花生种子特异表达载体构建与农杆菌介导基因转化技术体系的优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花生是世界范围内广泛栽培的油料与经济作物,是全球四大油料作物之一,也是我国单产、总产和出口创汇额最高的油料作物。利用转基因技术改良花生籽仁品质是花生分子育种研究的重要领域。本研究采用同源克隆技术从花生栽培品种丰花3号基因组中分离获得了两个种子特异表达启动子,并构建成了种子特异表达载体;研究了基因型、芽丛诱导培养基和芽丛成苗培养基三个因素对花生胚小叶再生效率的影响,获得了三因素最优组合的花生胚小叶离体再生体系;并对21个基因型花生进行了基因转化效率的比较研究,获得了转基因植株,PCR检测证明目的基因已整合到花生基因组中。为花生品质改良的分子育种研究奠定了基础。其主要结果如下:
     1花生油体蛋白Oleosin基因启动子的克隆及其种子特异表达载体的构建
     根据GeneBank上发表的花生Oleosin17.8基因的序列(EF695400)设计引物,用丰花3号基因组DNA为模板进行PCR扩增花生Oleosin启动子,琼脂糖凝胶电泳回收PCR扩增的目的片段,并与克隆载体pGM-T easy连接,获得重组质粒pT-OL1584,序列分析表明,获得的启动子序列长1584bp,与GenBank发表的Oleosin17.8启动子同源性为99.37%,除含有TATA、CAAT基本转录元件外,还有2个富含AT序列、2个RY重复序列元件、1个ACCCCA元件,2个TACACAT盒、5个CATG盒、5个E-Box、6个GATA-Box及14个DOF蛋白的AAAG基序等种子特异型启动子所具有的顺式作用元件。OL1584的GeneBank登录序列号为EU518466。重组子pT-OL1584用HindⅢ、BamHⅠ双酶切,并回收目的OL1584基因片断和切除35S启动子的pBI121载体DNA,经连接构建成种子特异表达载体pB-OL1584。并且在OL1584内部设计2个上游引物以重组质粒pT-OL1584为模板,进行PCR扩增,获得含Oleosin启动子5’端缺失片段的重组子pT-OL755和pT-OL375。
     2.花生致敏蛋白基因Ara h1启动子的克隆及其种子特异表达载体的构建
     参考王静(2005)和Olga M(2003)报道的花生Ara h1基因的序列设计引物,用丰花3号基因组DNA为模板进行PCR扩增花生Ara h1启动子,1.2%琼脂糖凝胶电泳回收PCR扩增的目的片段,并与克隆载体pGM-T easy连接,获得重组质粒pT-Ah1968,序列分析表明,Ah1968(GeneBank登录号为EU526898)启动子序列长1968bp,与王静发表的序列同源性为99.14%,与Olga M发表的序列同源性为98.27%.Ah1968除含有基本转录元件TATA、CAAT外,还含有3个AT-Rich、2个RY元件、3个CATG、1个ACCCCA、2个E-Box、2个TACACAT类似序列、2个TAACACA、10个GATA-Box和13个AAAG(DOF蛋白结合基序)等种子特异型启动子所具有的顺式作用元件。重组子pT-Ah1968和质粒pBI121分别用HindⅢ、BamHⅠ双酶切,并回收目的基因片断(约1716bp)和切除35S启动子的pBI121载体DNA,经连接构建成种子特异表达载体pB-Ah1716。在Ah1968内部设计3个上游引物以重组质粒pT-Ah1968为模板,进行PCR扩增,获得了Ara h1启动子5’端缺失片段的重组子pT-Ah1300、pT-Ah1000和pT-Ah500。
     3花生胚小叶离体再生技术体系的优化
     (1)不同品种适宜芽丛诱导培养基的筛选
     小花生品种丰花2号适宜的芽丛诱导培养基为MSB + 3.0mg/L BA + 0.7mg/L NAA,芽丛诱导率为81.49%,再生率为94.39%;大花生品种丰花3号适宜的芽丛诱导培养基为MSB + 4.5mg/L BA + 0.2mg/L NAA,芽丛诱导率为72.33%,再生率为10.70%。
     (2)不同品种适宜芽丛成苗培养基的筛选
     丰花2号适宜的芽丛成苗培养基为MSB+ 2.5mg/L BA,芽丛出苗率、再生率分别为:172.00%和122.10%;丰花3号适宜的芽丛成苗培养基为MSB+ 5.0mg/L KIN,芽丛出苗率、再生率分别为:33.33%、4.03%。
     不同基因型之间的成苗芽丛百分率、芽丛出苗率和植株再生率差异显著,基因型不同是造成花生再生率差异的主要因素。以胚小叶为外植体获取较高植株再生率的三因素最佳组合为:花生品种丰花2号、芽丛诱导培养基为MSB + 3.0mg/L BA + 0.7mg/L NAA,芽丛成苗培养基为MSB+ 2.5mg/L BA。可作为花生基因转化良好的受体系统。
     4不同基因型花生基因转化效率的比较
     以花生胚小叶为外植体,用携带有γ-维生素E甲基转移酶基因(γ-tmt)和筛选标记基因bar的植物表达载体(质粒为pGBVE ,根癌农杆菌为GV3101),对花生21个基因型进行了基因转化。结果表明:农杆菌侵染后再生率较高的10个基因型为:丰花2号、02P181、丰花3号、不结瘤系、丰花1号、白沙1016、丰花6号、05D651、海花1号、蓬莱一窝猴;基因转化率较高的5个基因型为:丰花2号、丰花1号、丰花3号、白沙1016、02P181,丰花2号的基因转化效率最高2.67%,获得的转基因植株经PCR检测呈阳性。
Peanut (Arachis hypogaea L.), the world’s fourth largest oilseed crop, is the oil and economic crop grown worldwide, also is the oil crop that having highest single yield、total yield and export income in our country. So improving peanut trait by genetic transformation is the important field of molecular breeding. Two seed-specific promoters were isolated from genome DNA of Fenghua3 by homology cloning, then seed-specific expression vectors were constructed; the effect of genotype、medium for the inducement of buds and medium for the elongation of buds to regeneration frequency were researched, regeneration system was Optimized in three factors; Genetic transformation frequencies of 21 genotypes were compared; Genetic transformation seeding were obtained, and identified by PCR. All these establish basics for molecular breeding of improving peanut quality. The main results were as follows:
     1 Cloning of the Oleosin promotor from peanut and constructing of its seed- specific expression vector
     The primers were designed according to the published sequence of Oleosin17.8 gene on GenBank (EF695400). Extracting genome DNA from peanut Fenghua3, the fragment of promotor OL1584 was obtained by PCR. The OL1584 was cloned into pGM-T easy vector for sequencing and named pT-OL1584. Sequencing analysis indicated that the inserted fragment was showing 99.37% homology to the reported sequence Oleosin17.8 .And the accession number of sequence OL1584 in GeneBank is EU518466. TATA、CAAT、two AT-Rich elemengts、two RY elements、five CATG boxes、five E-Boxes、six GATA-Boxes two TACACAT elements and fourteen AAAG boxes are existed in OL1584. The recombinant plasmid pT-OL1584 and pBI121 were digested by HindⅢand BamHⅠ, the aimed 1584bp fragment and the longer of pBI121 resected 35S gene were recycled, and ligated by T4 DNA Ligase.The result proved that OL1584 was ligated into the normal vector of pBI121. And the seed-specific expression vector pB-OL1584 was constructed. Then the OL1584 5’deletion plasmids pT-OL755 and pT-OL375 were constructed by PCR with pT-OL1584 for template and different up-primers.
     2 Cloning of the Ara h1 promotor from peanut and constructing of its seed-specific expression vector
     The primers were designed according to the published sequence of Ara h1 gene (WANG jing, 2005; Olga M, 2003). Extracting genome DNA from peanut Fenghua3, the fragment of promotor Ah1968 was obtained by PCR. Then Ah1968 was cloned into pGM-T easy vector for sequencing and named pT-Ah1968. Sequencing analysis indicated that the inserted fragment was showing 99.14% homology to the reported sequence by WANG Jing(2005), 98.27% homology to the reported sequence by Olga M(2003).And the accession number of sequence Ah1968 in GeneBank is EU526898.TATA、CAAT、three AT enhancers、two RY elements、three CATG boxes、two E-Boxes、ten GATA-Boxes two TACACAT elements and thirteen AAAG boxes are existed in Ah1968. The recombinant plasmid pT-Ah1968 and pBI121 were digested by HindⅢand BamHⅠ, the aimed 1716bp fragment and the longer of pBI121 resected 35S gene were recycled and ligated by T4 DNA Ligase.The result proved that Ah1716 was inserted into the normal vector of pBI121. Then the seed-specific expression vector pB-Ah1716 was constructed. The Ah1968 5’deletion plasmids pT-Ah1300、pT-Ah1000 and pT-Ah500 were constructed by PCR with pT-Ah1968 for template and different up-primers .
     3 Optimization of the Regeneration Technique from independent Leaflet of Peanut
     (1)Study on the suitable medium for the inducement of buds
     The experimental results indicated that the suitable medium for the inducement of buds were MSB + 3.0mg/L BA + 0.7mg/LNAA for Fenghua2, frequencies of buds inducement and regeneration are 81.49% and 94.39% respectively. MSB + 4.5mg/L BA + 0.2mg/L NAA is suitable for Fenghua3, frequencies of buds inducement and regeneration are 72.33% and 10.70% respectively.
     (2)Study on the suitable medium for the elongation of buds
     The experimental results indicated that the best media for the elongation of buds were MSB+ 2.5mg/L BA for fenghua2, the rate of seeding in buds and regeneration were 172.00% and 122.10% respectively. And MSB+ 5.0mg/L KIN is suitable for Fenghua3, the rate of seeding in buds and regeneration were 33.33% and 4.03% respectively.
     Conclusion:There are significant differences on bud differentiation and plant regeneration between the two genotypes. Genotype is the main element of regeneration difference. The lesser change of Plant hormone deepness is not enough to offset the regeneration difference of genotypes. The best combination of three factors for higher regeneration frequency: Fenghua2, buds inducement media is MSB + 3.0mg/L BA + 0.7mg/L NAA, buds elongation media is MSB+ 2.5mg/L BA. These could be as accepter system for peanut genetic transformation.
     4 Comparing on transformation efficiency of different genotypes mediated by Agrobacterium tumefaciens
     The experiment conducted genetic transformation research on peanut using vector harboringγ-tmt and bar genes, and leaflet of 21 genotypes as explants. The results indicated that the ten genotypes which have higher regeneration rate are Fenghua2、02P181、Fenghua3、Bujieliuxi、Fenghua1、Baisha1016、Fenghua6、05D651、Haihua1、PengLaiyiwohou;Five genotypes with higher transformation efficiency are Fenghua2、Fenghua1、Fenghua3、Baisha1016、02P181;Fenghua2 is the highest one for 2.67%;PCR positive plants were obtained from the five genotypes.
引文
1.财音青格乐.大豆种子特异性启动子的分离及结构分析[J].中国农业科学,2005,38(3):454~461.
    2.窦秉德,何晔,王芳等.花生不同外植体愈伤组织的诱导及植株再生[J].淮阴师范学院学报2007,6(2):164~167.
    3.方卫国,张永军,马金成等.用YADE法克隆球袍白僵菌类枯草杆菌蛋白酶基因CDEP-1的启动子及启动子序列分析[J].菌物系统,2003,22(2);252~258.
    4.方小平,许泽永,张宗义等.花生小叶外植体再生及农杆菌介导的基因遗传转化[J].中国油料,1996,18(4):52~56.
    5.方小平,许泽永,张宗义等.GUS基因和NPTII基因在转基因后代的遗传研究[J].花生科技,1999,(增刊):241~245.
    6.高新起.种子贮藏蛋白的运输、积累和基因表达调控[J].细胞生物学杂志2005,27:35~38.
    7.郭晓芳,严海燕.植物中的Dof蛋白和Dof转录因子家族[J].植物生理学通讯,2005,41(4):419~425.
    8.郭晓芳,严海燕,何骥等.花生ABI3同源基因的定位分析[J].武汉植物学研究,2006,24(1):22~26.
    9.眭顺照,祝钦泷,郑丽.植物蛋白Oleosin及其在植物基因工程中的应用[J].中国生物工程杂志,2003,23(6)17~23.
    10.韩志勇,王新其,沈革志等.反向PCR克隆转基因水稻的外源基因旁侧序列[J].上海农业学报,2001,17(2):27~ 32.
    11.黄君健,李杰之,林坚等.人端粒酶催化亚基hTERT基因启动子的克隆[J].生物技术通讯,1999,10(3):167~170.
    12.焦改丽.花椰菜花叶病毒(CaMV)35S启动子在转基因棉花中的表达[J].作物学报,2004.11:1135~1139.
    13.兰添颖,宋文芹,张守攻等.转基因农作物检测技术及其应用与发展[J].广西植物2006,26(5): 483 ~487.
    14.冷虹,李加纳,陆合等.△6脂肪酸脱饱和酶基因种子特异表达载体的构建[J].农业生物技术科学,2006,22(4):66~70.
    15.李美芹.花生幼叶组织培养及有效植株再生[J].花生学报,2004,33(3):10~14.
    16.林荣双.花生幼叶为外植体的植株再生系统的建立[J].植物学通报,2003,20(3): 307~ 312.
    17.李春娟,万书波,许婷婷等.花生遗传转化影响因素研究[J].花生学报,2004,33(4):20~25.
    18.李浚明编译.植物组织培养教程[M],第二版.中国农业大学出版社,2003 :44~45.
    19.李子银,胡会庆.农杆菌介导的植物遗传转化进展[J].生物工程进展,1998,18(1):22~26.
    20.梁雪莲,郑奕雄.花生转基因研究进展[J].种子2006,25(1):46~50.
    21.刘风珍. Rs-afp1基因和γ-tmt基因转化花生及高效遗传转化体系的研究[D].山东农业大学博士学位论文,2004,5(30):24~25.
    22.刘风珍,万勇善,王洪刚.γ-维生素E甲基转移酶基因转化花生研究[J].中国粮油学报,2005,20(1):61~64.
    23.刘召华等. ACA基因启动子的克隆及功能初探[J].生物工程学报,2005. 1 ,1: 139~143.
    24.毛自朝等.果实专一性启动子驱动ipt基因在番茄中的表达及其对番茄果实发育的影响[J].科学通报,2002,47(6):444.
    25.邱庆树,李正超,申馥玉等.影响花生籽仁品质的几个因素[J].作物杂志, 1998, 02:1~2 .
    26.沈国妙等.利用DNA改组技术改造aacC1基因启动子活性的研究[J].微生物学报,2004,44( 1):58~61.
    27.石东乔等.甘蓝型油菜BcNA1基因启动子在转基因烟草中对GUS基因表达的调控[J].植物生理学报, 2001,27(4):313~320.
    28.石阶平,宋琳亮,王丹蕊等.利用基因工程技术改造植物脂质的研究进展[J].农业生物技术学报,2001,9(4):403~408.
    29.苏宁,孙萌,李轶女等.水稻叶绿体16S启动子克隆改造、载体构建及转化研究[J].植物学通报,2003,20(3):295~301.
    30.王海波.组织培养中细胞状态的调控[J].作物杂志,1991,(3):3~6.
    31.王静,严海燕,康强胜.一种花生转基因表达载体的构建[J].武汉植物学研究2005, 23 (6) : 514~518.
    32.王蕾,颜永胜,廖斌等.伴花生球蛋白cDNA克隆及其在花生发育种子中的表达[J].植物生理与分子生物学学报.2005,31(1):107~110.
    33.谢金喜.花生脂肪酸品质改良关键基因FAD2的克隆与特异表达载体构建[D].福建农林大学硕士学位论文,2006.
    34.谢迎秋等.部分缺失的棉花曲叶病毒互补链基因启动子具有超强活性[J].高技术通讯,2000.8: 1~5.
    35.徐平丽,单雷,柳展基等.农杆菌介导抗虫Cp订基因的花生遗传转化及转基因植株的再生[J].中国油料作物学报,2003,25(2):5~8.
    36.徐霞.高油酸花生基因工程育种研究[D].山东大学硕士学位论文,2006.
    37.严海燕.花生子叶生物反应器与花生产业发展[J].中国生物工程杂志2006(,26)9:96~98.
    38.周晓红等.番茄果实特异性E8启动子的基因克隆与序列分析[J].第一军医大学学报,2003,23:25.
    39.张红心等. RP26启动子连接的IPT基因的双元载体构建[J].厦门大学学报,2006,5(3):432~435.
    40.赵洪锟,李启云,董英山.转基因作物产业化现状及研究进展[J].中国农学通报,2006,22(4):57~60.
    41.庄东红.花生幼叶芽诱导和植株再生研究[J].中国油料作物学报, 2001, 23(3):13~15.
    42.庄伟建.花生未成熟子叶丛生芽培养[J].花生科技,1997,3:1~4.
    43. Ada M H.Functional Properties and Regulatory Complexity Of a Minimal RBCS Light-Responsive Unit Activated by Phytochrome,Cryptochrome,and Plastid Signals1[J]. Plant Physiol, 2002, 128:1223.
    44. Bell-Lelong D A.Cinnamate-4-hydroxylase expression in Arabidopsis[J].Plant Physiol, 1997, 113:729.
    45. Borisjuk N C. Production of recombinant proteins in plant Root exudates[J]. Nature Biotech, 1999, 17:466.
    46. Branen J K,Chiou T J,Engeseth N J.Over expression of acyl Carrier protein 1 alters fatty acid composition of leaf tissue in Arabidopsis[J].Plant Physiol, 2001,127(1):222~ 229.
    47. Chen Z L,Schuler M A,Beachy R N.Functional analysis of regulatory elements in a plant embryo-specific gene[J].Proceedings of the National Academy of Science of USA, 1986,83(8): 560~564.
    48. Cheng M,Jarret R L,Li Z,et a1.Production Of fertile transgenic peanut (Amchis hypogaea L )plants using A.grobacterium tumefaciens[J].Plant Cell Reports,1996,5:653~657.
    49. Chua N H, Benfey P N.The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription on plants[J].Science, 1990, 250:959~966.
    50. Colgan J M J.Cooperation between core promoter elements in fluences transcriptional activity in vitro[J].Proc Natl Acad Sci USA, 1995, 92(6):1995~1999.
    51. Dickinson C D, Evans R P, Nielsen N C. RY repeats are conserved in the 5’-flanking region of legumin seed-protein genes[J]. Nucleic Acids Research, 1988, 16 (1):371.
    52. Dong J,Bi Y,Xia L,et a1.Temtoma induction and nopaline synthase gene transfer in peanut[J].Acta Geneticasinica,1990,17(1):13~16.
    53. Donna M W,Elizabeth J D,Paul S L. Cloning restriction fragments that premote expression of a gene in Bacillus subtilis[J].J Bacteml, 1981 .146:1162~1165.
    54. Dunn A K, Handelsman J.A vector for promoter trapping in Bacillus cereus[J].Gene, 1999, 226:297~305.
    55. DVid A S, Debrah A S, Pau1a M O.Recent adVances in legume transformation [J]. Plant PhySio1ogy,2003,131:892~899.
    56. Eapen S,George L.Agrobacterium tumefaciens mediated gene transfer in peanut (Arachis hypogaea L.)[J].Plant Cell Reports,1994,13:582~586.
    57. Egnin M,Mora A,Prakash C S.Factors enhancing Agrobacterium turnefaciens mediated gene transfer inpeanut (Arachis hypogaea L.)[J].In Vitro Cell Dev Biol Plant, 1998, 34(4):310~318.
    58. Ezcurra I, et al. Interaction between composite elements in the napA promoter: Both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression[J]. Plant MolBiol, 1999, 40 (4):699.
    59. Fotdor I, Kranikova 0 V, Berets E,et al.Cloning structure and features of a Saccha- romyces cerevisive DNA fragment causing the expression of reporter genes[J].MolBiol. 1990,24:1411~1418.
    60. Franklin C I,Shorrosh K M,Trieu A N,et a1.Stable transformation of peanut callus via Agrobacterium mdiated DNA transfer[J].Transgenic research,1993,2:31~34.
    61. Gijs J.H. van Rooijen, Linda I. Terning and Maurice M. Moloney Nucleotide sequen- ce of an Arabidopsis thaliana oleosin gene[J]. Plant Molecular Biology, 1992, 18: 1177~ 1179.
    62. Hudson M E, et al.Identification of promoter motifs involved in the Network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data[J]. Plant Physiol, 2003, 133: 1605.
    63. Huang W W, Bateman E.TATA elements direct bi-directionalTranscription by RNA polymerasesⅡandⅢ[J].Nucleic acids Res, 1996, 24(6):1158~1163.
    64. Jack J L,Richard H K,Jaro S. Aninverted TATA box directs down stream transcription of the bone sialoprotein[J].GeneBiochen J,1995,310:33~40.
    65. Jonea D H, Winiaiorfer S C. Sequence specific generation of a DNA panhandle permits PCR amplification of unknown flanking DNA[J]. Nucleic Acids Reareh, 1992, 20(3):595~600.
    66. Jones D H , W iniatorfer S G , Amplification of 4-9kb human genomic DNA flanking a known site using a panhandle PCR variant[J].sio Techniquea,1997,23(1):132~138.
    67. Josefsson L G,Lenman M,Ericson M L,Rask L.Structure of a gene encoding the 1.7S storage protein,napin,from Brassica napus[J]. The Journal of Biological Chemistry, 1987, 262(25):12196~12201.
    68. Joshi C P.Aninspection of the domain between putative TATA box and translation start site in 79 plant genes[J].Nucleic Acids Research, 1987, 15:6643~6653.
    69. Kawagoe Y, Murai N.A novel basic region/helix-loop-helix protein binds to a G-box motif CACGTTG of the bean seed storage proteinβ–phaseolin gene[J].Plant Science, 1996, 116:47~57.
    70. Kim J C,Jeong J C,Park H C,Yoo J H,Koo Y D,Yoon H W, Koo S C,Lee S H,Bahk J D,Cho M J. Cold accumulation of SCOF-1 transcripts is associated with transcriptional activation and mRNA stability[J].Mol Cells, 2001, 12(2):204~208.
    71. K K Sharma, M Lavanya, V Anjaiah.A method for isolation and purification ofpeanut genomic DNA suitable for analytical application [J].Plant Molecular Biology Reporter, 2000, 18: 393.
    72. Koltunow A N, et al.Different temporal and spatial gene expression Patterns occur during anther development[J].Plant Cell, 1990, 2:1201.
    73. Lacorte C,Mansur E,Timmerman B,et a1.Gene transfer into peanut (Arachis hypogaea L.) by Agrobacterium tumefacies[J].Plant Cell Reports, 1991, 10:354~357.
    74. Li H G, WangL, Zhang Y S, et al. Cloning and sequencing of the gene Ahy-b encodingg a subunit of peanut conarachin[J].Plant Science, 2005, 168:1387~1392.
    75. LI Yi-Kun, WANG Jin-Fa.Advances of the studieson plant promoter[J].Chinese Bullentin of Botany, 1998, 15 (Suppl.):1~6.
    76. Li Z, Jarret RL, Demski JW. Engineered resistance to tomato spotted wilt virus in transgenic peanut expressing the viral nucleocapsid gene[J].Transgenic research, 1997, 6: 297~305.
    77. LU Jing, ZHAO Hua-Yan, HE Yi-Kun, SONG Yan-Ru. Advances and progresses of high promoter research and its application[J].Natural Science Progresses, 2004, 14(8): 856~862.
    78. M. Abenes,L. Holbrook,M. Moloney .Transient expression and oil body targeting of an Arabidopsis oleosin-GUS reporter fusion protein in a range of oilseed embryos[J].Plant Cell Reports ,1997,17: 1~7.
    79. Mansur E A,Lacorte C,Freitas G,et a1.Reglution of transformation efficiency of peanut(Arachis hypogaeaL.)explants by Agrobacterium turn- efaciens[J].Plant Scien- ce,1 993,89:93~99.
    80. Marraccini P, et al. Rubisco small subunit of Coffea arabica: cDNA sequence, gene cloning and promoter analysis in transgenic tobacco plants[J]. Plant Physiol Biochem, 2003, 41:17.
    81. McKently A H,Moore G A,Doostdar H,Niedz R P.Agrobacterium- mediated transformation of peanut(Arachishypogaea L.)embryo axes and the development oftransgenic plants[J].Plant Cell Reports,1995,14:699~703.
    82. Michael CareyS T S.Transcriptional Regulationin Eukaryotes Concepts, Strategies, and Techniques[M].Clod Spring Harbor Laboratory Press, 2001.
    83. Moon Y H,Song S K,Choi K W,Lee J S.Expression of acDNA Encoding Phytolacca insularis antiviral protein confers virus resistance on transgenic potato plants[J].Mol Cells,1997,7(6):807~815.
    84. Naomi S S, Ichiro M.Constitutive Promoters Available for Transgene expression instead of CaMV35S RNA promoter: Arabidopsis promoters of tryptophan synthase protein subun and phytochrome B[J].Plant Biotechnology, 2002, 19(1):19~26.
    85. Prarshar Y, Weiasman S M. Analysis of differential gene expression by display of 3'end restriction fragments of cDNAs[J].Prca: Nad Acad Sci USA, 1996, 93:659~663.
    86. Rachael L N, Robert W W, Raymond L R. Eukaryotic DNA fragments which act as promoters for a plasmid gene[J].Nature, 1979, 277:324~325.
    87. Ramos M L, Fleming G, Chu Y, et al. Chromosomal and phylogenetic context for conglutin genes in Arachis based on genomic sequence[J].Mol Gen Genomics, 2006.
    88. Rohini V K,Sankara Rao K.Transformation of peanut (Arachis hypogaea L.): a non—tissue culture based approach for generating transgenic plants[J].Plant Science,2000, 150(5):41~49.
    89. Sandhu J S, et al.Oral immunization of mice with transgenic tomoto fruit expressing respiratory syncytial virus-F protein induces a system ic immune response[J].Trans- genicRes, 2000,9(2):127.
    90. Schlappi M,Holm B.Competence of Immature Maize Embryos for Agrobacteriu mediated Gene Transfer[J].The Plant Cell,1992,4,7~16.
    91. Shea,Greenfield A S.Roles of TATA and initiator elements in determining the start site location and direction of RNA polymerase transcription[J].JBiolChem, 1992, 267(2): 1391~1402.
    92. Somnath Bhattacharyya, Sitakanta Pattanaik, Indu B.Mait.i Intron-mediated enhance- ment of gene expression in transgen plants using chimeric constructs composedof the Peanut chloroic streak virus (PCISV) promoter leader and the antisense or entation of PCISV ORF VII(p7R)[J].Planta, 2003, 218:115~124.
    93. StockerA, ZimmerS, SpycherSE, etal.Identification of a novel cytosolic tocop -herol binding protein: structure, specificity, and tissue distribution [J].IU BMB-Life, 1999, 48:5490~5520.
    94. Sun L, Cai H, Xu W, Hu Y, Lin Z.CaMV35S promoter directs Betaglucur- onidase expression in Ganoderma lucidum and Pleurotus citrinopileatus[J].Mol Biotechnol, 2002, 20(3):239~244.
    95. Trieu A T, Burleigh S H, Kardailsky I V, et a1.Transform ation of Medicago truncatela via infiltration of seedlings or flowering plants with Agrobacterium [J].Plant J,2000, 22(6):53 1~41.
    96. Triglia T, Peterson M G, Kemp D J.A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences[J]. Nucleic Acids Research, 1998, 16(16):8186.
    97. Urban L A,et a1.Proceedings of the American Peanut Res and Edu Society[C],INC. 1996, 28:27.
    98. Van Eenennaam A L,Lincoln K,Durrett T P,etal.Engineering vitamin E content: FromArabidopsismutant tosoy oil[J].Plant Cell, 2003,15(12):3007~3 019.
    99. Vincentz M,Leite A,Neshich G,Vriend G,Mattar C,Barros L,Weinberg D,de Almeida E R,de Carvalho M P,Aragao F,Gander ES.ACGT and vicilin core sequences in a promoter domain requiredfor seed-specific expression of a 2S storage protein gene are recognized by the opaque-2 regulatory protein[J].Plant Molecular Biology, 1997,34:879~ 889.
    100. Viquez O M, Konan K N, Dodo H W. Structure and organization of the genomic clone of a major peanut allergen gene Ara h 1[J].Molecular Immunology, 2003, 40: 565~571.
    101. Viquez O M, Konan KN, Dodo HW. Genomic organization of peanut allergen gene, Ara h 3[J]. Molecular Immunology,2004,41:1235~1240.
    102. Viquez O M, Summer C G, Dodo H W. Isolation and molecular character- rization of the first genomic clone of a major peanut allergen Ara h 2[J]. Journal of Allergy and Clinical Immunology, 2001, 107 (4):713~717.
    103. WEISINGK, KAHLG.Towards an understanding of plant gene regulation the action of nuclear factors [J].Z.Naturforsch.C, 1991, 46:1~11.
    104. ZHU Yu-Xian, LI Yi.Modern Molecular Biology[M].Beijing Higher Education Press, 1997.
    105. Zhu Q, Lamb C. TATA box and initiator functions in the accurate transcripttion of a plant minimal promoter in vitro[J]. Plant Cell, 1995, 7 (10):1681~1689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700