基于核酸序列的海藻生物地理和光适应性进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于核酸序列的分子系统发育分析在藻类生物地理分布、遗传多样性和进化研究中的作用突出。
     近年来,黄海海域连续发生大规模绿潮,对沿海生态造成巨大影响,有必要从分子水平对该海域的绿潮藻主要构成种类——石莼和浒苔的分类、分布,及其与世界其它地区特定物种的遗传多样性和亲缘关系进行探讨。本文基于ITS、rbcL和psbA等基因序列的分析,发现青岛漂浮绿藻样本之间ITS序列分歧度极低,仅为0.0%~2.5%;漂浮样本与定生样本之间的分歧度较高,从7.6%到24.4%。系统发育构建将15个定生样本分散到5个分枝中,漂浮样本形成独立的分枝,揭示了所有的漂浮绿藻为单一物种,青岛本地不存在漂浮绿藻的定生类群,2007青岛沿岸出现的漂浮绿藻为区域性外来物种。21个2008黄海漂浮样本ITS序列中的19个与2007青岛样本序列相同,其余2个与之相比分歧度也极低(0.2%),表明2008与2007漂浮绿藻为同一物种;rbcL和psbA序列分析得到相似的结果。系统发育分析中,黄海漂浮浒苔聚类于浒苔linza-procera-prolifera复合群,形态上倾向于Enteromorpha prolifera,无论从种类还是形态上均与石莼相差较大;与欧洲和北美相比,黄海漂浮浒苔和日本E. prolifera具有更近的亲缘关系,充分反映出地理距离与该物种遗传多样性之间的联系。现有调查研究结果显示黄海两岸至少分布着8种浒苔和石莼属绿藻,但在本研究采集的该海域绿藻样本中暂未发现定生的漂浮浒苔E. prolifera。
     分子系统发育分析方法也被用于藻类进化研究方面。本文克隆了两种颜色的长心卡帕藻的藻胆蛋白基因,发现藻体颜色变化与藻胆蛋白基因碱基组成和排列无关。在PE-β分枝中,与高光适应型原绿球藻相比,红藻与低光适应型原绿球藻表现出更近的亲缘关系。卡帕藻与低光适应型原绿球藻PE-β相同且与高光适应型不同的位点达48个(而与高光适应型相同的位点仅为4个),这些位点多处于α-螺旋区和一些功能已知区域,如色基结合、亚基和连接蛋白结合区域等,可见红藻的进化与对低光环境的适应有关,但同时也对高光环境有响应和调节机制。光系统II光合效率分析结果也显示卡帕藻半饱和光强低于115μmol m~(-2) s~(-1),与紫菜相似,同样证明红藻多数属于低光适应型物种。光合生理参数同样反映出红藻对高光的适应性。红藻的低光适应性,推测与上述48个位点中的一些关系密切;藻红蛋白中的4个位点可能与红藻的高光适应有关。藻蓝蛋白和别藻蓝蛋白氨基酸序列比对分析结果显示,相对于藻蓝蛋白而言,红藻、褐藻和蓝藻的别藻蓝蛋白保守性较高;总体上相比含有藻红蛋白种类的聚球藻,红藻、褐藻的藻蓝蛋白与藻胆体中不含有藻红蛋白的聚球藻RS9917和WH5701相似性更高,进一步验证了藻胆蛋白由蓝藻向红藻再到褐藻的进化过程中,别藻蓝蛋白同步进化,而藻蓝蛋白和藻红蛋白独立、分开进化,从而使藻类能够快速适应周围光环境变化的观点。
Phylogenic analysis based on nucleotide sequences is excellent in the studies of algal biogeography and evolution.
     In recent years, large-scale green tides bloomed successively in the Yellow Sea, which caused in ecological and social problems. It is necessary to carry out molecular analysis on classification and distribution of mainly green-tide-forming algae, Ulva and Enteromorpha in this sea area, in addition to the genetic diversity and phylogenetic relationship between the green-tide-forming algae in the Yellow Sea and the reported species all over the world. In the present study, based on the analysis of nuclear rDNA ITS, chloroplast rbcL, and psbA sequences, it’s found that ITS sequence divergencies among all free-floating samples were very low (0.0%–2.5%), while sequence divergency between free-floating samples and attached samples were much higher, ranging from 7.6% to 24.4%. According to the phylogenetic tree, all free-floating samples were grouped to one cluster; 15 attached samples were resolved into five other clades, which demonstrated that free-floating samples were unialgal, and the attached Ulvaceae species from Qingdao coasts in summer 2007 were not the biogeographic origin of the free-floating one. In the ITS sequence, 19 out of the 21 Yellow Sea samples of 2008 were identical to those of a sample collected from Qingdao in 2007. A low divergence (0.2%) was found in two remaining samples. Similar evidence was shown by pairwise distances of rbcL and psbA gene sequence data, implying the uniformity of the Yellow Sea blooms in 2007 and 2008. Molecular phylogenetic results grouped the free-floating alga into one clade with E. procera, E. linza and E. prolifera, while the morphological character of this alga is identical to E. prolifera. Both molecular and morphological analysis revealed the free-floating samples are not Ulva species. The haplotypes of the Yellow Sea free-floating E. prolifera were closely related to those from the Japanese coast but less to European and American algae, which reflect the relationship between biogeographic distance and genetic diversity. Recent investigation showed there are at least 8 species of Ulva and Enteromorpha distribute at both side of the Yellow Sea. However, none attached population of free-floating E. prolifera was found in this sea area.
     Molecular analysis was also carried out on evolution of algae. Phycobiliprotein genes of two color-differing K. alvarezii were cloned in the study, but there was not any difference which indicates that color variation was independent of nucleotide composition and arrangement of phycobiliprotein genes. Phycobiliprotein sequences of K. alvarezii, other representative red macroalgae (e.g. Porphyra, Gracilaria) together with those of cyanobacteria were used to illuminate the phylogenetic position and evolution of red algae. When comparing to high-light-adapted (HL-) Prochlorococcu, the red algae have a closer relationship with low-light-adapted (LL-) Prochlorococcu in this phylogenetic tree. Forty-eight amino acid sites of PE-βin red algae were identical to LL-Prochlorococcu but different from HL-Prochlorococcu, while 4 amino acid sites of PE-βin red algae were identical to HL-Prochlorococcu but divergent with LL-Prochlorococcu. These sites were generally located at domain ofα-helix, chromophore or linker interaction, which revealed that the evolution of red algae was not only associated with low light environment but also with high light adaptation. Similar to that of Porphyra, analysis of PSII photochemical efficiency of K. alvarezii displayed a low minimum saturating irradiance of 115μmol m~(-2) s~(-1), which also proved that these representative red macroalgae belong to low-light-adapted species. However, which is also reflected by PSII photochemical parameters, K. alvarezii can adapt the high light. The low-light-adapted adaptability of red algae might be correlated with the above mentioned forty-eight amino acid sites, while 4 amino acid sites in PE correspond to high-light-adapted adaptability. APC sequences of red algae, Cryptophytes and cycanobacteria were conservative when it was compared to PC. Generally, PC sequences of red algae and brown algae were more similar to those of PE deficient Synechococcus RS9917 and WH5701 compared to PE contained Synechococcus species, which also improved that APC has likely evolved together, while PC and PE have evolved independently during the evolution of phycobiliproteins from cycanobacteria to red algae and brown algae, allowing these algae rapid adaptation to a variety of light niches.
引文
1.董凤平,韩素英,张守攻,齐力旺,刘博,李秀兰,陈成彬. 25S rDNA在杨属植物染色体上的定位.云南植物研究. 2007, 29(4): 423–428.
    2.董美龄.中国浒苔属植物地理学的初步研究.海洋与湖沼. 1963, 5(1): 46–51.
    3.黄知清,严兴洪.海藻研究开发的发展概述.海洋技术. 2002, 21(3): 22–25.
    4.李伟新,朱仲嘉,刘凤贤.海藻学概论.上海科学技术出版社. 1982, pp 24–207.
    5.牛建峰,范晓蕾,潘光华,朱大玲,谢嘉琳,刘伟,王广策,孙松,周百成.青岛海域大面积聚集漂浮浒苔的显微观测.海洋科学. 2008, 32(8): 30–33.
    6.苏乔.我国几类大型海藻的分子系统学研究.东北林业大学博士学位论文. 2001.
    7.隋正红.龙须菜藻红蛋白基因的研究.中国海洋大学博士学位论文. 2001.
    8.隋正红,张学成.龙须菜藻红蛋白亚基基因的克隆及其在大肠杆菌中的表达.高技术通讯. 2001, 11: 14–19.
    9.王超,乔洪金,潘光华,张宝玉,牛建峰,王广策,孙松,周百成.青岛奥帆基地海域漂浮浒苔光合生理特点研究.海洋科学. 2008, 32(8): 13–15.
    10.王广策,邓田,曾呈奎.藻胆蛋白的研究概况(II)—藻胆蛋白的结构及其光谱特性.海洋科学. 2000, 24(3): 19–22.
    11.王素娟,马凌波,许璞,朱建一,郑元铸. 60Co–γ射线诱变条斑紫菜丝状体的研究.海洋科学. 1999, 4: 43–46.
    12.王艇,苏应娟,朱建明.叶绿体rbcL基因序列在植物系统学研究中的应用.武汉植物学研究. 1999, 17: 8–14.
    13.汪文俊,王飞久,陈松林,孙修涛,王翔宇,邢士超,王俊.浒苔ITS区的扩增和分析.海洋水产研究. 2008, 29(5): 124–129.
    14.吴国芳,冯志坚,马炜梁,周秀佳,郎奎昌,胡人亮,王策箴,李茹光.植物学(第二版).北京:高等教育出版社. 1992, pp 20.
    15.熊皓平,吉宏武,邵海艳.海藻多糖化学及生物活性的研究进展.天然产物研究与开发. 2007, 19: 165–169.
    16.许璞.紫菜色素突变体诱导与遗传特征.中国科学院博士学位论文. 1997, 1–90.
    17.严兴洪,王素娟.秋水仙碱对坛紫菜体细胞苗生长发育的影响.海洋科学. 1990, 1:28–32.
    18.严兴洪.紫外线辐射与条斑紫菜原生质体后代发育和变异.上海水产大学学报. 1992, 1(1): 71–78.
    19.杨君,安利佳,王茜,王宏伟,苏乔,康晓慧.石莼属(Ulva)和浒苔属(Enteromorpha)绿藻的RAPD分析.海洋与湖沼. 2000, 31(7): 407–413.
    20.叶乃好,张晓雯,毛玉泽,庄志猛,王清印.黄海绿潮浒苔(Enteromorpha prolifera)生活史的初步研究.中国水产科学. 2008, 15(5): 853–859.
    21.曾呈奎,张峻甫.中国北部的经济海藻.山东大学学报. 1952, 2: 57–82.
    22.曾呈奎,张峻甫.黄海和东海的经济海藻区系.海洋与湖沼. 1959, 2: 43–52.
    23.曾呈奎,张德瑞,张峻甫.中国经济海藻志.北京:科学出版社, 1962. pp 42–50.
    24.曾呈奎,张峻甫.中国沿海海藻区系的初步分析研究.海洋与湖沼. 1963, 5(3): 245–253.
    25.张晓雯,毛玉泽,庄志猛,柳淑芳,王清印,叶乃好.黄海绿潮浒苔的形态学观察及分子鉴定.中国水产科学. 2008, 15(5): 822–829.
    26.张学成,秦松,马家海,许璞.海藻遗传学.北京:中国农业出版社. 2005, pp 110.
    27.赵方庆.螺旋藻基因组结构分析和藻胆蛋白的适应性进化.中国科学院博士学位论文. 2006.
    28. Adir N, Vainer R, Lerner N. Refined structure of c-phycocyanin from the cyanobacterium Synechococcus vulcanus at 1.6 ?: insights into the role of solvent molecules in thermal stability and co-factor structure. Biochim. Biophys. Acta. 2002, 1556: 168–174.
    29. Adir N, Lerner N. The crystal structure of a novel unmethylated form of C-phycocyanin, a possible connector between cores and rods in phycobilisomes. J. Biol. Chem. 2003, 278:25926–25932.
    30. Ahlner K. Bidrag till k?nnedomen om de svenska formerna af algsl?gtet Enteromorpha. Akademisk afhandling. Stockholm 1877, pp 51.
    31. Apt K E, Collier J L, Grossman A R. Evolution of the phycobiliproteins. J. Mol. Biol. 1995, 248: 79–96.
    32. Aruga Y, Miura A. In vivo absorption spectra and pigment contents of the two types of color mutants of Porphyra. Jap. J. Phycol. 1984, 32: 243–250.
    33. B?ck S, Lehvo, Blomster J. Mass occurrence of unattached Enteromorpha intestinalis onthe Finnish Baltic Sea coast. Ann. Bot. Fennici 2000, 37: 155–161.
    34. Bakker T F. Global phylogeography in the cosmopolitan species Cladophora Vagabunda (Chlorophyta) based on nuclear rDNA internal transcribed spacer sequences. Eur. J. Phycol. 1995, 30: 197–208.
    35. Baldauf S L, Roger A J, Wenk-Siefert I, Doolittle W F. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 2000, 290: 972–977.
    36. Beale S I, Cornejo J. Biosynthesis of phycobilins. Ferredoxin-mediated reduction of biliverdin catalyzed by extracts of Cyanidium caldarium. J. Biol. Chem. 1991a, 266: 22326–22332.
    37. Beale S I, Cornejo J. Biosynthesis of phycobilins. 3(Z)-Phycoerythrobilin and 3(Z)-phycocyanobilin are intermediates in the formation of 3(E)-phycocyanobilin from biliverdin IX alpha. J. Biol. Chem. 1991b, 266: 22333–22340.
    38. Bennett A, Bogorad L. Properties of subunits and aggregates of blue-green algal biliproteins. Biochemistry 1971, 10: 3625–3634.
    39. Berglund H. On the cultivation of multicellular marine green algae in axenic culture. Svensk Bot. Tidskr. 1969, 63: 251–264.
    40. Betz M. One century of protein crystallography: the phycobiliproteins. Biol. Chem. 1997, 378: 167–176.
    41. Bhattacharya D, Medlin L. The phylogeny of plastids: a review based on comparisons of small subunit ribosomal RNA coding regions. J. Phycol. 1995, 31: 489–498.
    42. Bhattacharya D, Yoon H S, Hackett J D. Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 2004, 26: 50–60.
    43. Bliding C. Studien uber Entwicklung und Systematik in der Gattung, Enteromorpha. II. Bot. Notiser. 1939, pp134–144.
    44. Bliding C. Zur Systematik der schwedischen Enteromorphen. Ibid. 1944, pp331–356.
    45. Bliding C. Uber Enteromorpha intestinalis und compressa. Bot. Notister. Lund. H. 1948, 2: 123–136.
    46. Bliding C. A new species from the coasts of Sweden, England and Wales. Ibid. 1955, 108: 253–262.
    47. Bliding C. A preliminary report on some new Mediterranean green algae. Ibid. 1960, 113:172–184.
    48. Bliding C. A critical study of European taxa in Ulvales. I. Capsosiphon, Percursaria, Blidingia, Enteromorpha. Op. Bot. Soc. Bot. Lund. 1963, 8: 1–160.
    49. Bliding C. A critical survey of European taxa in Ulvales. II. Ulva, Ulvaria, Monostroma, Kornmannia. Bot. Not. 1968, 121: 534–629.
    50. Blomster J, Maggs C A, Stanhope M J. Molecular and morphological analysis of Enteromorpha intestinalis and E. compressa (Chlorophyta) in the British Isles. J. Phycol. 1998, 34: 319–340.
    51. Blomster J, Maggs C A, Stanhope M J. Extensive intraspecific morphological variation in Enteromorpha muscoides (Chlorophyta) revealed by molecular analysis. J. Phycol. 1999, 35: 575–586.
    52. Blomster J. Molecular and morphological approaches to the taxonomy of Enteromorpha, Chlorophyta. Ph.D. thesis. Queen’s University of Belfast 2000.
    53. Blomster J, B?ck S, Fewer D P, Kiirikki M, Lehvo A, Maggs C A, Stanhope M J. Novel morphology in Enteromorpha (Ulvophyceae) forming green tide. Am. J. Bot. 2002, 89: 1756–1763.
    54. Bold H C, Wynne M J. Introduction to the algae. Structure and reproduction. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA. 1985.
    55. Bonneau E R. Polymorphic behavior of Ulva lactuca (Chlorophyta) in axenic culture. I. Occurence of Enteromorpha-like plants in haploid clones. J. Phycol. 1977, 13: 133–140.
    56. Brejc K, Ficner R, Huber R, Steinbacher S. Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 A resolution. J. Mol. Biol. 1995, 249: 424–440.
    57. Brodie J, Guiry M D, Masuda M. Life history and morphology of Chondrus nipponicus (Gigartinales, Rhodophyta) from Japan. Br. Phycol. J. 1991, 26: 33–50.
    58. Canter-Lund H, Lund J W G. Freshwater algae: their microscopic world explored. Biopress, Bristol 1995, pp 360.
    59. Charlier R H, Morand P, Finkl C W, Thys A. Green tides on the Brittany coasts. Environ. Res. Eng. Manage. 2007, 3: 52–59.
    60. Cavalier-Smith T. Chloroplast evolution: secondary symbiogenesis and multiple losses.Curr. Biol. 2002, 12: 62–64.
    61. Chang W, Jiang T, Wan Z, Zhang J, Yang Z, Liang D. Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2.8 ? resolution. J. Mol. Biol. 1996, 262: 721–731.
    62. Cho T O, Boo S M. Marine flora of Oeyondo Islands on the Yellow Sea, Korea: I. Green algae and seagrasses. Algae 1998, 13: 1–11.
    63. Clement M, Posada D, Crandall K A. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 2000, 9: 1657–1660.
    64. Coleman A W, Mai J C. Ribosome DNA ITS-1 and ITS-2sequence comparisons as a tool for predicting genetic relatedness. J. Mol. Evol. 1997, 45: 168–177.
    65. Collins F S. The Ulvaceae of North America. Rhodora. 1903, 5: 1–31.
    66. Contreras-Martel C, Martinez-Oyanedel J, Bunster M, Legrand P, Piras C, Vernede X, Fontecilla-Camps J C. Crystallization and 2.2 ? resolution structure of R-phycoerythrin from Gracilaria chilensis: a case of perfect hemihedral twinning. Acta. Crystallogr., Sect. D 2001, 57: 52–60.
    67. Contreras-Martel C, Matamala A, Bruna C, Poo-Caama?o G, Almonacid D, Figueroa M, Martínez-Oyanedel J, Bunster M. The structure at 2 ? resolution of phycocyanin from Gracilaria chilensis and the energy transfer network in a PC-PC Complex. Annu. Rev. Biophys. Biophys. Chem. 2007, 125: 388–396.
    68. Dangeard P. Observations sur quelques Ulvacees du Maroc. Le botaniste 1958, 42: 5–63.
    69. Dawes C J. Temperature acclimation in cultured Eucheuma isiforme from Florida and E. alvarezii from the Philippines. J. Appl. Phycol. 1989, 1: 59–65.
    70. de Lorimier R, Bryant D A, Porter R D, Liu W Y, Jay E, Stevens Jr S E. Genes for the alpha and beta subunits of phycocyanin. Proc. Natl. Acad. Sci. USA 1984, 81: 7946–7950.
    71. de Marsac N T. Phycobiliproteins and phycobilisomes: the early observations. Photosynth. Res. 2003, 76: 197–205.
    72. De Toni G B. Sylloge Algarum. I. Chlorophyceae Patavii 1989, pp 1–531.
    73. De Silva M W R N. An experimental approach to the taxonomy of the genus Enteromorpha (L.) Link. Ph.D. thesis, University of Liverpool. 1969.
    74. De Silva M W R N, Burrows E M. An experimental assessment of the status of the species Enteromorpha intestinalis (L.) Link and Enteromorpha compressa (L.) Grev. J. Mar. Biol.Ass. U. K 1973, 53: 895–904.
    75. Delwiche C F. Tracing the thread of plastid diversity through the tapestry of life. Am. Nat. 1999, 154: 164–177.
    76. Ding L, Fei X, Lu Q, Deng Y, Lian S. The possibility analysis of habitats, origin and reappearance of bloom green alga (Enteromorpha prolifera) on inshore of western Yellow Sea. Chin. J. Oceanol. Limnol. 2009, 27, 421–424.
    77. Dion P, Le Bozec S. The French atlantic coasts. In: Schramm W and Nienhuis P H (eds.), Marine benthic vegetation: Recent changes and the effects of eutrophication. Springer-Verlag, Berlin, Germany 1996, pp 251–264.
    78. Doty M S. The marine algae of Oregon. I. Chlorophyta and Phaeophyta. Farlowia 1947, 3: 1–65.
    79. Doust A B, Marai C N J, Harrop S J, Wilk K E, Curmi P M G, Scholes G D. Developing a structure-function model for the cryptophyte phycoerythrin using ultrahigh resolution crystallography and ultrafast laser spectroscopy. J. Mol. Biol. 2004, 344: 135–153.
    80. Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Focus 1990, 12: 13–15.
    81. Drew K M. Conchocelis phase in the life history of Porphyra umbilicalis (L.) Kutz. Nature 1949, 164: 748–749.
    82. Duerring G B, Schmidt R H. Isolation, crystallization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1’66 D resolution. J. Mol. Biol. 1991, 217: 577–592.
    83. Falkowski P G, Katz M E, Knoll A H, Quigg A, Raven J A, Schofield O, Taylor F J R. The evolution of modern eukaryotic phytoplankton. Science 2004, 305: 354–360.
    84. Fama P. High levels of intra-and inter-individual polymorphism in the rDNA ITS of Cauleapa racemosa (Chlorophyta). Eur. J. Phycol. 2000, 35: 349–356.
    85. Fast N M, Kissinger J C, Roos D S, Keeling P J. Nuclear-encoded, plastid-targeted genes suggest a single common origin for Apicomplexan and Dinoflagellate plastids. Mol. Biol. Evol. 2001, 18: 418–426.
    86. Figueroa F L, Salles S, Aguilera J, Jiménez C, Mercado J, Vi?egla B, Flores-Moya A, Altamirano M. Effects of solar radiation on photoinhibition and pigmentation in the red alga Porphyra leucosticte. Mar. Ecol. 1997, 151: 81–90.
    87. Fletcher R L, Cuomo V, Palomba I. The“green tide”problem, with particular reference to the Venice Lagoon. Br. Phycol. J. 1990, 25: 87.
    88. Fletcher R L. The occurrence of“green tides”: a review. In: Schramm W and Nienhuis P H (eds.), Marine Benthic Vegetation: Recent Changes and the Effects of Eutrophication. Springer, Berlin, Germany 1996, pp 7–43.
    89. Freshwater D W, Fredericq S, Butler B S, Hommersand M H, Chase M W. A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL. Proc. Natl. Acad. Sci. USA 1994, 91: 7281–7285.
    90. Friedl T, O’Kelly C J. Phylogenetic relationships of green algae assigned to the genus Planophila (Chlorophyta): evidence from 18S rDNA sequence data and ultrastructure. Eur. J. Phycol. 2002, 37: 373–384.
    91. Fries L. Some observations of the morphology of Enteromorpha linza (L.) J. Ag. and Enteromorpha compressa (L.) Grev. in axenic culture. Bot. Mar. 1975, 18: 251–253.
    92. Fu G, Yao J, Liu F, Liu J, Wang X, Fu W, Li D, Zhou M, Sun S, Duan D. Effect of temperature and irradiance on the growth and reproduction of Enteromorpha prolifera J. Ag. (Chlorophycophyta, Chlorophyceae). Chin. J. Oceanol. Limnol. 2008, 26: 357–362.
    93. Fφyn B. Sex-linked inheritance in Ulva. Biol. Bull. 1960, 118: 407–411.
    94. Fφyn B. Globose, a recessive mutant in Ulva mutabilis. Bot. Mar. 1961, 3: 60–64.
    95. Galland-Irmouli A V, Pons L, Lucon M, Villaume C, Mrabet N T, Guéant J L, Fleurence J. One-step purification of R-phycoerythrin from the red macroalga Palmaria palmata using preparative polyacrylamide gel electrophoresis. J. Chromatogr. 2000, 739: 117–123.
    96. Gantt E. Structure and function of phycobilisomes: light harvesting pigment complexes in red and blue-green algae. Int. Rev. Cytol. 1980, 66: 45–48.
    97. Gantt E. Pigmentation and photoacclimation. In: Cole K M and Sheath R G (eds.), Biology of the red algae. Cambridge University Press, Cambridge 1990, pp 203–219.
    98. Gayral P. Premières observations et réflexions sur des Ulvacées en culture. Le Botaniste 1959, 43: 85–100.
    99. Gayral P. Mise au point sur les Ulvacées (Chlorophycées), particulièrement sur les résultats de leureétude en laboratoire. Le Botaniste 1967, 50: 205–251.
    100. Gerung G S, Ohno M. Growth rates of Eucheuma denticulatum (Burman) Collins etHarvey and Kappaphycus striatum (Schmitz) Doty under different conditions in warm waters of Southern Japan. J. Appl. Phycol. 1997, 9: 413–415.
    101. Glazer A N, Cohen B G. Subunit structure of the phycobiliproteins of blue-green algae. Proc. Natl. Acad. Sci. USA 1971, 8: 1398–1401.
    102. Glazer A N, Apell G S. A common evolutionary origin for the biliproteins of cyanobacteria rhodophyta and cryptophyta. FEMS Lett. 1977, 1: 113–116.
    103. Glazer A N. Phycobilisome: A macromolecular complex optimized for light energy transfer. Biochim. Biophys. Acta. 1984, 768: 29–51.
    104. Glazer A N. Phycobilisomes. Meth. Enzymol. 1988, 167: 304–312.
    105. Grossman A R, Schaefer M R, Chiang G G, Collier J L. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol. Rev. 1993, 57: 725–749.
    106. Guiry M D, NicDonncha E. AlgaeBase. World-wide electronic publication. http:// www.algaebase.org. 2002.
    107. Guiry MD, Guiry GM. AlgaeBase. World-wide electronic publication. http:// www.algaebase.org. 2008.
    108. Gysi J, Zuber H. Isolation and characterization of allophycocyanin II from the thermophilic blue-green alga Mastigocladus laminosus Cohn. FEBS Lett. 1974, 48: 209–213.
    109. H?der D P, Gr?niger A, Hallier C, Lebert M, Figueroa F L , Jiménez C. Photoinhibition by visible and ultraviolet radiation in the red macroalga Porphyra umbilicalis grown in the laboratory. Plant Ecol. 1999, 145: 351–358.
    110. Hagopian J C, Reis M, Kitajima J P, Bhattacharya D, de Oliveira M C. Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights into the evolution of Rhodoplasts and their relationship to other plastids. J. Mol. Evol. 2004, 59: 464–477.
    111. Hall T A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic. Acids. Symposium. Series. 1999, 41: 95–98.
    112. Hamel G. Chlorophycees des cotes francaises (Fin). Revue Algologique 1931, 6: 9–74.
    113. Hanyuda T, Suzawa Y, Suzawa T, Arai S, Sato H, Ueda K, Kumano S. Biogeography and taxonomy of Batrachospermum helminthosum (Batrachospermales, Rhodophyta) in Japaninferred from rbcL gene sequences. J. Phycol. 2004, 40: 581–588.
    114. Harper J T, Saunders G W. Molecular systematics of the Florideophyceae (Rhodophyta) using nuclear large and small subunit rDNA sequence data. J. Phycol. 2001, 37: 1073–1082.
    115. Hayden H S, Waaland J R. Phylogenetic systematics of the Ulvaceae (Ulvales, Ulvophyceae) using chloroplast and nuclear DNA sequences. J. Phycol. 2002, 38: 1200–1212.
    116. Hayden H S, Blomster J, Maggs C A, Silva P C, Stanhope M J, Waaland J R. Linnaeus was right all along: Ulva and Enteromorpha are not distinct genra. Eur. J. Phycol. 2003, 38: 277–294.
    117. Hayden H S, Waaland J R. A molecular systematic study of Ulva (Ulvaceae, Ulvales) from the Northeast Pacific. Phycologia 2004, 43: 364–382.
    118. Hershkovitz M A, Lewis L A. Deep-level diagnostic value of the rDNA-ITS region. Mol. Biol. Evol. 1996, 13: 1 276–1 295.
    119. Hernández I, Peralta G, Pérez-Lloréns J L, Vergara J J, Niell F X. Biomass and dynamics of growth of Ulva species in Palmones River estuary. J. Phycol. 1997, 33: 764–772.
    120. Hess W R, Partensky F, van der Staay G W M, Garcia-Fernandez J M, B?rner T, Vaulot D. Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. Proc. Nat. Acad. Sci. USA 1996, 93: 11126–11130.
    121. Hilditch C M, Smith, A J, Balding P, Rogers, L J. C-Phycocyanin from the cyanobacterium Aphanothece halophytica. Phytochemistry 1991, 30: 3515–3517.
    122. Hiraoka M, Shimada S, Uenosono M, Masuda M. A new green-tide-forming alga, Ulva ohnoi Hiraoka et Shimada sp. nov. (Ulvales, Ulvophyceae) from Japan. Phycol. Res. 2003, 51: 17–29.
    123. Hiraoka M, Ohno M, Kawaguchi S, Yoshida G. Crossing test among floating Ulva thalli forming‘green tide’in Japan. Hydrobiologia 2004, 512: 239–245.
    124. Houmard J, Mazel D, Moguet C, Moguet C, Bryant D A, Tandeau de Marsac N. Organization and nucleotide sequence of genes encoding core components of the phycobilisomes from Synechococcus 6301. Mol. Gen. Genet. 1986, 205: 404–410.
    125. Huber R. A structural basis of light energy electron transfer in biology. EMBO J. 1989, 8:2125–2147.
    126. Hwang M S, Kim S M, Ha D S, Baek J M, Kim H S. Choi H G. DNA sequences and identification of Porphyra cultivated by natural seeding on the southwest coast of Korea. Algae 2005, 20: 183–196.
    127. Ichihara K, Arai S, Uchimura M, Fay E J, Ebata H, Hiraoka M, Shimada S. New species of freshwater Ulva, Ulva limnetica (Ulvales, Ulvophyceae) from the Ryukyu Islands, Japan. Phycol. Res. 2009, 57: 94–103.
    128. Ichikawa H, Beardsley R. The current system in the Yellow and East China Seas. J. Oceanogr. 2002, 58: 77–92.
    129. Israel A A, Friedlander M and Neori A. Biomass yield, photosynthesis and morphological expression of Ulva lactuca. Bot. Mar. 1995, 38: 297–302.
    130. Janson S, Graneli E. Phylogenetic analyses of nitrogen-fixing cyanobacteria from the Baltic Sea reveal sequence anomalies in the phycocyanin operon. Int. J. Syst. Evol. Microbiol. 2002, 52: 1397–1404.
    131. Jiang T, Zhang J, Chang W, Liang D. Crystal structure of R-phycocyanin and possible energy transfer pathways in the phycobilisome. Biophys. J. 2001, 81: 1171–1179.
    132. Johnson Z I, Zinser E R, Coe A, McNulty N P, Woodward E M S, Chisholm S W. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 2006, 311: 1737–1740.
    133. Kang J W. On the geographical distribution of marine algae in Korea. Bull. Pusan Fish. Coll. 1966, 7: 1–125.
    134. Kapp O H, Moens L, Vanfleteren J, Trotman C N, Suzuki T, Vinogradov S N. Alignment of 700 globin sequences: extent of amino acid substitution and its correlation with variation in volume. Protein Sci. 1995, 4: 2179–2190.
    135. Kapraun D F. Field and cultural studies of Ulva and Enteromorpha in the vicinity of Port Aransas, Texas. Contrib. Mar. Sci. 1970, 15: 205–285.
    136. Karol K G, McCourt R M, Cimino M T, Delwiche C F. The closest living relatives of land plants. Science 2001, 294: 2351–2353.
    137. Katayama K. Studies of mutations of Porphyra-I: em-ployment of some chemical mutagens. Bull. Fish. Res. Stn., Okayama Pref. 1983, 57: 51–56.
    138. Katayama K. Studies of mutations of Porphyra-II: mutations induced by several chemical mutagens. Bull. Fish. Res. Stn., Okayama Pref. 1984, 58: 43–49.
    139. Keeling P J, Archibald J M, Fast N M, Palmer J D. Comment on“The evolution of modern eukaryotic phytoplankton”. Science 2004, 306: 2191b.
    140. Kikuchi H, Wako H, Yura K, Go M, Mimuro M. Significance of a two-domain structure in subunits of phycobiliproteins revealed by the normal mode analysis. Biophys. J. 2000, 79: 1587–1600.
    141. Kobara T, Miura A, Aruga Y. In vitro studies on the green type mutant of Porphyra yezoensis Ueda. La. mer. 1976, 14: 58–63.
    142. Koeman R P T, van den Hoek C. The taxonomy of Ulva (Chlorophyceae) in the Netherlands. Eur. J. Phycol. 1981, 16: 9–53.
    143. Koh C H, Oh S H. Distribution pattern of macroalgae in the eastern Yellow Sea, Korean. Korean J. Phycol. 1992, 7: 139–146.
    144. Kramer J A. Omiga?: A PC-based sequence analysis tool. Mol. Biotechnol. 2001, 19: 97–106.
    145. Kunimoto M, Kito H, Kaminishi Y, Mizukami Y, Murase N. Molecular divergence of the SSU rRNA gene and internal transcribed spacer 1 in Porphyra yezoensis (Rhodophyta). J. Appl. Phycol. 1999, 11:211–216.
    146. Kunimoto M, Kito H, Mizukami Y, Murase N, Levine I. Molecular features of a defined genetic marker for the determination of the Porphyra tenera lineage. J. Appl. Phycol. 2003, 15: 337–343.
    147. Kursar T A, van der Meer J P, Alberte R S. Light-harvesting system of the red alga Gracilaria tikvahiae. I. Biochemical analyses of pigment mutations. Plant Physiol. 1983, 73: 353–360.
    148. Kylin H. Die Gattungen der Rhodophyceen. In: Lund C W K (eds.), Gleerups F?rlag 1956.
    149. Largo D B, Sembrano J, Hiraoka M, Ohno M. Taxonomic and ecological profile of‘green tide’species of Ulva (Ulvales, Chlorophyta) in central Philippines. Hydrobiologia 2004, 512: 247–253.
    150. Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G.ClustalW and ClustalX version2.0. Bioinformatics 2007, 23: 2947–2948.
    151. Lee H B, Lee I K. Flora of benthic marine algae in Gyeongi Bay, western coast of Korea. Korean J. Bot. 1981, 24: 107–138.
    152. Lee I K, Lee Y D, Ahn Y S. Flora of marine algae in Cheju Island. I. Ulvaceae. Korean J. Bot. 1986, 1: 157–167.
    153. Leliaert F, Zhang X, Ye N, Malta E, Engelen A H, Mineur F, Verbruggen H, Clerck O D. Identity of the Qingdao algal bloom. Phycol. Res. 2009, 57: 147–151.
    154. Leskinen E, Pamilo P. Evolution of the ITS sequences of ribosomal DNA in Enteromorpha (Chlorophyceae). Hereditas 1997, 126: 17–23.
    155. Leskinen E, Alstr?m-Rapaport C, Pamilo P. Phylogeographical structure, distribution and genetic variation of the green algae Ulva intestinalis and U. compressa (Chlorophyta) in the Baltic Sea area. Mol. Ecol. 2004, 13: 2257–2265.
    156. Li Y X, Wang G C, Xu P, Fan X L, Niu J F, Zhou B C. Induction and characterization of green pigmentation mutant in Porphyra yezoensis Ueda. Aquaculture 2008, 282: 117–123.
    157. Lie H J, Cho C H, Lee J H, Lee S, Tang Y. Seasonal variation of the Cheju Warm Current in the Northern East China Sea. J. Oceanogr. 2000, 56: 197–211.
    158. Lind P. Immunological partial identity between insect and mite allergens. Allergy 1985, 40(Suppl): 361–363.
    159. Link H F. Epistola de algis aquatics in genera disponendis. In: Nees von Esen- 298 beck C D (eds.), Horae Physicae Berolinensis. Bonn. 1820, pp 1–8.
    160. Linnaeus C. Species planarum, exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificus, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Salvii, Stockholm 1753, 1/2: 1–1200.
    161. Liu D, Keesing J K, Xing Q, Shi P. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar. Pollut. Bull. 2009, 58: 888–895.
    162. Liu J Y, Jiang T, Zhang J P, Liang D C. Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-A°resolution. J. Biol. Chem. 1999, 274: 16945–16952.
    163. Liu Q Y, van der Meer J P, Reith M E. Isolation and characterization of phase-specific complementary DNAs from sporophytes and gametophytes of Porphyra purpurea (Rhodophyta) using subtracted complementary DNA libraries. J. Phycol. 1994, 30:513–520.
    164. Loughnane C J, McIvor L M, Rindi F, Stengel D B, Guiry M D. Morphology, rbcL phylogeny and distribution of distromatic Ulva (Ulvophyceae, Chlorophyta) in Ireland and southern Britain. Phycologia 2008, 47: 416–429.
    165. MacColl R. Cyanobacterial phycobilisomes. J. Struct. Biol. 1998, 124: 311–334.
    166. Malta E, Draisma S G A, Kamermans P. Free-floating Ulva in the southwest Netherlands: species or morphotypes? A morphological, molecular and ecological comparison. Eur. J. Phycol. 1999, 34: 443–454.
    167. Manhart J R. Phylogenetic analysis of green plant rbcL sequences. Mol. Phylogenet. Evol. 1994, 3: 114–127.
    168. Martinez-Oyanedel J, Contreras-Martel C, Bruna C, Bunster M. Structural-functional analysis of the oligomeric protein R-phycoerythrin. Biol. Res. 2004, 37(Suppl): 733–745.
    169. Masuda M, Abe T, Saito Y. The conspecificity of Laurencia yendoi Yamada and L. nipponica Yamada (Ceramiales, Rhodophyta). Jap. J. Phycol. 1992, 40: 125–133.
    170. Maze J, Morand P, Potokyl P. Stabilisation of‘Green tides’Ulva by a method of composting with a view to pollution limitation. J. Appl. Phycol. 1993, 5: 183-190.
    171. McFadden G I. Primary and secondary endosymbiosis and the origin of plastids. J. Phycol. 2001, 37: 951–959.
    172. McHugh D J. A guide to the seaweed industry. FAO Fish. Tech. Paper 2003, 441: 1–105.
    173. Migita S, Fujita Y. Studies on the color mutant types of Porphyra yezoensis Ueda, and their experimental culture. Fac. Fish. Nagasaki Univ. 1983, 54: 55–60.
    174. Milstein D, Oliveira M C, Martins F M, Matioli S R. Group I introns and associated homing endonuclease genes reveals a clinal structure for Porphyra spiralis var. amplifolia (Bangiales, Rhodophyta) along the Eastern coast of South America. BMC Evol. Biol., 2008, 8: 308.
    175. Miura A. Studies on the breeding of cultivated Porphyra (Rhodophyceae). Third International Ocean Development Conference, Tokyo. Marine Resources 1975, 3: 81–93.
    176. Miura A. Chimeral variegation found in Porphyra. J. Phycol. 1977, 13: 45.
    177. Miura A, Kunifuji Y. Genetic analysis of the pigmentation types in the seaweed Susabi nori (Porphyra yezoensis). Iden. 1980, 34: 14–20.
    178. Miura A. Genetic analysis of the variant color types of light red, light green and light yellow phenotypes of Porphyra yezoensis (Rhodophyta, Bangiaceae). Origin and Evolution of Diversity in Plants and Plant Communities. Academia Scientific Book Inc., Tokyo 1985, pp 270–284.
    179. Miura A. Present trends and perspective in Porphyra (Nori) breeding-Genetics of pigmentation mutants in Porphyra yezoensis: Development origin of variegated gametophytic thalli. Suisan Ikushu 1990, 15: 19–30 (in Japanese).
    180. Mizukaimi Y, Okauchi M, Kito H, Kobayashi M. DNA fingerprinting of cultivated laver Porphyra yezoensis and P. tenera with oligonucleotide probes, and its application to cultivar discrimination. Fisheries Sci. 1996, 62: 173–177.
    181. Mizukami Y, Kito H, Kunimoto M, Kobayashi M. Effect of DNA preparation from laver (Porphyra yezoensis) thalli on reproducibility of RAPD (random amplified polymorphic DNA) patterns. J. Appl. Phycol. 1998, 10: 23–29.
    182. Monteiro L, Bonnemaison D, Vekris A, Petry K G, Bonnet J, Vidal R, Cabrita J, Mégraud F. Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. J. Clin. Microbiol. 1997, 35: 995–998.
    183. Moore L R, Rocap G, Chisholm S W. Physiology andmolecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 1998, 393: 464–467.
    184. Morabito M, Genovese G, Gargiulo G M. A simple and rapid technique to PCR amplify plastid genes from spores of Porphyra C. Agardh (Bangiales, Rhodophyta). J. Appl. Phycol. 2005, 17: 35–38.
    185. Moreira D, Le Guyader H, Phillippe H. The origin of red algae and the evolution of chloroplasts. Nature 2000, 405: 69–72.
    186. Mshigeni K E, Kajumulo A A. Effects of the environment on polymorphism in Ulva fasciata Delile (Chlorophyta, Ulvaceae). Bot. Mar. 1979, 22: 145–148.
    187. Müller K M, Oliveira M C, Sheat R G, Bhattacharya D. Ribosomal DNA phylogeny of the Bangiophycidae (Rhodophyta) and the origin of secondary plastids. Am. J. Bot. 2001, 88: 1390–1400.
    188. Nield J, Rizkallah P J, Barber J, Chayen N E. The 1.45? three-dimensional structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus elongates. J. Struct.Biol. 2003, 141: 149–155.
    189. Nikaido I, Asamizu E, Nakajima M, Nakamura Y, Saga N, Tabata S. Generation of 10,154 Expressed sequence tags from a leafy gametophyte of a marine red alga, Porphyra yezoensis. DNA Res. 2000, 7: 223–227.
    190. Niwa K, Aruga Y. Rapid DNA extraction from conchocelis and ITS-1 rDNA sequences of seven strains of cultivated Porphyra yezoensis (Bangiales, Rhodophyta). J. Appl. Phycol. 2003, 15: 29–35.
    191. Niwa K, Kato A, Kobiyama A, Kawai H, Aruga Y. Comparative study of wild and cultivated Porphyra yezoensis (Bangiales, Rhodophyta) based on molecular and morphological data. J. Appl. Phycol. 2008, 20: 261–270.
    192. Niwa K, Hayashi Y, Abe T, Aruga Y. Induction and isolation of pigmentation mutants of Porphyra yezoensis (Bangiales, Rhodophyta) by heavy-ion beam irradiation. Phycol. Res. 2009, 57: 194–202.
    193. Nozaki H. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the“Plantae,”emended. J. Plant Res. 2005, 118: 247–255.
    194. Nultsch W, Pfau J, Huppertz K. Photoinhibition of photosynthetic oxygen production and its recovery in the subtidal red alga Polyneura hilliae. Bot. Acta. 1990, 103: 62–67.
    195. O’Carra P, Killilea S D. Subunit structures of C-phycocyanin and C-phycoerythrin. Biochem. Biophys. Res. Commun. 1971, 45: 1192–1197.
    196. Ohme M, Kunifuji Y, Miura A. Cross experiments of color mutants in Porphyra yezoensis Ueda. Jap. J. Phycol. 1986, 34: 101–106.
    197. Ohme M, Miura A. Tetrad analysis in conchospore germlings of Porphyra yezoensis (Rhodophyta, Bangiales). Plant Sci. (Limerick) 1988, 57: 135–140.
    198. Ong L J, Glazer A N. R-Phycocyanin II, a new phycocyanin occurring in marine Synechococcus species. Identification of the terminal energy acceptor bilin in phycocyanins. J. Biol. Chem. 1987, 262: 6323–6327.
    199. Ong L J, Glazer A N. Phycoerythrin of marine unicellular cyanobacteria. I. Bilin types and locations and energy transfer pathways in Synechococcus spp. phycoerythrins. J. Biol. Chem. 1991, 266: 9515–9527.
    200. Padyana A K, Bhat V B, Madyastha K M, Rajashankar K R, Ramakumar S. Crystalstructure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem. Biophys. Res. Commun. 2001, 282: 893–898.
    201. Pandey R N, Adams R P, Flournoy L E. Inhibition of random amplified polymorphic DNAs (RAPDs) by plant polysaccharides. Plant Mol. Biol. Rep., 1996 14: 17–22.
    202. Pastore A, Lesk A M. Comparison of the structures of globins and phycocyanins: evidence for evolutionary relationship. Proteins 1990, 8: 133–155.
    203. Patwary M U, Mackay R M, van der Meer J P. Revealing genetic markers in Gelidium vagum (Rhodophyta) through the random amplified polymorphic DNA (RAPD) technique. J. Phycol. 1993, 29: 216–222.
    204. Phillips J A. Field, anatomical and developmental studies on southern Australian species of Ulva (Ulvaceae, Chlorophyta). Aust. Syst. Bot. 1988, 1: 411–456.
    205. Plastino E M, Ursi S, Fujii M T. Color inheritance, pigment characterization, and growth of a rare light green strain of Gracilaria birdiae (Gracilariales, Rhodophyta). Phycol. Res. 2003, 51: 45–52.
    206. Platt T, Gallegos C L, Harrison W G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 1980, 38: 687–701.
    207. Provasoli L. Nutritional aspects of seaweed growth. Proc. Can. Soc. Plant Physiol. 1965, 6: 26–27.
    208. Provasoli L. Culture and Collections of Algae. In, A. Watanabe and A. Hattori (eds.). Media and prospects for the cultivation. Proc. U. S. 1966, pp 63–75.
    209. Provasoli L, Pintner I J. Bacteria induced polymorphism in an axenic laboratory strain of Ulva lactuca (Chlorophyceae). J. Phycol. 1980, 16: 196–201.
    210. Pueschel C M. Cell structure. In: Cole K M and Sheath R G (eds.), Biology of the red algae. Cambridge University Press, Cambridge 1990, pp 7–41.
    211. Qin S, Kawata Y, Yano S, Tseng C K, Kojima H. Cloning and sequencing of the allophycocyanin genes from Spirulina maxima (Cyanophyta). Chin. J. Oceanol. Limnol., 1998, 16 (Suppl): 6–11.
    212. Qin S, Zhao F Q, Tseng C K. Evidence for positive selection in phycoerythrin genes of red algae and cyanobacteria Prochlorococcus and Synechococcus. Photosynthetica 2005, 43: 141–146.
    213. Ragan M A, Bird C J, Rice E L, Gutell R R, Murphy C A, Singh R K. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proc. Natl. Acad. Sci. USA 1994, 91: 7276–7280.
    214. Ragan M A, Gutell R R. Are red algae plants?. Bot. J. Linnean. Soc. 1995, 118: 81–105.
    215. Reed R H, Russell G. Salinity fluctuations and their influence on“bottle brush”morphogenesis in Enteromorpha intestinalis (L.) Link. Br. Phycol. J. 1978, 13: 149–153.
    216. Reinbold T. Chlorophyceae. In: van Bosse W and des Algues du Sioga L (eds.), 1913, pp 46–127.
    217. Reith M E, Munholland J. Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol. Biol. Rep. 1995, 13: 333–335.
    218. Reuter W, Wiegand G, Huber R, Than M E. Structural analysis at 2.2 ? of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP·LC7.8, from phycobilisomes of Mastigocladus laminosus. Proc. Natl. Acad. Sci. USA 1999, 96: 1363–1368.
    219. Ritter S, Hiller R G, Wrench P M, Welte W, Diederichs K. Crystal structure of a phycourobilin-containing phycoerythrin at 1.90-? resolution. J. Struct. Biol. 1999, 126: 86–97.
    220. Robertson B R, Tezuka N R, Watanabe M M. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16s rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int. J. Syst. Evol. Microbiol. 2001, 51: 861–871.
    221. Rodríguez-Ezpeleta N, Brinkmann H, Burey S C, Roure B, Burger G, Loffelhardt W, Bohnert H J, Philippe H, Lang B F. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr. Biol. 2005, 15: 1325–1330.
    222. Ronquist F, Huelsenbeck J P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19: 1572–15724.
    223. Saunders G W, Chiovitti A, Kraft G T. Small-subunit rDNA sequences from representatives of selected families of the Gigartinales and Rhodymeniales (Rhodophyta). 3. Delineating the Gigartinales sensu stricto. Can. J. Bot. 2002, 82: 43–74.
    224. Saunders G W, Hommersand M H. Assessing red algal supraordinal diversity andtaxonomy in the context of contemporary systematic data. Am. J. Bot. 2004, 91: 1494–1507.
    225. Schirmer T D, Bode W, Huber R, Sidler W, Zuber H. X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J. Mol. Biol. 1985, 184: 257–277.
    226. Schirmer T, Huber R, Schneider M, Bode W, Miller M, Hackert M L. Crystal structure analysis and refinement at 2.5 ? of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum: The molecular model and its implications for light-harvesting. J. Mol. Biol. 1986, 188: 651–676.
    227. Schmidt M, Krasselt A, Reuter W. Local protein flexibility as a prerequisite for reversible chromophore isomerization inα-phycoerythrocyanin. Biochem. Biophys. Acta. 2006, 1764: 55–62.
    228. Schmidt M, Patel A, Zhao Y, Reuter W. Structural basis for the photochemistry ofα-phycoerythrocyanin. Biochemistry 2007, 46: 416–423.
    229. Setchell W A, Gardner N L. The marine algae of the Pacific coast of North America. II. Chlorophyceae. Uni. California Pub. Bot. 1920, 8: 139–374.
    230. Shimada S, Hiraoka M, Nabata S, Lima M, Masuda M. Molecular Phylogenetic analyses of the Japanese Ulva and Enteromorpha (Ulvales, Ulvophyceae), with special reference to the free-floating Ulva. Phycol. Res. 2003, 51: 99–108.
    231. Shimada S, Yokoyama N, Arai S, Hiraoka M. Phylogeography of the genus Ulva (Ulvophyceae, Chlorophyta), with special reference to the Japanese freshwater and brackish taxa. J. Appl. Phycol. 2008, 20: 979–989.
    232. Sidler W A. Phycobilisome and phycobiliprotein structures, In: Bryant D A (eds.), Molecular biology of the cyanobacteria. Kluwer Academic Publishing, Dordrecht, The Netherlands 1994, 139–216.
    233. Six C, Thomas J C, Garczarek L, Ostrowski M, Dufresne A, Blot N, Scanlan D J, Partensky F. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: A comparative genomics study. Genome Biol. 2007, 8: 1–22.
    234. Stamatakis A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses withthousands of taxa and mixed models. Bioinformatics 2006, 22: 2688–2690.
    235. Stec B, Troxler R F, Teeter M M. Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly. Biophys. J. 1999, 76: 2912–2921.
    236. Steele R L, Thursby G B, van der Meer J P. Genetics of Champia parvula (Rhodymeniales. Rhodopmyta): Mendelian inheritance of spontaneous mutants. J. Phycol. 1986, 22: 538–542.
    237. Steffensen D A. Morphological variation in Ulva in the Avon-Heathcote Estuary, Christchurch. N. Z. J. Mar. Freshwater Res. 1976, 10: 329–341.
    238. Steglich C, Psot A F, Hess W R. Analysis of natural populations of Prochlorococcus spp. in the northern Red Sea using phycoerythrin gene sequence. Environ. Microbiol. 2003a, 5: 681–690.
    239. Steglich C, Mullineaux C W, Teuchner K, Hess W R, Lokstein H. Photophysical properties of Prochlorococcus marinus SS120 divinyl chlorophylls and phycoerythrin in vitro and in vivo. FEBS. Lett. 2003b, 553: 79–84.
    240. Stiller J W, Hall B D. The origin of red algae: Implications for plastid evolution. Proc. Natl. Acad. Sci. USA 1997, 94: 4520–4525.
    241. Stiller J W, Hall B D. Sequences of the largest subunit of RNA polymerase II from two red algae and their implications for Rhodophyta evolution. J. Phycol. 1998, 34: 857–864.
    242. Storf M, Parbel A, Meyer M, Strohmann B, Scheer H. Chromophore attachment to biliproteins: specificity of PecE/PecF, a lyase-isomerase for the photoactive 31-Cys-α84-phycoviolobilin chromophore of phycoerythrocyanin. Biochemistry 2001, 40: 12444–12456.
    243. Strain H H, Svec W A. In: Vernon L P and Seely G R (eds.), The Chlorophylls. Academic Press, New York 1966, pp 21.
    244. Sui Z H, Zhang X C, Cheng X J. Comparison of phycobiliproteins from Gracilaria lemaneiformis (Rhodophyceae) and its pigment mutants in spectral and molecular respects. Act. Bot. Sin. 2002, 44: 557–561.
    245. Sun S, Wang F, Li C, Qin S, Zhou M, Ding L, Pang S, Duan D, Wang G, Yin B, Yu R, Jiang P, Liu Z, Zhang G, Fei X, Zhou M. Emerging challenges: Massive green algae blooms inthe Yellow Sea. Nature precedings, hdl: 10101/npre. 2008. 2266. 1.
    246. Sussmann A V, Mable B K, DeWreede R E, Berbee M L. Identification of green algal endophytes as the alternate phase of Acrosiphonia (Codiolales, Chlorophyta) using ITS1 and ITS2 ribosomal DNA sequence data. J. Phycol. 1999, 35: 607–614.
    247. Swofford D L. PAUP*. phylogenetic analysis using parsimony (and other methods) 4.0 beta. Sinauer Associates, Sunderland, USA 2002.
    248. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 2004, 101: 11030-11035.
    249. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 2007, 24: 1596–1599.
    250. Tan C P, Qin S, Zhang Q. Establishment of a micro-particle bombardment transformation system for Dunaliella salina. J. Microbiol. 2005, 43: 361–365.
    251. Tan I H, Blomster J, Hansen G, Leskinen E, Maggs C A, Mann D G, Sluiman H J, Stanhope M J. Molecular phylogenetic evidence for a reversible morphogenetic switch controlling the gross morphology of two common genera of green seaweeds, Ulva and Enteromorpha. Mol. Biol. Evol. 1999, 16: 1011–1018.
    252. Tanner C. The taxonomy and morphological variation of distromatic ulvaceous algae (Chlorophyta) from the northeast Pacific. Ph.D. Dissertation, University of British Columbia, Canada. 1979.
    253. Tanner C E. Investigations of the taxonomy and morphological variation of Ulva (Chlorophyta): Ulva californica Wille. Phycologia 1986, 25: 510–520.
    254. Taylor R. The green tide threat in the UK—a brief overview with particular reference to Langstone Harbour, south coast of England and the Ythan Estuary, east coast of Scotland. Bot. J. Scotland 1999, 51: 195–203.
    255. Teasdale B, West A, Taylor H, Klein A. A simple restriction fragment length polymorphism (RFLP) assay to discriminate common Porphyra (Bangiophyceae, Rhodophyta) taxa from the Northwest Atlantic. J. Appl. Phycol. 2002, 14: 293–298.
    256. Ting C S, Rocap G, King J, Chisholm S W. Phycobiliprotein genes of the marine photosynthetic prokaryote Prochlorococcus: evidence for rapid evolution of genetic heterogeneity. Microbiology 2001, 147: 3171–3182.
    257. Ting C S, Rocap G, King J, Chisholm S W. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol. 2002, 10: 134–141.
    258. Trauss C, Mussgnug J H, Kruse O. Ligation-mediated suppression-PCR as a powerful tool to analyze nuclear gene sequences in the green alga Chlamydomonas reinhardtii. Photosynth. Res. 2001, 70: 311–320.
    259. van der Meer J P, Bird N L. Genetics of Gracilaria sp. (Rhodophyceae, Gigartinales). I. Mendelian inheritance of two spontaneous green variants. Phycologia 1977, 16: 159–161.
    260. van der Meer J P, Todd E R. Genetics of Gracilaria sp. (Rhodophyta, Gigartinales). IV. Mitotic recombination and its relationship to mixed phases in the life history. Can. J. Bot. 1977, 55: 2810–2817.
    261. van der Meer J P. Genetics of Gracilaria sp. (Rhodophyceae, Gigartinales). V. Isolation and characterization of mutant strains. Phycologia 1979a, 18: 47–54.
    262. van der Meer J P. Genetics of Gracilaria sp. (Rhodophyceae, Gigartinales). VI. Complementation and linkage analysis of pigmentation mutants. Can. J. Bot. 1979b, 57: 64–68.
    263. van der Meer J P. The inheritance of spontaneous pigment mutations in Chondrus crispus Stackh. (Rhodophyceae). Proc. NS Inst. Sci. 1981a, 31: 187–192.
    264. van der Meer J P. Genetics of Gracilaria tikvahiae (Rhodophyta). VII. Further observation on mitotic recombination and the construction of polyploids. Can. J. Bot. 1981b, 59: 787–792.
    265. van der Meer J P. Genetics of Gracilaria tikvahiae (Rhodophyceae). VIII. Phenotypic and genetic characterization of some selected morphological mutants. Can. J. Bot. 1982, 60: 2556–2564.
    266. van der Meer J P, Patwary M U, Bird C J. Genetics of Gracilaria tikvahiae (Rhodophyceae). X. Studies on a bisexual clone. J. Phycol. 1984, 20: 42–46.
    267. van der Meer J P. Genetics of Gracilaria tikvahiae (Rhodophyceae). XI. Further characterization of a bisexual mutant. J. Phycol. 1986, 22: 151–158.
    268. van der Meer J P, Zhang X C. Similar unstable mutations in three species of Gracilaria (Rhodophyta). J. Phycol. 1988, 24: 198–202.
    269. van den Hoek C, Mann D G, Jahns H M. Algae. An Introduction to Phycology. Cambridge University Press, Cambridge, UK 1995.
    270. Verbruggen C A, Saunders G W, Le Gall L, Yoon H S, De Clerck O. Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life. BMC Evol. Biol. 2010, 10: 1.
    271. Wang X, Li L, Chang W, Zhang J, Gui L, Guo B, Liang D. Structure of C-phycocyanin from Spirulina platensis at 2.2 ? resolution: a novel monoclinic crystal form for phycobiliproteins in phycobilisomes. Acta. Crystallogr., Sect D 2001, 57: 784–792.
    272. Wilbanks S M, Glazer A N. Rod structure of a phycoerythrin II-containing phycobilisome: II. Complete sequence and bilin attachment site of a phycoerythrin gamma subunit. J. Biol. Chem. 1993, 268: 1236–1241.
    273. Withall R D, Saunders G W. Combining small and large subunit ribosomal DNA genes to resolve relationships among orders of the Rhodymeniophycidae (Rhodophyta): recognition of the Acrosymphytales ord. nov. and Sebdeniales ord. nov. Eur. J. Phycol. 2006, 41: 379–394.
    274. Woolcott G W, King R J. Ulva and Enteromorpha (Ulvales, Ulvophyceae, Chlorophyta) in east Australia: Comparison of morphological features and analyses of nuclear rDNA sequence data. Aust. Syst. Bot. 1999, 12: 709–725.
    275. Yokoya N S, Necchi Jr O, Martins A P, Gonzalez S F, Plastino E M. Growth responses and photosynthetic characteristics of wild and phycoerythrin-deficient strains of Hypnea musciformis (Rhodophyta). J. Appl. Phycol. 2007, 19: 197–205.
    276. Yoon M Y, Boo S M. Flora and zonation of marine plants at the littoral area of Sapsido Island on the Yellow Sea of Korea. Korean. J. Phycol. 1991, 6: 145–156.
    277. Yoon H S, Hackett J D, Pinto G, Bhattacharya D. The single, ancient origin of chromist plastids. Proc. Natl. Acad. Sci. USA, 2002, 99: 15507–15512.
    278. Yoon H S, Müller K M, Sheath R G, Ott F D, Bhattacharya D. Defining the major lineages of red algae (Rhodophyta). J. Phycol. 2006, 42: 482–492.
    279. Young A J, Collins J C and Russell G. Ultrastructural characterization of taxa in the genus Enteromorpha. In. Systematics of the Green Algae, Systematics Association Special Volume 1984, 27: 343–351.
    280. Zauner S, Lockhart P, Stoebe-Maier B, Gilson P, McFadden G I, Maier U G. Differential gene transfers and gene duplications in primary and secondary endosymbioses. BMC Evol. Biol. 2006, 6: 38.
    281. Zechman F W. Phylogeny of the Dasycladales (Chlorophyta, Ulvophyceae) based on analyses of Rubisco large subunit (rbcL) gene sequences. J. Phycol. 2003, 39: 819–827.
    282. Zhao F, Qin S. Evolutionary analysis of phycobiliproteins: Implications for their structural and functional relationships. J. Mol. Evol. 2006, 63: 330–340.
    283. Zhao F, Qin S. Comparative molecular population genetics of phycoerythrin locus in Prochlorococcus. Genetica 2007, 129: 291–299.
    284. Zheng B. Studies on the morphology of conchocelis of Porphyra katadai var. hemiphylla and related species. Hydrobiologia 1984, 116/117: 209–212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700