fuchigam L H. Stomatal functioning of in vitro and greenhouse apple leaves in darkness, mannitol, ABA, and CO2[J]. J.Exp.Bot., 1982, 33:388-392.
    [123]曹孜义,刘国民.实用植物组织培养教程[M].兰州:甘肃科学技术出版社,2001:63.
    [124]李胜,李唯,杨宁,等.扁桃砧木Hansen试管苗与大田苗的生理生化特性差异[J].甘肃农业大学学报,2005,40(1):22-25.
    [125]张媛华,宋喜贵,佘小平.外源过氧化氢对蚕豆气孔运动的影响[J].陕西师范大学学报,2005, 33, 94-97.
    [126]陈疏影,王荔,杨艳琼,等.微环境调控对灯盏花无糖组培苗显微结构的影响[J].云南农业大学学报,2007,22, 183-187.
    [127]赵江雷,李显石.植物无糖组织培养技术[J].吉林蔬菜,2007,6,14-15.
    [128]吴毅明.植物组织培养的环境调节研究进展[J].生态农业研究,2000,8,73-75.
    [129]屈云慧,熊丽,吴丽芳,等.无糖组织技术的应用及发展前景[J].中国农业,2003, 12,17-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700