自适应多项式均衡器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在日益高速发展的现代通信环境下,传输信道的非线性已成为影响信道误码性能的主要因素,只有采用基于非线性滤波器理论的非线性均衡技术才能有效抑制高速传输信道的码间干扰。因此,非线性信道的均衡技术就成为高速无线通信领域的一个研究热点。
     借助多项式自适应滤波器以及神经网络滤波器两种非线性模型,从减少多项式中耦合项的数量和使用另外一种形式的非线性系统来逼近Volterra非线性系统两个方面入手,研究和探讨了新型结构的非线性自适应均衡器,主要在对多项式滤波器、神经自适应滤波器、一般非线性多项式及正交多项式神经网络等结构研究基础之上,并适当地把判决反馈结构、双线性结构融合其中,提出了一系列新型结构的非线性信道均衡器,并且对各种结构非线性均衡器作了性能分析,计算机仿真证明了它们的正确及有效性。
     论文的主要研究成果包括:
     1.研究了一种基于DCT域二阶多项式自适应均衡器,解决了输入信号的自相关矩阵的特征条件过大以及二阶Volterra展式的耦合项数量过大的问题。该均衡器具有优点是结构简单、参数个数少以及计算复杂性较低。
     2.在分析非线性系统级联结构的基础上,先后研究了线性滤波器与多项式级联结构、神经网络与多项式级联结构、神经Legendre正交多项式以及神经Chebyshev正交多项式判决反馈均衡器。研究结果为构造新型非线性滤波器提供了新的思路。
     3.研究了线性滤波器与多项式级联结构的复值自适应均衡器、神经网络与多项式级联结构的复值自适应均衡器,并推导出了相应复数自适应算法。仿真结果为实际工程的复值信道实时应用提供了新的依据。
     4.研究了神经网络与多项式级联结构的自适应均衡器在卫星通信非线性信道中的应用,仿真结果证实了该自适应均衡器有效性。
In the increasingly developing circumstance with high data rate, the communication channel's nonlinearity has become the main factor affecting the bit error rate, when only the nonlinear equalization technology with based on nonlinear filter theory can remove the ISI effectively. So, the research on the nonlinear channel equalization is now a hot spot in the high-rated wireless communication area.This paper is performed mainly on the adaptive equalization technology in the nonlinear channel, based on summarizing the present study on nonlinear adaptive signal processing and nonlinear channel equalization domestically and abroad. By using polynomial adaptive filtering and neural network technology, novel ways on how nonlinear adaptive filter (or neural network) can be applied into the nonlinear equalization are discussed and several novel nonlinear equalizers are proposed, which have shown better equalization performance than the general ones.The main results of this paper are as follows:1. Based on DCT polynomial adaptive equalizer is proposed for autocorrect matrix's characteristic condition of input's signals and product coupling items, which has a very simple structure and few parameter but with good nonlinear equalization performance.2. Linear Filer linked Nonlinear polynomial adaptive equalizer、 Neural Network linked Nolinear polynomial adaptive equalizer 、 Neural Network Legendre polynomial adaptive equalizer and Neural Network Chebyshev polynomial decision feedback equalizer for nonlinear polynomial adaptive filers are proposed, the equalizer's anti-nonlinear performance can be improved effectively.3. Linear Filters linked Nonlinear and Neural Network linked Nonlinear polynomial complex adaptive equalizers are proposed for complex nonlinear channel, the complex algorithm is given,. Simulation's results show that they can effectively compensate the phase and amplitude loss in the complex channel.
引文
[1] 张贤达等.通信信号处理.国防工业出版社.
    [2] B.威德罗,E.瓦莱斯.刘树棠等译.自适应逆控制.西安交通大学出版社,2000年5月第1版:91-112.
    [3] 何振亚.自适应信号处理.科学出版社.2002年第一版:44-48.
    [4] Mathews, V. J. Adaptive polynomial filters. IEEE Signal Processing Magazine, 1991, 8(3): 10-26.
    [5] Giovanni 1. Sicuranza. Quadratic filters for signal processing. Proceedings of the IEEE, 1992, 80(8): 1263-1285.
    [6] M.J. Korenberg, L. D. Paarman, Orthogonal approaches to time series analysis and system identification, IEEE Signal Process. Mag. 1991, 8(3):29-43.
    [7] J.Shi, H.H.Sun, Nonlinear system identifacation for cascade block model: an application to electrode polarization impedance, IEEE Trans. Biomed. Eng. 38(9):834-845.
    [8] G.Ramponi, Quadratic filters for image enhancement, Proceedings of EUPSICO'88, Grenoble, France, 1988:239-242.
    [9] W.A.Frank, An efficient approximation to the quadratic Volterra filter and its application to real-time loudspeaker linearization, Signal Processing 45(1995):97-113.
    [10] M.J.Coker, D.N.Simkins. A nonlinear adaptive noise canceller, Proceedings of ICASSP'80, Denver, CO,April 1980: 470-473.
    [11] G.L.Sicuranza, G.Ramponi, Distributed arithmetic implementation of nonlinear echo cancellers, Proceedings of ICASSP'85, Tampa, FL, March 1985:1617-1620.
    [12] R.A. Minasian. Intermodulation distortion analysis of MESFET amplifiers using the Volterra series representation. IEEE Trans. Microwave"Theory Tech. 1980, MTT-28(1): 1-8.
    [13] G.Yanpeng, K.feher. A new FQPSK modem/radio architecture for PCS and mobile satellite communications. IEEE J. Selected Areas Commun. 1995, 13(2): 345-353.
    [14] E. Biglieri, S.Barberis, M.Catena. Analysis and compensation of nonlinearities in digital transmission systems. IEEE J. Selected Areas Commun. 1988,6(1):42-51.
    [15] Y.J.Jeng, C.C.Yeh. Cluster-based blind nonlinear-channel estimation, IEEE Trans. Signal Process. 1997,45 (5):1161-1172.
    [16] A.Chini, W. Yiyan, M.E1-Tanany, S.Mahmoud. Hardware nonlinearities in digital TV broadcasting using OFDM modulation. IEEE Trans. Broadcasting 1998,44(1):12-21.
    [17] J.Moon, L.R.Carley. Performance comparison of detection methods in magnetic recording. IEEE Trans. Magn. 1990, 26(6): 3155-3172.
    [18] Won Gi Jeon, Joo Sin Son etc. Nonlinear Equalization for Reduction of Nonlinear Distortion in High-Density Recording Channels. IEEE, 1995: 503-507.
    [19] M.Ibnkahla, N.J.Bershad, J.Sombrin, F.Castanie. Neural network nodeling and identification of nonlinear channels with memory: algorithms, applications, and analytic models. IEEE Trans. Signal Process. 1998,46(5): 1208-1220.
    [20] 张家树,肖先赐.用于混沌时间序列自适应预测的一种少参数二阶Volterrra滤波器.物理学报.2001,50(7):1248-1254.
    [21] 张家树,李恒超,肖先赐.连续混沌信号的离散余弦变换域二次实时滤波预测.物理学报.2004,53(3):710-716.
    [22] S.A.White,V.A.Vitols. A Nonlinear Adaptive Digital Filter.IEEE Transactions on circuits and systems,1998,35(1):127-131.
    [23] Jui-Yuan Lin,Che-Ho Wei, A new adaptive equalizer for nonlinear channels. IEEE,:2814-2817.
    [24] S.Haykin. Adaptive filter theory, 3rd ed, Prentice Hall, Englewood Cliffs, NJ,1996.
    [25] Gitlin R D, Weinstein S D. On the design of gradient algorithms for digitally implemented adaptive filters. IEEE Trans on CT, 1973(2): 125-136.
    [26] Yasukawa H, Shimada S, Furukrawa I, et al. Acoustic echo canceller with high speech quality. ICASSP' 87:2125-2128.
    [27] Gitlin R D, Weinstein S D. The effects of large interference on the tracking capability of digitally implemented echo cancellers. IEEE Trans on COM, 1978(6): 833-839.
    [28] 吴光弼,祝琳瑜.一种变步长LMS自适应算法.电子学报,1994,22(1):55-56.
    [29] J M cioffi, T Kailath. Windowed fast transversal filters for recursive least squares adaptive filtering. IEEE Trans. On ASSP. 1985,33(3):607-625.
    [30] G Carayannis, D G Manolakis, N Kalouptsidis. A fast sequential algorithm for least-squares filtering and prediction. IEEE Trans. ASSP, 1983, 31(6): 1394-1402.
    [31] 高鹰.一种基于最小二乘准则的自适应滤波算法.广州大学学报,2001,15(2):32-34.
    [32] Merched, R. Extended RLS lattice adaptive filters. IEEE Transactions on Signal Processing, 2003,51(9): 2294-2309.
    [33] P E Crochiere, L R Rabiner. Multirate digital signal processing. Prentice-Hall, Inc, 1983.
    [34] Rickard, J., Dentino, M., Zeidler J.. Detection performance of an adaptive processor in non-stationary noise. ICASSP'79. 4:136-139.
    [35] Narayan S., Peterson A., Narasimha M.. Transform domain LMS algorithm IEEE Trans. on Acoustics, Speech, and Signal Processing, 1983, 31(3): 609-615.
    [36] Beaufays F. Transform-domain adaptive filters: an analytical approach. IEEE Trans. on Signal Processing, 1995, 43(2): 422-431.
    [37] Allen F.D., Jr., Amin M.G.. A unified approach to transform domain LMS adaptive filtering. Proceedings of the Twentieth Southeastern Symposium on System Theory, 1988, 20-22: 424-427.
    [38] Bilcu, R. C.; Kuosmanen, P.; Egiazarian, K.; A transform domain LMS adaptive filter with variable step-size. IEEE Signal Processing Letters, 2002, 9(2):51-53.
    [39] M.Borda, D.Isar. Whitening with Wavelets, Proceedings of IEEE Int.Conf., ECCTD'97, Budapest, August 1997.
    [40] Isar A., Isar D., Asztalos T.. Nonlinear adaptive filters and wavelets. A statistical analysis. Proceedings of ICECS '99, 2(5-8):761-764.
    [41] Wiener N. Response of a nonlinear device to noise. Report N. 129, Radiation Laboratory, M.L.T., April 1942.
    [42]A.Sarti, S.Pupolin. Recursive techniques for the synthesis of a pth-order inverse of a Volterra system. Europ. Trans.Telecommun. Related Technol.1992,3:315-322.
    [43]Fang Yangwang, Jiao Licheng, Pan Jin. MIMO Volterra filter equalization using pth-order inverse approach. ICASSP '00. Proceedings. 1(5-9): 177-180.
    [44]Schetzen, M. Theory of pth-order inverses of nonlinear systems IEEE Trans. on Circuits and Systems, 1976,23(5):285-291.
    [45]R.Nowak, B.Van Veen. Volterra filter equalization: A fixed point approach. IEEE Trans. Signal Processing,1997,45:377-388.
    [46]C.Tseng, E.Powers. Nonlinear channel equalization in digital satellite systems. Proc. IEEE Global telecommunications Conf., Houston. Tx, Nov,1993:1639-1643.
    [47]S.Benedetto, E.Biglien. Nonlinear equalization of digital satellite channels. IEEE. J.Select. Areas Commun., 1983,1:57-62.
    [48]E.Biglieri, A. Gersho, R.Gitlin, T.Lim. Adaptive cancellation of nonlinear intersymbol interference for voiceband data transmission. IEEE J.Select. Areas Commun., 1984,2(1):765-777.
    [49]Redfern A.J., Zhou G.T.. A root method for Volterra system equalization. Signal Processing Letters, IEEE, 1998,5(11): 285-288.
    [50]Raz G.M., Van Veen B.D.. Blind equalization and identification of nonlinear and IIR systems-a least squares approach. IEEE Trans, on Signal Processing, 2000,48(l):192-200.
    [51]G.Giannakis ans E.Serpedin. Linear multichannel blind equalizers of nonlinear FIR Volterra channels. IEEE Trans. Signal Processing, 1997,45:67-81.
    [52]G.J.Gibson, S.Siu, C.F.N.Cowan. The application of online structures to the reconstruction of binary signals. IEEE Trans. Signal Processing, 1991,Vol.39.
    [53]Leung, H.; Haykin, S.;The complex backpropagation algorithm IEEE Trans, on Signal Processing, 1991,39(9):2101-2104.
    [54]Benvenuto N., Piazza F.. On the complex backpropagation algorithm. IEEE Trans. on Signal Processing, 1992,40(4): 967-969.
    [55]Hanna A.L., Mandic D.R.. A normalised complex backpropagation algorithm. ICASSP '02Proceedings., 2002,1:1-977-I-980.
    [56]Ching-Haur Chang, Sammy Siu. Decision feedback equalization using complex backpropagation algorithm. IEEE international symposium on Circuits and Systems, Hong Kong, 1997:589-592.
    [57]Zengjun Xiang, Guangguo Bi, Tho Le-Ngoc. Polynomial perceptrons and their applications to fading channel equalization and co-channel interference suppression. IEEE Trans, on Signal Processing, 1994,42(9):2470-2480.
    [58]Zeng-Jun Xiang, Guang-Guo Bi. A new lattice polynomial perceptron and its applications to frequency-selective fading channel equalization and ACI suppression. IEEE Trans, on Communications, 1996,44(7):761-767.
    [59]Kechriotis G., Zervas E., Manolakos E.S.. Using recurrent neural networks for adaptive communication channel equalization., IEEE Transactions on Neural Networks, 1994,5(2):267-278.
    [60]Sunghwan Ong, Sooyong Choi, Cheolwoo You, Daesik Hong. A complex version of a decision feedback recurrent neural equalizer as an infinite impulse response filter. GLOBECOM '97., IEEE,1:57-61.
    [61]Sunghwan Ong, Sooyong Choi, Cheolwoo You, Daesik Hong. A decision feedback recurrent neural equalizer for digital communication. IEEE Trans, on Magnetics, 1997,33(5):2767-2769.
    [62]Sunghwan Ong, Sooyong Choi, Cheolwoo You, Daesik Hong. A Decision Feedback Recurrent Neural Equalizer For Digital magnetic Recording Systems.Digests of INTERMAG '97.,:CR-02-CR-02.
    [63]Sunghwan Ong, Cheolwoo You, Sooyong Choi, Daesik Hong. A decision feedback recurrent neural equalizer as an infinite impulse response filter. IEEE Trans. on Signal Processing, 1997,45(11):2851-2858.
    [64]Park D.C., Yan Zhu.Bilinear recurrent neural network.IEEE International Conference on Neural Networks, 1994,3(27): 1459-1464.
    [65]Dong-Chul Park, Tae-Kyun Jeong. Complex bilinear recurrent neural network for equalization of a digital satellite channel. JCNN '99.1 3:1485-1490.
    [66]Chen S., Mulgrew B.., Grant P.M.. A clustering technique for digital communications channel equalization using radial basis function networks. IEEE Trans. on Neural Networks. 1993,4(4):570-590.
    [67]Inhyok Cha, Kassam S.A. Channel equalization using adaptive complex radial basis function networks. IEEE Journal on Selected Areas in Communications, 1995,13(1): 122-131.
    [68]Jungsik Lee, Beach C.D., Tepedelenlioglu N.. Channel equalization using radial basis function network. IEEE International Conference on Neural Networks,1996,4:1924-1928.
    [69]Lee J., Beach C.D., Tepedelenlioglu N.. Channel equalization using radial basis function network.ICASSP-96. 3:1719-1722.
    [70]Sato Y.A.. Method for self-recovering equalization. IEEE Trans. On Comm. 1975,COM-23(6):679-682.
    [71]D.N.Godard. Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Trans. Commun., 1980,COM-28:1867-1875.
    [72]V.Weerackody, S.A.Kassam, K.R.Laker. A reduced complexity adaptive filter algorithm for blind equalization. Proc. Conference on Information Sciences and Systems, Johns Hopkins University, March 1989.
    [73]A.Benveniste, M.Goursat. Blind Equalizers. IEEE Trans. Commun., 1984,COM32:871-883.
    [74]V.Weerackody, S.A.Kassam. A computationally efficient algorithm for blind equalization. Proc. Conference on Information Sciences and Systems, Princeton, March 1988.
    [75]Hyoung-Nam Kim, Yong-Tae Lee, Seung Won Kim Consumer. Blind decision feedback equalization for VSB-based DTV receivers. IEEE Trans. on Electronics, 2002,48(3):602-609.
    [76]Hongrui Jiang,Kyung Sup KWARK. A New Complex Recurrent Neural Network Equalizer for Data Communication. IEEE,2002,1271-1276.
    [77]Cheolwoo You,Daesik Hong. Nonlinear Blind Equalization Schemes Using Complex-valued Multilayer Feedforward Neural Networks. IEEE Transactions on neural networks,1998,9(6):1442-1455.
    [78] 徐金标,刘丰,王育民.基于复数径向基函数神经网络的自适应均衡器.电子学报.1998,26(1):59-64.
    [79] 李春光,廖晓峰.自适应复信道均衡的一种新的神经网络方法.信号处理.2001,17(3):195-199.
    [80] 李春光,廖晓峰.基于一种杂交学习算法的自适应复信道均衡技术.通信学报.2001,22(7):38-43.
    [81] 阳小明.复自适应均衡器的研究及实现.电子科技大学学报.2001,30(4):340-345.
    [82] 阳小明 邱琪.复自适应均衡器的研究及实现.电子科技大学学报 第30卷 第4期 2001年8月:340-345.
    [83] D.Hatzinakos, C.L.Nikias. Blind equalization using a tricepstrum-based algorithm. IEEE Trans. Com, 1991.
    [84] K.Konstantinides,K.Yao.Modelling and computationally efficient time domain linear equalization of nonlinear bandlimited QPSK satellite channels.IEE Proceeding. 1990, 137(6): 438-442.
    [85] Benedetto, Biglieri. Nonlinear Equalization of digital satellite channels. IEEE Journal on selected areas in communications. 1983, SAC-1(1):57-62.
    [86] Dong-Chul Park,Tae-Kyun jung jeong. Complex-Bilinear Recurrent Nerual Network for Equalization of a Digital satellite channel. IEEE Transactions. 2002, 13(3):711-725.
    [87] 崔霞霞,潘申富,张俊祥.非线性卫星信道均衡.无线电工程.2004,34(10):49-51
    [88] 何茂平,顾学迈.数字卫星信道非线性性能分析和仿真.系统工程与电子技术.2000,22(4):46-48.
    [89] Benvenuto, Marchesi,Uncini.Nonlinear satellite radio links equalized using blind neural network. IEEE, 1991: 1521-1524
    [90] Ambland,Cavazzana.Sequential monte carlo method for blind equalization of a nonlinear satellite communication channel.IEEE ICASSP 2003,2003:697-700.
    [91] Ryan, Leblanc, Kennedy. Performance study of ram-based decision feedback equalizers with application to nonlinear satellite channel. ISSPA' 99, 1999: 407-410.
    [92] Yoan shin, keun-sik jin, Byung-moon yoon. A Complex Pi-Sigma Network and Its Application to Equalization of Nonlinear Satellite Channels. IEEE, 1997: 148-152.
    [93] H.T.Ching, E.J.Powers. Nonlinear channel equalization in digital satellite system, Proceedings of GLOBECOM'93, Houston, TX, 1993, 3: 1639-1643.
    [94] M. Austin. Decision feedback equalization for digital communication over dispersive channels. Technical Report 461, MIT Research Laboratory ot Electronics Technical Report, August 1967.
    [95] Donald A. George, Robert R. Bowen, John R. Storey. An adaptive decision feedback equalizer. IEEE Trans. On Commu. 1971, COM-19(3): 281-293.
    [96] Giovanni L. Sicuranza. Quadratic filters for signal processing. Proceedings of the IEEE, 1992, 80(8): 1263-1285.
    [97] Gin-Kou Ma and Junghsi Lee, V.John Mathews. A rls bilinear filter for channel equalization. ICASSP-94. 3: 257-260,
    [98] 赵海全,张家树.混沌时间序列的双线性自适应预测.西南交通大学学报,2004,39(4):490-493
    [99] 赵海全,张家树.混沌时间序列Volterra自适应预测器的LMS和RLS自适应算法研究.计算机应用.2004,24(10):253—254
    [100] 赵海全,张家树. 混沌时间序列的两种非线性自适应预测滤波器的研究.通信与信息技术(增刊)中国西部青年通信学术会议论文集。2004:486-490
    [101] Sooyong Choi, Daesik Hong. Equalization using the bilinear recursive polynomial perceptron with decision feedback. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS, 5(24-27):366-371.
    [102] J.R.Treichler, I.fijalkow, C.R.Johnson, Jr. Fractionally-spaced equalizers: How long should they be? IEEE SIGNAL PROCESSING MAGAZINE, MAY 1996:65-81.
    [103] Mandic, D. P.. NNGD algorithm for neural adaptive filters. Electronics Letters, 2000, 36(9): 845-846.
    [104] Mandic D. P., Hanna A. I., Razaz M.. A normalized gradient, descent algorithm for nonlinear adaptive filters using a gradient adaptive step size. Signal Processing Letters, IEEE, 2001,8(11):295-297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700