B型烟粉虱对高温胁迫的生殖和行为响应机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟粉虱Bemisia tabaci (Gennadius),属同翅目,粉虱科,广泛分布于热带、亚热带及其相邻温带地区的90多个国家和地区,其主要通过口器吸取植物汁液、传播植物病毒、导致植物生理异常等方法对植物造成危害。B型烟粉虱自上世纪90年代中后期传入后,迅速扩散并在很多地方爆发成灾,对我国农业生产造成严重损失。作为一种成功入侵的害虫,B型烟粉虱的入侵机制已成为国内外研究热点。以往研究表明,其对高温的适应力是其成功入侵和扩张的关键因素之一。在全球变暖的趋势下,B型烟粉虱以其耐热性强的特点,将在对其他物种的竞争取代中占有优势。为了探明B型烟粉虱对高温胁迫的响应,本研究通过比较适温和高温胁迫条件下B型烟粉虱的种群动态、性比以及繁殖力,观察高温胁迫对其求偶和交配行为的影响,研究卵期不同时间和温度热激对烟粉虱生殖力的效应,以期明确高温胁迫对B型烟粉虱种群性比的影响及其生殖和行为机制,并为B型烟粉虱的监测、预警和治理提供理论依据。主要结果如下:
     1.高温胁迫对B型烟粉虱发育、种群动态和繁殖影响的连代效应
     通过在室内27、31、35、37℃条件下连续饲养5代,观测B型烟粉虱的卵孵化率、种群动态、含菌体缺失率及缺失个体羽化率、存活率、后代性比、雌虫繁殖力等指标,明确高温胁迫对其后代性比的影响。结果表明,不同的饲养温度和代数对上述指标有显著影响。种群动态和性比在不同温度处理和世代间具有显著差异。随着温度的升高和代数的增加,种群适合度降低。卵孵化率由27℃(对照)的98.9%,下降至35℃F5代的52.3%;35℃条件下,第4~5代由卵发育至成虫的存活率显著降低;F4代和F5代的发育速率减慢;在31℃饲养F4代时出现含菌体缺失;且在在35℃条件下,含菌体缺失率由0.3%上升至6.8%,但含菌体缺失率间差异不显著。随着处理温度的增高,雌成虫产卵前期缩短,寿命和产卵量均降低。
     2.高温条件下B型烟粉虱的求偶交配行为观测
     采用微距摄像法连续观察48h,比较适温(27℃)和高温胁迫(31℃)条件下B型烟粉虱的求偶和交配行为,包括搜索时间、求偶时间、交配时间、交配时间间隔、交配次数等。结果表明,与27℃对照相比,31℃条件下B型烟粉虱的交配次数显著减少,由27℃的3.4次减为31℃的2.6次;第一次交配的搜索时间和交配时间显著缩短,分别降低为对照的48%和56%;求偶时间也较短,但差异不显著;第二次交配的交配时间显著缩短为对照的74%,搜寻和求偶时间差异不显著;两次交配的间隔时间较长,但差异不显著。
     3.卵期短时高温暴露对B型烟粉虱存活和繁殖特性的影响
     对B型烟粉虱卵进行不同高温(39℃和41℃)、不同时间(1 h、2 h和4 h)的短时高温暴露处理,观察其存活、成虫性比和繁殖特性的变化。未受高温暴露的对照相比,卵期在41℃暴露1 h和4 h烟粉虱的存活率显著降低;卵期在41℃暴露1 h后烟粉虱的雌虫比例为61.3%;烟粉虱雌成虫寿命显著提高,产卵前期缩短。羽化雌虫的产卵节律和成虫生存曲线发生显著变化。
     4.总结
     与27℃处理的对照相比,在31℃和35℃条件下连续饲养若干代,B型烟粉虱的种群适合度(卵孵化率,存活率,发育速率,含菌体缺失率)具有不同程度的下降。31℃条件下B型烟粉虱的交配次数显著减少,交配时间显著缩短。高温和热激处理均可降低其产卵前期,并连续高温饲养缩短其寿命和降低其产卵量,而短时热激有利于雌虫寿命的延长和产卵量的上升。
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), distributes widely in over 90 countries and regions in tropical, subtropical and temperate areas. Damages of B. tabaci to host plants include direct feed on plant phloem sap, transmit plant viruses, and cause physiological disorder of plants. After the introduction of B. tabaci B-biotype into China in 1990s, it has spread rapidly and broken out in many provinces, causing severe economic lost in agriculture. Many former studies show that the adaptability of B. tabaci B-biotype to high temperature stress is one of the key mechanisms of its successful invasion and expansion throughout the world. Under the trend of global warming, the tolerance of B. tabaci B-biotype to high temperature stress could make it dominate in the competition with and replacement of other species. This stdudy aims to: (1) compare the population dynamics, sex ratio and fecundity of B. tabaci B-biotype under optimal and high temperatures, (2) compares its courtship and copulation behavior under optimal and high temperatures, (3) compare the fecundity of B. tabaci after short-term exposure of its eggs to high temperatures. The main results are as follows:
     1. Development, population dynamic and fecundity of B. tabaci B-biotype under high temperatures for five successive generations
     Egg hatching rate, population dynamic, bacteriome-absent rate, survival rate of bacteriome-absent individuals, adult sex ratio, and fecundity of B. tabaci B-biotype were observed for five successive generations at 27, 31, 35, 37℃. The results showed that the factors of temperature and generation have significant impacts on the above indices. Population dynamics and sex ratios differed significantly among temperatures and generations. The fitness of B. tabaci populations decreased with the increasing temperatures and generations., Egg hatching rate dropped from 98.9% at 27℃(control) to 52.3% at 35℃for the fifth generation. The survival rate decreased signigicantly and the development slowered significantly from egg to newly eclosed adult at 35℃for the fourth and fifth generation than those at 27℃. Bacteriome-absent offspring were observed in the fourth and fifth generations at 31℃, and from the first generation and on at 35℃with a rate increasing from 0.3% to 6.8%. The survival rates of the bacteriome-absent offspring at different treatments did not differ significantly. For the female adult, its pre-oviposition period and longeivity were shortened, and the fecundity was lower with the increasing temperatures.
     2. Courtship and copulate behavior of B. tabaci B-biotype under different temperatures
     Using the video camera recording method, the courtship and copulate behavior of B. tabaci B-biotype under 27 and 31℃were recorded for 48h.. Searching period, courtship duration, copulation duration, copulation interval, and copulation frequency were calculated after playing back the records. The results indicated that the average copulation frequency of B. tabaci mate was 2.6 times at 31℃, which was significantly less than that at 27℃(3.4 times). The searching period and copulation duration during the first copulation process were shortened by 48% and 56% at 31℃than at 27℃. The courtship duration at 31℃was also shortened at an insignificant level than at 27℃. For the second copulation process, the copulation duration was shortened by 74% at 31℃than at 27℃. But the searching period, courtship duration and courtship interval did not differ significantly between 27℃and 31℃.
     3. Effects of different exposure time and high temperature on the survival and fecundity
     To reveal the reactions of B. tabaci B-biotype to heat stress, effects of short-term (1 h, 2 h and 4 h) exposure of B. tabaci eggs to high temperature (39℃and 41℃) on the survival and fecundity were studied. Survival rates after exposure to 41℃for 1 h and 4 h were significantly lower. Female ratio of B. tabaci after exposure to 41℃for 1 hour was 61.3%.The longevity prolonged and the pre-oviposition period shortened. The oviposition rhythms and age-specific adult survival rates change. These results showed that short-term exposure of B. tabaci to high temperature at egg stage decreased its survival rate, whereas increased its fecundity.
     4. Conclusion
     Comparing with the control at 27℃, the fitness of B. tabaci B-biotype decreased to some extents after successive rearing atr 31℃and 35℃for 1 to 5 generations, regarding the indices of egg hatching rate, survival, development and bacteriome-absent rate. The copulation frequency and copulation duration shortened at 31℃. The pre-oviposition periods of B. tabaci decreased under successive rearing under continous high temperatures or under short-term high temperature exposure weres shorten, and the longevity and fecundity of female adults were decreased uner successive rearing under continous high temperatures, but risen under short-term high temperature exposure
引文
1.彩万志,庞雄飞,花保祯,梁广文,宋敦伦.普通昆虫学.北京:中国农业出版社, 2008: 391-394.
    2.陈兵,康乐.昆虫对环境温度胁迫的适应与种群分化.自然科学进展, 2005, 15(3): 266-271.
    3.陈革,潘洁珍,甘礼珍.高温对家蚕蛹期生殖细胞与产卵质量的影响.蚕业科学, 1986, 12(2): 110-113.
    4.陈连根.烟粉虱在园林植物上危害及其形态变异.上海农学院学报, 1997,15(3): 186-189.
    5.陈夜江,罗宏伟,黄建,杨阿龙.湿度对烟粉虱实验种群的影响.华东昆虫学报, 2001, 10(2): 76-80.
    6.陈夜江,罗宏伟,黄建,洪青竹,谢依弟.光周期对烟粉虱实验种群的影响.华东昆虫学报, 2003, 12(1): 38-41.
    7.褚栋,刘国霞,范仲学,陶云荔,张友军.烟粉虱复合种不同地理种群的遗传分化.昆虫学报, 2006, 49(4) : 687-694.
    8.褚栋,刘国霞,陶云荔,万方浩,张友军.烟粉虱Q型与B型种群动态及其影响因子研究进展.植物保护学报, 2007, 34(3): 326-330.
    9.崔旭红. B型烟粉虱和温室白粉虱热胁迫适应性及其分子生态机制. [中国农业科学院博士学位论文].北京:中国农业科学院, 2007.
    10.崔旭红,谢明,万方浩.短时高温暴露对B型烟粉虱和温室白粉虱存活以及生殖适应性的影响.中国农业科学, 2008, 41(2): 424-430.
    11.杜尧,马春森,赵清华,马罡,杨和平.高温对昆虫影响的生理生化作用机理研究进展.生态学报, 2007, 27(4): 1565-1573.
    12.戈峰.昆虫生态学原理与方法.北京:高等教育出版社, 2008: 33-34
    13.郭慧芳,陈长琨,李国清,陈文武,王荫长.高温胁迫影响雄性棉铃虫生殖力的生理机制.棉花学报, 2002, 14 (2) : 85- 90.
    14.郭慧芳,陈长琨,李国清.高温胁迫对雄性棉铃虫生殖力的影响.南京农业大学学报, 2000, 23 (1) : 30-33.
    15.雷芳,张桂芬,万方浩,马骏.寄主转换对B型烟粉虱和温室粉虱海藻糖含量和海藻糖酶活性的影响.中国农业科学, 39(7): 1387-1394.
    16.李计顺,常国彬,宋双玉,王艺伟,常宝山.实施工程治理控制红脂大小蠹虫灾—对红脂大小蠹爆发成因及治理对策的探讨.中国森林病虫, 2001, (4): 41-44.
    17.李振宇,解焱.中国外来入侵种.北京:中国林业出版社, 2002, 28-29.
    18.林克剑,吴孔明,魏洪义,郭予元.温度和湿度对B型烟粉虱发育、存活和繁殖的影响.植物保护学报, 2004, 31(2): 166-172。
    19.刘红霞,温俊宝.重视生物入侵的影响(上).世界农业, 2000,8: 26-28.
    20.刘艳,黄乔乔,马博英,徐礼根.高温干旱胁迫下香根草光合特征等生理指标的变化.林业科学研究, 2006, 19(5): 638-642
    21.罗晨,姚远,王戎疆,阎凤鸣,胡敦孝,张芝利.利用Mt DNA COI基因序列鉴定中国烟粉虱的生物型.昆虫学报, 2002, 45(6): 759-763.
    22.罗晨,张君明,石宝才,张帆,张芝利.北京地区烟粉虱Bemisia tabaci (Gennadius)调查初报.北京农业科学, 2000, 18, (增刊): 42-47.
    23.罗宏伟,黄建,王竹红.烟粉虱在温室内甘薯寄主上生物学特性的研究.华东昆虫学报, 2003, 12(2): 21-26.
    24.邱宝利,任顺祥,肖燕,温硕洋.国内烟粉虱B生物型的分布其控制措施研究.华东昆虫学报, 2003, 12(2): 27-31.
    25.宋双玉,杨安龙,何嫩江.森林有害生物红脂大小蠹的危险性分析.森林病虫通讯, 2000,(6): 34-37.
    26.万方浩,郭建英,王德辉.中国外来入侵生物的危害与管理对策.生物多样性, 2002a, 10(1): 119-125.
    27.万方浩,郭建英,王德辉.中国外来生物的现状、管理对策及风险评价体系.见:王德辉, Jeffrey A M主编.生物多样性与外来入侵种管理国际研讨会文集.北京:中国环境科学出版社, 2002b, 77-102.
    28.万方浩,郑小波,郭建英主编.重要农林外来入侵物种的生物学与控制.北京:科学出版社, 2005,44-55.
    29.王竑晟,徐洪富,崔峰.高温处理对甜菜夜蛾雌虫成虫期生殖力及卵巢发育的影响.西南农业学报, 2006, 19(5): 916-919.
    30.王荫长,陈长琨,卢中建,李国清,尤子平.高温对小地老虎和粘虫精子发生和形成的影响.昆虫学报, 1996, 39(3): 253-259.
    31.臧连生. B型和浙江本地非B型烟粉虱的竞争取代及其行为机制温室白粉虱热. [浙江大学博士学位论文].杭州:浙江大学, 2005.
    32.臧连生,傅荣幸,刘树生,李俊敏,刘银泉. B型与浙江非B型烟粉虱药剂敏感性比较.昆虫知识, 2006, 43(2): 207-210.
    33.臧连生,刘银泉,刘树生.一种适合粉虱实验观察的新型微虫笼.昆虫知识, 2005, 42(3): 329-331.
    34.赵鑫,傅建炜,万方浩,郭建英,王进军.短时高温暴露对莲草直胸跳甲生殖特性的影响.昆虫学报, 2009, 52(10): 1110-1114.
    35.张从.外来物种入侵与生物安全性评价.环境保护, 2003, 6: 29-30.
    36.张芝利.关于烟粉虱大发生的思考.北京农业科学,2000,18 (增刊): 1-3.
    37.赵莉,张荣,肖艳,崔元玗,黄伟.危害棉花的重要害虫烟粉虱在新疆发现.新疆农业科学, 2000, (1): 27-28.
    38. Alexandrov V Y. Cells, molecules and temperature: conformational flexibility of macromolecules and Ecological adaptation. Springer-Velag, NY, 1977.
    39. Bedford I D, Briddon R W, Brown J K, Rosell R.C, Markham P G. Geminivirus transmission and biological characterization of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Annals of Applied Biology, 1994, 125 (2): 311-325.
    40. Bird J. A whitefly-transmitted mosaic of Jaropha gossypifolia. Agricultural Experiment Station, Univ. P. R., 1957, 22: 1-35.
    41. Brown J K, Frohlich D R., Rosell R C. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annual Review of Entomology, 1995, 40: 511-534.
    42. Bulter G D Jr, Henneberry T J, Clayton T E. Bemisia tabaci (Homoptera: Aleurodidae): development, oviposition and longevity to temperature. Annals Entomol of the Society of America, 1983, 76: 310-313.
    43. Butler G D, Wilson L T , Henneberrey T J. Heliothis virescens ( Lepidoptera: Noctuidae): Initiation of Summer diapauses. Journal of Economic Entomology, 1985, 78: 320-324.
    44. Byrne D N, Bellows T S, Parrella M P. Whiteflies: their Bionomics, Pest Status and Management. Andover Hants: Intercept Ltd., 1990: 227-261.
    45. Cavicchi S, Guerra D, La Torre V,Huey R B. Chromosomal analysis of heat-shock tolerance in Drosophila melanogaster evolving at different temper-atures in the laboratory. Evolution, 1995, 49: 676-684.
    46. Chen B, Kang L. Cold hardiness and supercooling capacity in the pea leafminer Liriomyza huidobrensis. CryoLetters, 2002, 23:173-182.
    47. Chen C P, Lee R E, Denlinger D L. Cold shock and heat shock: A comparison of the protection generated by brief pretreatment at less severe temperatures. Physiological Entomology, 1991, 16: 19-26.
    48. Cock M J W. Bemisia tabaci, a literature survey on the cotton whitefly with an annotated bibliography. Silwood CABⅡBC. Park, UK, 1986, pp, 121.
    49. Cohen A, Patana R. Ontogenetic and stress-related changes in hemolymph chemistry of beet armyworm. Comparative Biochemistry and Physiology - Part A, 1982, 71: 193-198.
    50. Costa H S, Brown J K. Variation in biological characteristics and esterase patterns among populations of Bemisia tabaci, and the association of one population with silverleaf symptom induction. Entomologia Experimentalis et Applicata, 1991, 61(3): 211-219.
    51. Costa H S, Ullman D E, Johnson M W , Tabashnik B E. Squash silverleaf symptoms induced by immature, but not adult, Bemisia tabaci. Phytopathology, 1993, 83: 741-744.
    52. Crudgington H S, Siva-Jothy M T. Gential damage, kicking and early death. Nature, 2000, 407, 855-856.
    53. Dantsing E M, & Shenderovska L P, Cotton whitefly. Zashch. Rast, 1988, 12: 40.
    54. De Barro P J, Drive F. Use of RAPD PCR to distinguish the B biotype from other biotypes of Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae). Australian Journal of Entomology. 1997, 36: 149-152.
    55. De Barro P J, Hart P J. Mating interactions between two biotypes of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) in Australia. Bulletin of Entomolical Research, 2000, 90(2): 103-112.
    56. Denlinger D L, Yocum G D. Physiology of heat sensitivity.In: Hallman G J, Denlinger D L, eds. Temperature Sensitivity in Insects and Application in Integrated Pest Management, Oxford: Westview Press, 1998, 29.
    57. Enkegaard A. The poinsettia strain of the cotton whitefly, Bemisia tabaci (Homoptera: Aleyrodidae ), biological and demographic parameters on poinsettia ( Euphorbia pulcherrima ) in relation to temperature. Bulletin of Entomological Research, 1993, 83(4): 535-546
    58. Frazier M R, Huey R B, Berrigan D. Thermodynamics constrains the evolution of insect population growth rates:“warmer is better”. American Naturalist, 2006, 168(4): 512-521.
    59. Frohlich D R, Torres-Jeres I, Bedford I D, Markham P G, Brown J K. A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Molecular Ecology, 1999, 8(10): 1683-1691.
    60. Gilbert N, Rawort D A. Insects and temperature - A general theory. Canadian Entomologist, 1996, 128, (1): 1-13.
    61. Gill R J. A review of the sweetpotato whitefly in Southern California. The Pan-Pacif. Entomologist, 1992, 68: 144-152.
    62. Greenspan R J , Finn J A, Hall J C. Acetylcholinesterase mutants in Drosophila and their effects on the structure and function of the central nervous system. Journal of Comparative Neurology, 1980, 189: 741-774.
    63. Guarneri A A, Lazzari C, Xavier A A P, Diotaiuti L, Lorenzo M G. The effect of temperature on behavior and development of Triatoma brasilliensis. Physiological Entomology, 2008, 28, 185-191.
    64. Harano T, Yasui Y, Miyatake T. Direct effects of polyandry on female fintness in Callisobruchus chinesis. Animal Behaviour, 2006, 71, 539-548.
    65. Hargrove J W. The effect of temperature and saturation deficit in populations of male Glossina morsitans (Diptera: Glossinidae) in Zimbabwe and Tanzania. Bulletin of Entomological Research, 2001, 91: 79-86.
    66. Heinrich B. The Hot-Blooded Insects. Harvard University Press, Cambridge, 1993.
    67. Hendrix D L, Salvucci M E. Isobemisiose: an unusual trisaccharide abundant in the silverleaf whitefly, Bemisia argentifolii. Journal of Insect Physiology, 2001, 47(4-5): 423-32.
    68. Henry D, Prange H D. Evaporative cooling in insects. Journal of Insect Physiology, 1996, 42(5): 493-499.
    69. Hirotsugu T, Koji T. Differences in spatial distribution and life history parameters of two sympatric whiteflies, the greenhouse whitefly (Trialeurodes vaporariorum Westwood) and the silverleaf whitefly (Bemisia argentifolii Bellows and Perring), under greenhouse and laboratory conditions. Applied Entomology and Zoology, 1998, 33: 379-383
    70. Hochachka P W, Somero G N. Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, New York, 2002.
    71. Hoffmann A A, Dagher H, Hercus M, Berrigan D. Comparing different measures of heat resistance in selected lines of Drosophila melanogaster. Journal of Insect Physiology, 1997, 43: 393-405.
    72. Hoffmann AA, Hercus M J. Environmental Stress as an Evolutionary Force. BioScience, 2000, 50(3): 217-226.
    73. Hoffmann A A, Parson P A. Evolutionary Genetics and Environmental Stress. New York: Oxford University Press, 1991.
    74. Holmstrup M, Hedlundb K, Borissc H. Drought acclimation and lipid composition in Folsomia candida: implications for cold shock, heat shock and acute desiccation stress. Journal of Insect Physiology, 2002, 48 (10): 961– 970.
    75. Horowitz A R, Gerling D. Seasonal variation of sex ratio in Bemisia tabaci on cotton in Israel. Environmental Entomology, 1992, 21: 556-559.
    76. Horton D R, Lewis T M, Hinojosa T. Copulation duration in three species of anthocoris (Heteroptera: Anthocoridae) at different temperatures and effects on insemination and ovarian development. The Pan-Pacific entomologist, 2003, 78, 43-55.
    77. Houghton J T, Ding Y, Griggs D J, Noguer M, van der Linden P J, Dai X, Maskell k, Johnson C A. Climate Change 2001: the Scientific Basis: IPCC third assessment report. Cambridge University Press, 2001.
    78. Huey R B, Kingsolver J G. Evolution of resistance to high temperature in ectotherms. American Naturalist, 1993, 142: 21-46.
    79. Huey R B, Partridge L, Fowler K. Thermal sensitivity of Drosophila melanogaster responds rapidly to laboratory natural selection. Evolution, 1991, 45: 751-756.
    80. Ishikawa Y, Yamashia T, Nomura M. Charateristics of summer diapauses in the onion maggot, Delia antique (Diptera: Anthamyiidae). Journal of Insect Physiology, 2000, 46: 161-167.
    81. Jiu M, Zhou X P, Tong L, Yang X, Wan F H, Liu S S. Vector-virus mutualism accelerates population increase of an invasive whitefly. Plos One, 2007, 2(1): e182.doi:10.1371/journal.pone.0000182.
    82. Kaiser J. Fighting back: stemming the tide of invading species. Science, 1999, 285 (5435): 1836-1841.
    83. Krainacker D A, Carey J R. Maternal heterogeneity in primary sex ratio of three tetranyehid mites. Experimental and Applied Acarology, 1988, 5: 151-162.
    84. Krebs R A, Feder M E. Hsp70 and larval thermotolerance in Drosophila melanogaster: how much is enough and when is more too much? Journal of Insect Physiology, 1998, 44(11): 1091-1101.
    85. Lale N E, Vidal S. Simulation studies on the effects of solar heat on egg-laying, development and survival of Callosobruchus maculates (F.) and Callosobruchus subinnotatus (Pic) in stored bambara groundnut Vigna subterranean (L.) Verdcourt. Journal of Stored Products Research, 2003, 39(5): 447-458.
    86. Levins R. Thermal acclimation and heat resistance in Drosophila species. American Naturalist, 1969, 103: 483-499.
    87. Liu S S, De Barro P J, Xu J, Luan J B, Zang L S, Ruan YM, Wan F H. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science, 2007, 318: 1769-1772.
    88. Loveridge J P. The control of water loss in Locusta migratoria migratorioides R. and E. II. water loss through the spiracles. Journal of Experimental Biology, 1986, 49: 15-29.
    89. Ma C S, Hau B, Poehling H.M. Effects of pattern and timing of high temperature exposure on reproduction of the rose grain aphid, Metopolophium dirhodum. Entomologia Experimentali et Applicata, 2004, 110: 65-71.
    90. Mack R N, Simberloff D, Lonsdale W M, Evans H., Clout M, Bazzaz F. A. Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications, 2000, 10(3): 689-710.
    91. Mahroof R, Subramanyam B, Flinn P. Reproductive performance of Tribolium castaneum (Coleoptera: Tenebrionidae) exposed to the minimum heat treatment temperature as pupae and adults. Journal of Economic Entomology, 2005, 98 (2): 626– 633.
    92. Masako K, Takahisa M. Effect of temperature on mating duration, sperm transfer and remating frequency in Callosobruchus chinesis. Journal of Insect Physiology, 2009, 55, 113-116.
    93. Mayatake T, Okada K, Harano T. Negative relationship between ambient temperature and death-feigning intensity in adult Callosobruchus maculates and Callosobruchus chinesis. Physiological Entomology, 2008, 33, 83-88.
    94. McMillan D M, Fearnley S L, Dahlhoff E P. Natural temperature variation affects larval survival, development and Hsp 70 expression in a leaf beetle. Functional Ecology, 2005, 19: 844-852.
    95. Mellanby K. Low temperature and insect avtivity. Proceeding of the Royal Society of London Series B, 1939, 127, 473-487.
    96. Michael E S, Donald L H, Gregory R W. Effect of high temperature on the metabolic processes affecting sorbitol synthesis in the silverleaf whitefly, Bemisia argentifolii. Journal of Insect Physiology, 1999, 45: 21–27.
    97. Michael E S, Donald L H, Gregory R W. Effect of high temperature on the metabolic processes affecting sorbitol synthesis in the silverleaf whitefly, Bemisia argentifolii. Journal of Insect Physiology, 1999, 4: 21–27.
    98. Montllor C B, Maxmen A, Purcell A H. Facultative bacterial endosymbionts benefit pea aphids Acythosiphon pisum under heat stress. Ecological Entomlogy, 2002, 27(2): 189-195.
    99. Mound L.A., Halsey S.H. Whitefly of the world. London: British Museeum and John Wiley & Sons, 1978, pp. 340.
    100. Muniz G, Nombela G. Differential variation in development of B-and Q-biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on sweet pepper at constant temperatures. Environmental Entomology. 2001, 30(4): 720-727.
    101. Nibouche S. High temperature induced diapause in the cotton bollworm shape Helicoverpa armigera. Entomologia Experimental et Applicata, 1998, 87: 271– 274.
    102. Oliveira M R V, Henneberry T J, Anderson P. History, current status, and collaborative research projects for Bemisisa tabaci. Crop Protection, 2001, 20(9): 709-723.
    103. Perring T M, Cooper A D, Rodriguez R J, Farrar C A, Bellows T S Jr. Identification of a whitefly species by genomic and behavioral studies. Science, 1993a, 259: 74-77.
    104. Perring T M, Farrar C A, Bellows T S, Cooper A D, Rodriguez R J, Evidence for a new species of whitefly UCR findings and implications. California Agriculture, 1993b, 47: 7-8.
    105. Perring T M. The Bemisia tabaci species complex. Crop Protection, 2001, 20 (9): 725-737.
    106. Prange H D. Evaporative cooling in insects. Journal of Insect Physiology, 1996, 42: 493-499.
    107. Pyke D A, Thompson J N. Statistical analysis of survival and removal rate experiments. Ecology, 1986, 67(1): 240-245.
    108. Qiu B L, Ren S X, Mandour N, Lin L. 2003. Effect of temperature on the development and reproduction of Bemisia tabaci B biotype ( Homoptera: aleyrodidae). Entomologia Sinica, 10(1): 43-49.
    109. Quinlan M C., Hadley N F. Gas exchange, ventilator pattern ad water loss in two lubber grasshoppers: quantifying cuticular and respiratory transpiration. Physiological Zoology, 1993, 66: 628-642.
    110. Rosell R C, Bedford I D, Frohlich D R, Gill R J, Brown J K, Markham P G. Analysis of morphological variation in distinct populations of Bemisia tabaci (Homoptera: Aleyrodidae). Annals of the Entomological Society of America, 1997, 90 (5): 575-589.
    111. Ruesink J L, Parker I M, Groom M J, Kareiva P M. Reducing the risks of nonindigenous species introductions. Bioscience, 1995, 45(7): 465-477.
    112. Salin C, Vernon P, Vannier G. Effects of temperature and humidity on transpiration in adults of the lesser mealworm, Alphitobiu diaperinus (Coleoptera: Tenebrionidae). Journal of Insect Physiology, 1999, 45(10): 907-914.
    113. Salvucci M E, Crafts-Brandner S J. Effects of temperature and dietary suctose concentration on respiration in the silverleaf whitefly, Bemisia argentifolii. Journal of Insect Physiology, 2000, 46(11): 1461-1467.
    114. Salvucci M E. Sorbitol accumulation in whiteflies: evidence for a role in protecting proteins during heat stress. Journal of Thermal Biology, 2000, 25: 353-361.
    115. Sanborn A F, Heath J E, Heat M S. Thermoregulation and evaporative cooling in the cicada Okanagodes gracilis (Homoptera: Cicadidae). Comparative Biochemistry and Physiology - Part A, 1992, 102(4): 751-757.
    116. Savalli U M, Fox C W. The effect of male mating history on paternal investment, fecundity and female remating in tne seed beetle Callosobruchus maculates. Functional Ecology, 2005, 13, 169-177.
    117. Schuster D J, Mueller T F., Kring J B, Price J F. Relationship of the sweetpotato whitefly to a new tomato fruit disorder in Florida. HortScience, 1990, 25(12): 1618-1620.
    118. Segarra-Carmona A E, Bird J, Escudero J. Silvering of Cucurbita moschata (Duchesne Poir ) associated with Bemisia tabaci Genn. (Homoptera: Aleyrodidae) in Puerto Rico. TheJournal of Agricultural Science (Univ. Puerto Rico), 1990, 74: 477-478.
    119. Silva S C. Behavior of the silverleaf whitefly (Bemisia argentifolii B & P) in the cotton crop on the coast of Hermosillo, Sonora. In: Proceedings of the International Cotton Pest Work Committee. California Dept. Food and Agric, Sacramento, 1997.
    120. Simon B, Cenis JL, Demichelis S., Rapisarda C., Caciagli P., Bosco D. Survey of Bemisia tabaci (Hemiptera: Aleyrodidae) biotypes in Italy with the description of a new biotype (T) from Euphorbia characias. Bulletin of Entomological Research, 2003, 93 (2): 259-264.
    121. Sokal R R, Rohlf F J. Biometry. 3rd ed. New York: W.H. Freeman and Company, 1998: 887
    122. Stanley S M, Parsons P A, Spence G E. Resistance of species of Drosophila melanogaster subgroup to environmental extremes. Australian Journal of Zoology, 1980, 28: 413-421.
    123. Stratman R, Markow I A. Resistance to thermal stress in desert Drosophila. Functional Ecology, 1998, 12:965-970.
    124. Sueur J, Sanborn A F. Ambient temperature and sound power of cicada calling songs (Hemiptera: Cicadidae: Tibicna). Physiological Entomology, 2003, 28, 340-343.
    125. Tatar M. Evolution of Senescence: Longevity and the Expression of Heat Shock Proteins. American Zoologist, 1999, 39: 920-927.
    126. Tayler L R. Analysis of the effect of temperature on insects in fight. The Journal of Animal Ecology, 1963, 32, 99-117.
    127. Traboulsi R. Bemisia tabaci: a report on its pest status with particular reference to the near east. FAO Plant Protetion Bulletin, 1994, 42: 33-58.
    128. Tsai J H, Wang K H. Development and reproduction of Bemisia argentifolii (Homoptera: Aleyrodidae ) on five host plants. Environmental Entomology, 1996, 25(4): 810-816.
    129. Tsueda H, Koji T. Differences in spatial distribution and life history parameters of two sympatric whiteflies, the greenhouse whitefly ( Trialeurodes vaporariorum Westwood ) and the silverleaf whitefly ( Bemisia argentifolii Bellows & Perring ), under greenhouse and laboratory conditions. Applied Entomology and Zoology, 1998, 33: 379-383.Tsuchida T, Koga R, Fukatsu T. Host plant specialization governed by facultative symbiont. Science, 2004, 303(26): 1989.
    130. Van Lentern J C, Noldus L. Whitefly-plant relationships behavioral and ecological aspects. In Gerling D (ed): whiteflies: their bionomics, pest status and management. Intercept. Andover, Hampshire, England. 1990, 47-89.
    131. Wagner T L. Temperature-dependent development, mortality, and adult size of sweetpotato whitefly biotypes B (Homoptera: Aleyrodidae) on cotton. Environmental Entomology, 1995, 24: 1179-1188.
    132. Wan F H., Zhang G F, Liu S S., Luo C, Zhang Y J, Zang L S, Jiu M, LüZ C, Cui X H, Zhang L P, Zhang F, Zhang Q W, Liu W X., Liang P, Lei Z R, Zhang Y J. Invasive Mechanisms and?Management of Bemisia tabaci biotype B. Chinese Science Serial C-Life Science, 2009, 52(1): 88-95.
    133. Wang K, Tsai J H. Temperature effect on development and reproduction of silverleaf whitefly (Homoptera: Aleyrodidae). Annals of Entomolological Society of America, 1996, 89: 375-384.
    134. Wickman P O. The influence of the temperature on the territorial and mate locating behavior of the small heath butterfly Coenonympha pamphilus (L.) (Lepidoptera: Satyridae). Behavioral Ecology and Sociobiology, 1985, 16,233-238.
    135. Williams K D, Helin A B, Posluszny J. Effect of heat shock, pretreatment and hsp70 copy number on wing development in Drosophila melanogaster. Molecular Ecology, 2003, 12 (5): 1165– 1177.
    136. Wolfe G R, Hendrix D L, Salvucci M E. A thermoprotective role for sorbitol in the silverleaf whitefly, Bemisia argentifolii. Journal of Insect Physiology, 1998, 44: 597-603.
    137. Yanagi S, Miyatake T. Costs of mating and egg production in female Callosobruchus chinesis. Journal of Insect Physiology, 2003, 49, 823-827.
    138. Yokomi R K, Hoelmer K A, Osborne L S. Relationship between the sweetpotato whitefly and the squash silverleaf disorder. Phytopatholog, 1990, 80: 895-900.
    139. Yu H, Wan F H. Cloning and expression of heat shock protein genes in two whitefly species in response to thermal stress. Journal of Applied Entomology, 2009, 133(8): 602-614.
    140. Yuval G, Murad G, Gwenaelle G, Svetlana K, Fabrice V, Frederic F, Einat Z. Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. The Federation of American Societies for Experimental Biology Journal, 2008, 22: 1-9.
    141. Zchori-Fein E, Brown J K. Diversity of Prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Annals of Entomological Society of America, 2002, 95(6): 711-718

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700