中国对虾不同群体的遗传差异与抗病群体选育的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国对虾主要分布于我国的黄渤海海域,是我国重要海洋渔业资源及增养殖对象。捕捞年产量超过4万吨。80年代因捕捞过量,使资源遭受严重破坏。进入90年代,中国对虾的自然资源量持续下降,秋捕产量从千吨水平下降至百吨水平。每年大规模的人工放流也未能有效地提高中国对虾的自然资源量。1988~1992年我国对虾产量连续达20万吨,其中约80%是中国对虾。1993年,全国范围内220万亩的对虾养殖池爆发了病毒性流行病,产量大减。近几年来,尽管对养殖模式、养殖技术等进行了改革,但我国北方中国对虾的养殖仍然处于低迷状态。为更好地管理和开发中国对虾的遗传资源,建立完善的中国对虾优良(抗病)品种的选育计划,对中国对虾自然群体和养殖群体进行了遗传多样性评估,并对一个养殖群体进行了抗病性状的遗传育种试验。
     采集中国对虾群体4个,分别为黄渤海中国对虾群体(YP),取自渤海胶州湾产卵场(36°37′N,121°E);朝鲜西海岸群体(KP),取自朝鲜半岛西海岸中国对虾产卵场(35°34′N,126°E);养殖群体Ⅰ(CS_1),为日照市水产研究所连续培育的第四代养殖群体;养殖群体Ⅱ(CS_(201)),渤海海捕亲虾的第一代后代感染WSSV(White spot syndrome virus)爆发性流行病后的存活个体。采用RAPD(Random amplified polymorphism of DNA)技术分析YB、KP、CS_1,同工酶技术分析YP、KP、CS_1、CS_(201),以确定各群体的遗传学参数。
     从CS_(201)筛选个体大、活力强的对虾进行育种试验。CS_(202)和CS_(203)分别为感染WSSV爆发性流行病后存活的第二代和第三代群体。设计口饲毒饵法对CS_(203)进行人工感染,以确定连续选育的中国对虾的抗病能力。利用AFLP(Amplified
     fragment length polymorphisms)技术分析连续3代群体CS(201)、CS_(202)、CS_(203)的遗传多样性和遗传标记。
     RAPD和同工酶的调查结果表明,中国对虾种群的遗传多样性水平低,群体内和群体间的2种分子标记都表现较高的稳定性。群体间比较分析,KP的遗传多样性最高,YB次之,CS_1最低。在用同工酶分析的4个群体中,CS_(201)的多态位点比例和杂合度等指标高于其它3个群体。从群体的分化指标来看,中国对
    
     虾种群的各群体间有一定的遗传分化。
     选育群淤Ca。。比未经选育的群体人工感染后死亡速度慢,相同的时问内前
     者比后者的存活率高60%:病毒检测无论是选育群体和未经选育群体,60%以上
     的个体感染病毒,表明选育群体对WSSV病毒具有一定的抗性。AFI。P测试的连
     续选育群体的遗传多样性在 CS201和 CS202第二代之间变化不大,但CS203的遗传
     多样性有明显的下降趋势;AFLP也可产生丰富的遗传标记。
    一 通过对实验结果的进一步分析认为:中国对虾人工育苗的过程使后代群体的
     遗传多样性下降,人工培育苗种的大规模放流影响了自然群体的遗传多样性;,
     分布于我国沿海的中国对虾可能由多个自然群体构成,还存在未被发现的种质资
     源:中国对虾抗W SSV病毒感染是由遗传决定的,选育可提高中国对虾对W SSV
     的抗性。
Feneropaeneus chinensis which is mainly distributed in the Yellow Sea and Bohai Sea in China plays a very important role in both marine catching fisheries and marineculure. However,in 1990's the production of shrimp catch and mariculture dropped dramatically. The shrimp dropped from thousand tons to hundred tons though large scales enhancement has been carried out annually by releasing of hatchery raised fries. In 1993 an epidemic outburst of viral disease in 2.2 million mu of pond-cultured shrimp brought about a great decline in production in spite of much ameliorative measure taken to improve culture mode and culture technology. The genetic diversity of natural populations and culture stocks were investigated and genetic selection for disease resistant ability were carried out in a cultured stock in order to provide information for natural resources management and exploitation.
    Four populations of F. chinensis,including 2 natural populations(YP and KP)and 2 cultured stocks(CS1 and CS201)were investigated. YP is collected from the spawning ground in Jiaozhou bay in the Yellow Sea(36 37'N,121 OOE),KP is collected from the spawning ground along the Korean peninsular(35 34'N,126 00 E). CS1 is the fourth generation of Bohai Sea wild population surviving the WSSV(White spot syndrome virus)epidemics in the grow-out ponds. YP,KP and CS1 were analyzed by RAPD(Random amplified polymorphism of DNA),while YP,KP,CS1 and CS201 were analyzed by isozyme.
    The robust and biggest individuals were selected from CS201 in selection breeding. CS202and CS203 were the second and third generation surviving the epidemic. Disease resistant ability was assessed by oral infection. The genetic variation of the three successive generations were analyzed by AFLP(Amplified fragment length polymorphism).
    Both the RAPD and isozyme results showed that the genetic diversity of F.
    
    
    chinensis was relatively low and the genetic marker showed relatively high conformity within or among populations. RAPD results showed that the genetic diversity of KP was the highest and YP was intermediate while the CS1 was the-lowest. Among the 4 populations analyzed by isozyme,the percentage of the polymorphic loci and the heterogeneity of 8201 was the highest of the 4 populations;Judged by differentiation index,genetic differentiation was found between populations. -
    The selected C.S203 died.more slowly than unseleeted control and the survival rate of the former was increased by 60% in the same period in the oral infection.test. The viral pathogen was discovered in more than 60% individuals in both the selected and unseleeted stocks,which implied the selection increases the disease resistant ability for WSSV. There was no obvious change in genetic diversity between the CS201 and CS202,but the genetic diversity of 8203 is lower than the former 2 stocks.
    It can be concluded from the experiment results that hatchery seed has lower genetic variation and large-scale hatchery seed releasing affects the genetic diversity of the natural population. The shrimp distributed along China coast in Bohai Sea and Yellow Sea may consist of more than one populations. The viral disease resistant ability of F. chinensis is proved to be genetically inherited and can be improved by genetic selection.
引文
1.包振民,张全启等。中国对虾三倍体的诱发研究Ⅱ:细胞松弛素B处理。海洋学报,1994,15(3):101-105。
    2.蔡难儿,林峰,柯亚夫。中国对虾人工诱导雌核发育的研究:I.四步诱导法。海洋科学,1995,3:35-41。
    3.戴继勋,包振民等。~(60)Coγ射线诱导中国对虾雌核发育的观察。青岛海洋大学学报,1993,23(4):151-155。
    4.戴继勋,张全启等。中国对虾的核型研究(英文)。青岛海洋大学学报,1993,19(4):97-104。
    5.邓景耀,叶昌臣。渔业资源学,重庆出版社,2001,pp294-295.
    6.邓景耀,叶昌臣等。渤黄海的对虾及其资源管理。海洋出版社,1990。
    7.邓景耀,朱金声等。渤海湾对虾产卵场调查。海洋水产研究,1983(5):17-32。
    8.邓景耀,庄志猛,朱金声。渤海湾对虾发生与补充量动态特征的研究。动物学研究,1999,20(1):46-49。
    9.邓景耀,庄志猛。渤海对虾补充量变动的分析及对策研究。中国水产科学,2001,7(4):125-128。
    10.邓景耀。渤海渔业资源增殖与管理的生态学基础。海洋水产研究,1988,9:1-9。
    11.邓景耀。对虾放流增殖研究。海洋渔业,1997,1:1-6。
    12.邓景耀。黄、渤海对虾生物学和资源估计。甲壳动物学论文集,第一集,1986,46-53。科学出版社。
    13.刘必谦,戴继勋等。RAPD标记在大连湾牡蛎种群研究中的应用。青岛海洋大学学报,1998,28(1):82-87。
    14.刘萍,孔杰等。显微注射生长激素基因导入中国对虾受精卵的研究。中国水产科学,1996b,3(4):35-38。
    15.刘萍,孔杰等。中国对虾精子做载体将生长激素基因导入受精卵的研究。中国水产科学,1996a,3(1):6-10。
    16.刘萍,孔杰等。RAPD技术在中国对虾DNA分析中的主要反应参数的探讨。中国科学期刊文摘(科学快报),1998,4(9):1114-1116。
    17.刘瑞玉,钟振如。南海对虾类。农业出版社,1986,1-278。
    
    
    18.刘瑞玉。海洋甲壳动物学研究。中国海洋科学研究与开发,1993,27-34。
    19.刘瑞玉。黄海及东海经济虾类区系的特点。海洋与湖沼,1959,2(1):35-42。
    20.刘树俊,程光潮。DNA指纹技术的应用及局限性。生物工程进展,1992,12(5):13—17。
    21.刘旭东。黄渤海中国对虾种群生化遗传学和七种虾类同工酶遗传标记的研究。中国科学院海洋研究所博士论文,1998。
    22.刘永昌,高永福。黄海中部沿海放流增值对虾秋汛洄游和分布的初步研究。水产学报,1990,14(2):120-128。
    23.刘永昌。渤海对虾洄游和分布的研究,水产学报,1986,10(2):125-136。
    24.刘志毅。基因枪和电穿孔仪将外源DNA转入中国对虾的初步研究。中国科学院硕士学位研究生学位论文,2001。
    25.权洁霞,戴继勋。荧光原位杂交技术(FISH)在鱼类遗传学研究中的应用及前景。动物学研究,1999,20(3):161-167。
    26.施立明等。遗传多样性,中国的生物多样性(陈灵芝主编)。北京,科学出版社,1993。
    27.石拓,孔杰等。中国对虾遗传多样性的RAPD分析—朝鲜半岛西海岸群体的DNA多态性。海洋与湖沼,1999,30(6):609-615。
    28.宋林生,刘保忠等。海洋生物遗传多样性检测技术。In:海洋生物技术(曾呈奎,相建海主编)。1998,199-237。济南,山东科学技术出版社。
    29.宋林生,相建海等。日本对虾野生种群和养殖种群遗传结构的RAPD标记研究。海洋与湖沼,1999,30(3):261-266。
    30.王斌,翁曼丽。AFLP的原理及其应用。杂交水稻,1996,(5):27-30。
    31.王可玲等,中国近海带鱼种群生化遗传结构及其鉴别的研究,海洋学报,1994,16(1):93-104。
    32.王伟继.中国对虾三个不同种群的生化遗传学研究.青岛海洋大学生命学院硕士论文,1999。
    33.王文,兰宏等。云南4个少数民族的随机扩增多态DNA分析。科学通报,1994,39(20):1900-1903。
    34.王中仁。植物等位酶分析。北京:科学出版社,1996,77-119:145-154。
    35.相建海,刘旭东等。中国对虾种群生化遗传学研究。《海洋生物技术》,曾呈奎,相建海主编,山东科学技术出版社,2001,pp269-282.
    36.相建海,周令华等。长毛对虾、短沟对虾和日本对虾的染色体研究。1991,4:72-73。
    
    
    37.相建海,周令华等。中国对虾四倍体诱导研究。海洋科学,1992,4:55-60。
    38.相建海。中国对虾染色体的研究。海洋与湖沼,1988,19(3):205-209。
    39.杨丛海,王清印等。高温处理中国对虾受精卵对性比结构的影响。海洋科学,1993,4:1-2。
    40.叶昌臣,刘传桢,李培军。对虾亲体数量和补充量之间的关系。水产学报,1980,4(1):1-8。
    41.袁力行,傅俊华等。利用RFLP,SSR,AFLP和RAPD标记分析玉米自交系遗传多样性的比较研究。遗传学报,2000,27(8):725-733。
    42.张煜,邓景耀。渤黄海对虾标志放流实验。海洋水产研究丛刊,1965,20:78-85。
    43.赵金良,李思发。中国大陆眼沿海六水系绒螯蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关系:生化遗传差异分析。水产学报(1999) Vol.23,No.4.331-336。
    44.真子渺,中岛国重,田川滕.1966.体长组成变化.西水研报,3(34):1-10.
    45.真子渺,庄岛悦子.1969.标识放流移动来游量推定.西水研报,(37):35-50.
    46.周昂等。不同性别黄鳝六种组织中LDH同工酶电泳图谱的初步研究。水生生物学学报,1994,18(1)。
    47. Abed Y., Davinj-Regli A., et al. Efficient discrimination of Mycobacberium tuberulosis strains by 16S spacer region-based random amplified polymorphic DNA analysis. Clin Microbiol, 1995, 33: 1418-1420.
    48. Adachi M., Sako,Y., et al. Ribosomal DNA internal transcribed regions (ITS) define species of the genus Alexand rium. Harmful marine algal blooms, proliferation and algues marines nuisibles. Paris France lavoisier. 1995,15-20.
    49. Avise J.C., et al. Geographic population structure amd species differences in mitochondrial DNA of mouthbrooding marine catfishes (Ariidae) and demersal spawning toadfishes (Batrachoididae). Evolution, 1987, 41:991-1002.
    50. Ayala F.J., et al. Modern Genetics (2nd edition), The Benjamin-/Cummins Publishing Company, Inc., 1984.
    51. Bagshaw J.C.; Buckholt M.A. Method of selecting genetically superior shrimp. US Patent 5712091, 27 Jan 1998.
    
    
    52. Bembo D.G., Carvalho G.R., et al. Stock discrimination among European anchovies, Engraulis encrasicolus, by means of PCP-amplified mitochondrial DNA analysis. Fish. Bull. 1996, 94(1) : 31-40.
    53. Benzie J.A.H., Kenway M. Interspecific hybridization of the tiger prawns Penaeus monodon and Penaeus esculentus. Aquaculture, 1995, 133(2) : 103-111.
    54. Benzie, J. A. H., Kenway, M., et al. Growth of Penaeus monodon X Penaeus esculentus tiger prawn hybrids relative to the parental species. Aquaculture 193 (2001) 227-237.
    55. Bernatchez L., Guyomard R., et al. DNA sequences variation of the mitochondrial control region among geographically and morphological remote European brown trount Salmo trutta population. Mol. Ecol., 1992, 1: 161-174.
    56. Berzie J.A.H., Williams ST., Limitations in the genetic variation of hatchery produced Batches of the giant clam Tridacna gigas, Aquaculture, 1996, 139(3/4) : 225-241.
    57. Bhattacharya D., Elwood H.J., et al. Phylogeny of Gracilaria lemaneiformis (Rhoodophyta) based on sequence analysis of its small smbunit ribosomal RNA coding region. J. Phycol., 1990,26: 181-186.
    58. Bielawski J.P. and Pumo D.E. Randomly amplifid polymorphic DNA (RAPD) analysis of Arlantic Coast striped bass. Heredity, 1997, 78: 32-40.
    59. Bierne, N., Beuzart I., et al. Microsatellite-associated heterosis in hatchery-propagated stocks of the shrimp Penaeus stylirostris . Aquaculture 184 (2000) 203-219.
    60. Bird C.J., Rice E.L., et al. Phylogeny relationships in the Gacilariales (Rhodophyta) as determined by 18s rDNA sequences. Phycologia, 1992 ,31: 510-522.
    61. Birt T.P., Green J.M., et al. Analysis of mitochondrial DNA in allopatric anadromous and nonanadromus Atlantic salmon, Salmo salar. Can. J. Zool., 1986, 64: 118-120.
    62. Blanc F. and Jaziri H. Variation of allozymic polymorphism in Ostrea angasi and O. Edulis. Aquaculture, 1990, 85: 331-332.
    63. Blankenship H.L. and Leber K.M. A responsible approach to marine stock enhancement. American Fisheries Society Symposium, 1995, 15:001-009.
    64. Blomster J., Maggs C.A., et al. Molecular and morphological analysis of Enteromorpha intestinalis and E. compressa (Chlorophyta) in the British Isles. Journal of Phycology [J-Phycol], 1998, 34(2) : 319-340.
    
    
    65. Bolch C.J.S., Ward R.D., et al. Biochemical systematics of the marine fish family Centrolophidae (Teleostei:Stromateoidei) from Australian waters. Aust. J. Mar. Freshwat. Res., 1994,45(7) : 1157-1172.
    66. Bostein D., White R.L., et al. Construction of a genetic linkage map on men using restriction fragment length polymorphisms. Am. J. Hum. Genet., 1980 (32) :314-331.
    67. Bray, W. A., Lawrence, A. L., et al. Hybridization of Penaeus setiferus (Linnaeus, 1767) and Penaeus schmitti Birkenroad, 1936 (Decapoda). J. Crustacean Biol. 1990, 10, 278-283.
    68. Brown A.H.D. and Weir B.S. Measuring genetic variation in plant population. In: Isozyme in plant genetics and breeding. (Part A) (Tanksley S.D, Orton T.J. eds.). Amsterdan: Elsevier, 1983,219-239.
    69. Camper J.D., Barber R.C., et al. Mitochondrial DNA variation among red snapper (Lutjanus campechanus) from the Gulf of Mexico. Mol. Mar. Biol. Biotechnol., 1993, 2(3) : 154-161.
    70. Campos-Ramos R. Chromosome studies on the marine shrimps Penaeus vannamei and Penaeus californiensis (Decapoda). J. Crust Biol., 1997, 17(4) : 666-673.
    71. Carr S.M., Snellen A.J., et al. Mitochondrial DNA sequence variation and genetic stock structure of Atlantic cod (Gadus morhua) from bay and offshore locations on the Newfoundland continental shelf. Mol. Ecol., 1995,4(1) : 79-88.
    72. Carr W., Sweenny J., et al. The oceanic Institute's SPF shrimp breeding program status. USMSFP 10th anniversary Review, GCRL Special Publication, 1994, (1) : 47-54.
    73. Carvalho, G.R., and Hauser L. Molecular genetics and the stock concept in fisheries. Rev. Fish Biol. Fish, 1994, 4:326-350.
    74. Ceniacua. Colombia closed-cycle program for penaeid shrimp genetic selection and improvement. The Advocate, 1999, December: 71
    75. Chow S., et al. Genetic stock structure of the swordfish (Xiphias gladius) inferred by PCR-RFLP analysis of the mitochondrial DNA control region. Mar. Biol., 1997, 127: 359-367.
    76. Chow S., et al. Population genetics of the palaemonid shrimps (Decapoda:Crustacea) Ⅱ Genetic variability and differentiation of species. Tohoku Journal of Agricultural Research, 1985,36(2) : 109-116.
    77. Chung K.C., Woo N.Y.S. Phylogenetic relationships of the Pomacanthidae (Pisces: Teleostei)
    
     inferred from allozyme variation. Journal of Zoology [J-Zool], 1998, 246 (2) : 215-231.
    78. Coffroth M.A., Mulawka J.M. Identification of marine invertebrate larvae by means of PCR-RAPD species-specific markers. Limnol. Oceanogr. 1995, 40 (1) : 181-189.
    79. Creasey S., et al. Genetic comparison of two populations of the deep-dea vent shrimp Rimicaris exoculata (Dacapoda: Breisliidae)from the Mid-Atalantic Ridge. Incl.bibliogr: 70 refs.; Marine biology, Berline, Heidelberg, 1996, 125 (3) : 473-482.
    80. Crocos P., Preston N., et al. Genetic improvement of farming Prawns in Australia. The Advocate, 1999, December: 62-63.
    81. Crosetti D., Nelson W.S., et al. Pronounced genetic structure of mitochondrial DNA among populations of the circumglobally distributed grey mullet (Mugil cephalus) J. Fish Biol. 1994,. 44(1) : 47-58.
    82. De-Matthaeis E., Cobolli M., et al. Geographic variation in Genetic differentiation in populations of the Ryukyu ayu Plecoglossus altivelis ryukyuensis on Amami-oshima Island Jap. J. Ichthyol. Gyoruigaku Zasshi. 1994, 41(3) : 253-260.
    83. Eknath A.E., Tayamen M.M., et al. Genetic improvement of farmed Tilapias: the performance of eight strain of Oreochromis miloticus tested in different farm environment. Aquaculture, 1993, Ⅲ, 171-188.
    84. English L.J., Maguire G.B., et al. Genetic variation of wild and hatchery populations of the Pacific oyster, Crassostrea gigas (Thunberg), in Australia. Aquaculture, 2000, 187(3-4) : 283-298.
    85. Fegan D. Shrimp domestication based curricula and exports. The Advocate, 1999, December: 35-37.
    86. Flegel T.W., Boonyaratpalin S., et ai. Progress in research on yellow-head virus and white-spot virus in Thailand. In Flegel T.W. and MacRae I.H., editors. Disease in Asian Aquaculture III, Fish Health Society, Manila, Philippines, 1997.
    87. Galvin P., McGregot D., et al. Single locus PCR amplified minisatellite region as a hyper-variable genetic marker in gadoid species. Aquaculture, 1995, 137: 31-40.
    88. Ganz H.H., Burton R.S. Genetic differentiation and reproductive incompatibility among Baja California populations of the copepod Tigriopus californicus Mar. Biol. 1995, 123 (4) : 821-827.
    
    
    89. Garcia D.K., Dhar A.K., et al. Molecular analysis of a RAPD marker (B20) reveals two microsatellites and differential mRNA expression in Penaeus vanname. Mol. Mar. Biol. Biotech., 1996, 5(1) : 71-83.
    90. Gary W.S. and Louis D.D. Nucleotide sequences of the small subunit ribosmal RNA genes from selected laminariales (Phaeophyta): implications for kelp evolution. J. Phycol, 1992, 28: 544-549.
    91. Gharrett A.J., et al. Genetic variation in sockeye salmon (Oncorhynchus nerka) populations of Asia and North America. Can. J. Fish Aquat. Sci., 1994, 51(1) : 132-146.
    92. Gjedrem T. Breeding plans fro rainbow trout. Aquaculture, 1992, 100: 73-92.
    93. Goff L.J., Moon D.A., et al. Molecular delineation of species and species relationships in the red algal agrophytes Gracilariopsis and Gracilaria (Gracilariales). J. Phycoi., 1994, 30: 521-537.
    94. Goyard E., Patrois J., et al. IFREMER's shrimp genetics program. The Advocate, 1999, December: 26-28.
    95. Graur D., Higgins D.G. Molecular evidence for the inclusion of cetaceans within the order Artiodactyla. Mol. Biol. Evol., 1994, 11 (3) : 357-364.
    96. Gupta M., et al. Theor. Appl. Genet., 1994, 998-1006.
    97. Gustavo, Caetano-Anolles, et al. DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Bio/Technology, 1991. (9) : 553-557.
    98. Harris D.K. and Hopkinson N.A. Handbook of Enzyme Electrophoresis in Human Genetics. Oxford: North-Holland publishing Com., 1976.
    99. Harris S.E.G., Dillion R.T. Jr., et al. Electrophoresis of isozymes in cultured Penaeus vannamei. Aquaculture, 1990, 85(1-4) : 330.
    100. Hedgecock D., Tracey M.L., et al. The Biology of Crustacea, Isopoda. Genetica. Genetics, In: L. G. Abele (Editor), 1982. 92: 55-60.
    101. Hinder K., Ryman N., et al. Genetic effects of cultured fish on natural fish populations. Can. J. Fish Aquat. Sci., 1991, 48: 945-957.
    102. Ikeda M., et al. Electrophoretic evidence of two types in the common freshwater shrimp Paratya compressa compressa (Decapoda:Atyidae)[of Japan]. Tohoju Journal of Agricultural Research (Japan ), 1995 , 459(3-4) : 69-77.
    
    
    103. Ikeda, M., et al. Genetic divergence between two subspecies in parutya compressa(Decapoda: Atyidae) Nippon Suisan Gakkaishi/Bulletin of the Japanese Society of Scientific Fisheries. Tokyo, 1992, 58 (5) : 819-824.
    104. Iyahana H., Yoshimoto K. et al. Dection of point mutations by SSCP of PCR-amplified DNA after endonuclease digestion. Biotechniques, 1992, 12:64-66.
    105. Jean Francois, Desvignes, et al. Genetic variability in reared stocks of common carp(Cyprinus carpio L.) based on allozymes and microsatellites. Aquaculture, 2001, 194: 291-301.
    106. JEFFREYS, A.J., J. F.Y. BROOKFIELD, et al. Positive identification of an immigration test-case using human DNA fingerprints. Nature, 1985a, 317:818-819.
    107. JEFFREYS, A.J., V. WILSON, et al. Hypervariable 'minisatellite' regions in human DNA. Nature, 1985b, 314: 67-73. ---Individual-specific 'fingerprints' of human DNA. Nature, 1985c, 316:76-79.
    108. Kim, B., Studies on the distribution and migration of Korean shrimp Penaeus orientalis Kishinouye in Yellow Sea. Bull. Fish. Res. Dev. Agency, 1973, 11: 7-23.
    109. Lakra W.S., Kumar P., et al. Improved techniques of chromosome preparation from shrimp and prawns. Asian Fish. Sci., 1997, 10(2) : 117-121.
    110. Lawrence, A. L., Bray, W. A., et al. Successful interspecific crosses of two species of marine shrimp, Penaeus stylirostris X Penaeus setiferus. World Maric.Soc., 39 (abstract).
    111. Lee M., Yang R., et al. Accessing genetics information with high-density DNA arrays. Science, 1996,274:610-613.
    112. Lee S.C., Chang J.T., et al. Genetic relationships of four Taiwan mullets (Pisces: Perciformens: Mugilidae). J. Fish Biology, 1995, 46: 159-162.
    113. Lewontin R.C. and Hubby J.L. A molecular approach to the study of genetic heterozygosity in natural populations Ⅱ. Genetics, 1966, 54: 595-609.
    114. Lin, M-N., Ting, Y.-Y, et al., Hybridization of two closed-thelycum penaeid species Penaeus monodon X P. penicillatus and P. penicillatus X P. monodong, by means of spermatophore transplantation. Bull. Taiwan Fish. Res. Inst. 1988, 45, 83-101.
    115. Lipshuts D., Morris D., et al. Using oligonucleotide probe arrays to access genetic diversity. BioTechniques, 1995, 19 (3) : 442-447.
    
    
    116. Liu P., Kong J., et al. RAPD analysis of wild stock of Penaeid shrimp (Penaeus chinensis) in Chinese coastal waters of the Huanghai Sea and coastal waters of the Bohai Sea. Acta Oceanologica Sinica,2000, 19(1) : 119-126.
    117. Liu Q., and Sommer S.S. Restriction endonuclease fingerprintion: a sensiitice method for screening mutations in long contiguous segments of DNA. Biotechniques, 1995, 18: 470-477.
    118. Lockwood S.F., Dillinger Jr.R.E., et al. Phylogenetic relationships among members of the Coregoninae inferred from direct sequencing of PCR-amplified mitochondril DNA. Can. J. Fish. Aquat. Sci., 1993, 50: 2112-2118.
    119. Lu T.T. and Williams S.L. Genetic diversity and genetic structure in the brown alga Halidrys dioica (Fucales: Cystoseiraceae) in suothern Californea. Mar. Biol., 1994, 121: 363-371.
    120. Malecha S.R. Genetics and selective breeding. In: Hanson J.A., Goodwin H.L., eds. Shrimp and Prawn Farming in the Western Hemispher. Dowden, Hutchinson and Rooss Pennsylvanis, PA, 1977,328-334.
    121. Matsuoka N., Fukuda K., et al. Biochemical systematics of five asteroids of the family Asteriidae based on allozyme variation. Zool. SCI. 1994, 11(2) : 343-349.
    122. Meveigh H.P. and Davidson W.S. A salmonid phytogeny inferred from mitochondrial cytochrome b gene sequences. J. Fish Biol., 1991, 39 (supplement A): 277-282.
    123. Meyran J.C, Monnerot M., et al. Taxonmic status and phylogenetic relationships of some species of the genus Gammarus (Crustacea, Amphipoda) deduced from mitochondrial DNA sequence. Mol. Phylogene. Evol., 1997, 8: 1-10. mitochondrial DNA segments. Aquaculture, 1997, 153:15.
    124. Misamore M., Browdy C.L. Evaluating hybridization potential between Penaeus setiferus and Penaeus vannamei through natural mating, artificial insemination and in vitro fertilization. Aquaculture, 1997, 150(1-2) : 1-10.
    125. Moore S.S., Whan V., et al. The development and application of genetic markers for Kuruma prawn Penaeus japonicus and their use in parentage determination and linkage mapping. Paper presented in the 6~(th) International Symposium on Genetics in Aquaculture, Stirling, Scotland, 1997.
    126. Moore, S.S.; Whan V; et al. The development and application of genetic markers for the Kuruma prawn Penaeus japonicus. Aquaculture, 1999, 173(1-4) : 19-32.
    
    
    127. Morelli M., Le-Dean L. et al. Karyotype of the marine shrimp Penaeus indicus (Crustacea, Decapoda) established by using an image analysis system. Ophelia, 1998, 49(2) : 83-95.
    128. Mork J. Genetic vatition in Atlantic cod (Gadus morhua) throughout its range. Can. J. Fish. Aquat. Sci., 1985,42: 1580-1587.
    129. Moss S.M., Argue B.J. et al. Genetic improvement of the Pacific white shrimp, Litopenaeus vannamei. The Advocate, At the Oceanic Institute, 1999, December: 41-43.
    130. Mulley J.C. and Later B.D.H. Genetic variation and evolutionary relationship within a group of thirteen species of Penaeid prawns. Evolution, 1980, 34(5) : 904-916.
    131. Nesbo C.L., Rueness E.K., et al. Phylogeography and population history of Atlantic mackerel (Scomber scombrus L.): a genealogical approach reveals genetic structring among the eastern Atlantic stocks. Proc R Soc Lond B Biol Sci, 2000, 267(1440) : 281-292.
    132. Nicolas B., Ivan B., et al. Microsatellite-associated heterosis in hatchery-propagated stocks of the shrimp Penaeus stylirotris. Aquaculture, 2000, 203-219
    133. Niiyama H. The chromosomes of the crayfish, Cambarodes japonicus(de Haan). J Fac Sci Hokkaido Imp. Univ. Ser VI. Zoology, 1934, 3: 41-53.
    134. Orecchia P., Mattiucci S., et al. Two new members in the Contracaecum osculatum complex (Nematoda, Ascaridoidea) from the Antarctic. Int. J. Parasitol, 1994, 24(3) : 367-377.
    135. Orita M., Suzuki T, et al. Rapid and sensitive detection of piont mutation and DNA polymorphisms using the polymerase chain reaction. Genomics, 1989, 5: 874-879.
    136. Paran I. RW Michelmore. Theor. Appl. Genet., 1993,85: 985-993.
    137. Phillips R.B. and Reed K.M. Application of fluorescence in situ hybridization (FISH) techniques to fish genetics: a review. Aquaculture, 1996, 140: 197-216.
    138. Preston, N.M., Baule, V. J., et al. Delivery of DNA to early embryos of the Kuruma prawn, Penaeus japonicus. Aquaculture 181 (2000) 225-234.
    139. Ralph D., McClelland M., et al. Leptospira species categorized by arbitrarily primed polymerase chain reaction (PCR) and by mapped restriction polymorphisms in PCR-amplified rRNA genes. J. Bacteriol., 1993, 175: 973-981.
    140. Rolfs A., Schuller I., et al. Detection of single base changes using PCR, in: PCR: Clinical Diagnotics and Research, Speinger-Verlag. Berlin, Germany, 1992: 149-167.
    141. Rosel P.E. and Block B.A., Mitochondrial contral region variability and global population
    
     structure in the swordfish, Xiphias gladius. Mar. Biol., 1996, 125: 11-22.
    142. Rumbak,-E.; Reid,-D.G. Reconstruction of phylogeny of 11 species of Littorina (Gastropoda: Littorinidae) using mitochondria! DNA sequence data. Molecular Techniques and Molluscan Phylogeny. 1994, 108 (Suppl. 2) : 91-97,
    143. Salzano G. and Coppola S. Genotyping of Streptococcus thermophous evidenced by restriction anolysis of ribosomal DNA. Res. Microbiol., 1994, 145: 651-658.
    144. Sara L.F.S. and Scott K.D. Evolution of genetic variation in a domestic population of Penaeus vannamei (Boone): a comparison with three natural populations. Aquaculture, 1991, 97: 131-142.
    145. Sarkar G., Yoon H.S., et al. Dideoxy fingerprinting ddF: A rapid and efficient screen for the presence of mutations. Genomics, 1992, 13: 441-443.
    146. Sarkar G., Yoon H.S., et al. Screening for mutations by RNA single-strand conformation polymorphism (rSSCP): comparison with DNA-SSCP. Nucl. Acids Res., 1992, 20: 871-878.
    147. Sarver S.K., Landrum M.C., et al. Genetics and taxonomy of ribbed mussels (Geukensia spp.). Mar. Biol. 1992, 113 (3) : 385-390.
    148. Sawashi Y, Nishida M. Genetic differentiation in populations of the Ryukyu ayu Plecoglossus altivelis ryukyuensis on Amami-oshima Island Jap. J. Ichthyol. Gyoruigaku Zasshi, 1994, 41(3) : 253-260.
    149. Sbordone V.E., Matthaeis D.E., et al. Bottleneck effects and the depression of genetic variability in hatchery stocks of Penaeus japonicus (Crustacea;Decapoda). Aquaculture, 1986, 57:239-251.
    150. Shaw C.R. and Prasad R. Starch gel electrophoresis--a compilation of recipes, Biochem.genet, 1970, 4: 297.
    151. Smith P.J. Mitochondrial DNA in the Atlantic cod, Gadus morhua: lack of genetic divergence between eastern and western populations. J. Fish Biol., 1989, 34: 369-373.
    152. Strachan I., et al. Small subunit rRNA phylogeny of the Rhodymeniales : a preliminary appraisal, J. Phycol., 1995 , 3(3) : 19.
    153. Sun P.S. Expression of the molt-inhibiting hormone-like gene in the eyestalk and brain of the white shrimp Penaeus vannamei. Mol. Mar. Biol. Biotechnol. 1995, 4(3) : 262-268.
    154. Sun P.S. Molecular cloning and sequence analysis of a cDNA encoding a molt-inhibiting
    
     hormone-like neuropeptide from the white shrimp Penaeus vannamei. Mol. Mar. Biol. Biotechol., 1994,3(1) : 1-6.
    155. Sundberg P., Andersson S. Random amplified polymorphic DNA (RAPD) and intraspecific variation in Oerstedia dorsalis (Hoplonemertea, Nemertea) J. Mar. Biol. Assoc. U.K. 1995, 75 (2) : 483-490.
    156. Sunden S.L.F. and Davis S.K. Evaluation of genetic variation in a domestic population of Penaeus vannamei: a comparison with three natural populations. Aquaculture, 1991, 97: 131-142.
    157. Sutton, W.S. The chromosomes in heredity. Biol. Bull. Wood's Hole, 4, 231.
    158. Tam Y.K. and Chu K.H. Electrophoretic study on the phylogenetic relationships of some species of Penaeus and Metapenaeus (Decapoda Penaidae) from the South China Sea. Journal of Curst. Biol., 1993, 13(4) : 697-705.
    159. Van-Wormhoudt A., Sellos D., et al. Chymotrypsin gene expression during the intermolt cycle in the shrimp Penaeus vannamei (Crustacea; Decapoda). Experientia., 1995, 51(2) : 159-163.
    160. Vogel J.M., et al. Applification of genetic diagnostics to plant genome analysis and plant breeding. Hort Science, 1996, 31(7) , 1107-1108.
    161. Vos P., Hogers R., et al. AFLP: a new technique for DNA fingerprinting. Nucl Acides Res., 1995,23:4407-4414.
    162. Wang Wei-Ji, Kong Jie, et al. Isozyme variation in four population of Penaeus chinensis shrimp. Biodiversity Science, 2001, 9(3) : 241-246.
    163. Ward R.D. and Grewe P.M. Appraisal of molecular genetic techniques in fisheries. Rev. Fish Biol. Fish., 1994,4:300-325.
    164. Ward R.O., Elliott N.G., et al. Global population structure of yellowfin tuna, Thunnus albacares, inferred fuom allozyme and mitochondrial DNA variation. Fish. Bull., 1997, 95(3) : 566-575.
    165. Watanabe, Toshiki, et al. Molecular analysis of two genes, DD9A and B, which are expressed during the postmolt stage in the decapod crustacean Penaeus japonicus. Comparative Biochemistry and Physiology, B., [Comp. Biochem. Physiol. B.], 2000, 125B (1) : 127-136.
    166. Welsh J. and Mcclelland M. Fingerprinting Genomicis Using PCR with Arbitrary Primers.
    
     Nucleic Research, 1990, 18(24) : 7213-7218.
    167. Weppe M., Bonami J.R., et al. Demonstration de las altas cualidades de la cepa de P. stylirostris (AQUACOP SPR43) resistente al virus IHHNV. In: Memorias I congress Ecuatoriano de aquiculture. CENAIM, Guyaquil, Ecuador, 1999, 229-232.
    168. Williams J.G.K., Kubelik A.R., et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res., 1990, 18(22) : 6531-6535.
    169. Williams S.L. and Di Fiori R.E. Genetic diversity and structure in Pelvetia fastigiata (Phaeophya, F.): does a small effective neighborhood size explain fine-scale genetic structure. Mar. Biol., 1996, 126:371-382.
    170. Williams S.T., Benzie J.A.H. Genetic uniformity of widely separated populations of the coral reef starfish Linckia laevigata from the East Indian and West Pacific oceans, revealed by allozyme electrophoresis. Mar. Biol. 1966, 126 (1) : 99-107.
    171. Wolfus G.M., Garcia D.K., et al. A. Application of the microsatellite technique for analyzing genetic diversity in shrimp breeding programs. Aquaculture, 1997, 152: 35-47.
    172. Woodley C.M., Chapman R.W., et al. The 12s-16s rRNA region of mitochondrial DNA provides unambiguous identification of shark species. International Marine Biotechnology Conference, Tromsoe, Norway. 1994, Aug., 7-12.
    173. Wright S. Evolution and the Genetics of Populations,. Variability Within and Among Natural Populations. 1978, 4. Universityof Chicago Press, Chicago.
    174. Xiang J.H., et al. Study on the feasibility of chromosome set manipulation in the marine shrimp. Sicyonia ingentis. Presented at the International Crustacea Conference, Brisbane, Australia, 1990, July 2-6.
    175. Xu Z., Dhar A.K., et al. Identification of abundant and informative microsatellites from shrimp (Penaeus monodon) genome, Animal Genetics, 1999, 30: 150-156.
    176. Xu Z.K., Primavera J.H., et al. Genetic divercity of wild and cultured Black Tiger Shrimp(Penaeus Monodon) in the Philippines using microsatellites. Aquaculture, 199(2001) : 13-40.
    177. Yang F.T., et al. A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma, 1995, 103: 642-652.
    178. Yoshimoto. Role of P53 mutations in endocrine tumorigenesis: Mutation detection by
    
     polymerase chain reaction-single strand conformation polymorphism. Cancer Res., 1992, 52: 5061-5064.
    179. Yotsukura N., Denboh T., et al. Little divergence in ribosomal DNA internal transcribed spacer-1 and-2 sequences among non-digitate species of Laminaria (Phaeophyceae) from Hokkaido. Japan, Phycological Research, 1999, 47: 71-80.
    180. Zane L., Ostellari L., et al. Genetic differentiation in a pelagic crustacean (Meganyctiphanes norvegica: Euphausiacea) from the North East Atlantic and the Mediterranean Sea. Mar. Biol. 2000, 136 (2) : 191-199.
    181. Zebeau M., Vos P. Selective restruction fragment amplication: a general method for DNA fingerpring. European Patent Applicationn Publication Number, 1993, EP 0534 858A.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700