激素调节拟南芥离体花序发育的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多种信号均参与植物由营养生长到生殖生长的转变。在这个转变过程中,植物激素起着非常重要的调控作用。为了研究激素调节拟南芥离体花序发育的机制,首先建立了拟南芥离体花序再生系统。以拟南芥雌蕊为外植体,在含有6-BA、2,4-D的培养基上诱导愈伤组织的形成,大约25天后将愈伤组织转至含有Zeatin和IAA的培养基中诱导离体花序的产生。花序再生频率约为60%。
     利用半定量RT-PCR方法,对花序发育相关基因的表达进行了分析。发现愈伤组织转至分化培养基后,同源异型基因AP1、AP3、AG、LFY、TFL1、WUS、CLV1、CLV3和STM的表达先后受到诱导,而TFL2和AP2基因的表达则没有明显变化。
     利用pTFL1::GUS和pLFY::GUS转基因植株为材料,分析了TFL1和LFY在离体花序发育过程中表达的组织特异性。发现TFL1基因主要在具有花序轴特征的细胞,以及成熟再生花序的花序轴中表达,而LFY基因主要在即将产生花原基的区域表达,随后在成熟再生花序的花原基中表达。
     由于WUS和CLV3基因的表达影响拟南芥植株中花序的发育,因此对离体花序发育过程中该两个基因的表达模式进行了分析。研究结果显示,在离体花序形成早期,首先检测到WUS基因在愈伤组织内部的一群细胞中表达,称之为组织中心。随后在组织中心上方表面1~3层细胞中检测到干细胞特征决定基因CLV3的表达。随着花序原基的继续发育,两基因的表达均逐渐集中于花序分生组织中。利用可诱导的反义基因表达策略,抑制WUS基因表达,离体再生花序形成受到抑制。研究结果表明组织中心的细胞先于干细胞形成,WUS基因在此过程中起重要作用。
     花序的诱导需要生长素。在花序诱导过程中添加生长素极性运输抑制剂,不仅破坏了生长素的极性分布,还抑制了WUS基因的表达,最终不能产生离体花序。说明生长素的极性运输为干细胞形成及离体花序发育所必须。
     本研究结果表明,激素不仅诱导组织中心细胞及干细胞的形成,而且启动花序特征基因的表达,最终决定花序原基及花原基的产生,进而发育形成成熟的离体花序结构。
Various signals can be involved in the transition from vegetative growth to reproductive growth in plant. Plant hormones play important roles in this process. To study the developmental mechanism of hormone-regulated regenerated inflorescence, we established a regeneration system of Arabidopsis inflorescence induced by cytokinin and auxin in vitro. In this regeneration system, pistil was used as explant to induce the formation of callus,and then the callus was transferred to another kind of media for inflorescence induction. The frequency of inflorescence regeneration was about 60%.
     Semi-quantitative RT-PCR analysis was performed to determine the expression patterns of genes involved in inflorescence development. The results showed that the expression of AP1, AP3, AG, TFL1, LFY, WUS and CLV3 was induced after callus was transferred to the media for inflorescence induction. In contrast, the expression of AP2 and TFL2 was constitutive during inflorescence regeneration.
     The expression patterns of TFL1 and LFY during inflorescence regeneration were analyzed by using pLFY::GUS and pTFL1::GUS transgenic plants. We found that TFL1 expression mainly located in the cells with inflorescence meristem identity and in the mature regenerated inflorescence. And the expression of LFY was found in the callus cells differentiating to floral primordium and in the mature regenerated inflorescence.
     CLV3 and WUS genes were involved in regulating inflorescence development in plants, so the expression patterns of CLV3 and WUS during the regeneration of inflorescence were determined. The results indicated that WUS was firstly expressed in a group of cells located in the inner of callus, named it organization center, and then, the expression of CLV3 was detected in the cells of layer 1-3 above the organization center. With the development of inflorescence primordium, the expression of CLV3 and WUS was focused in the inflorescence meristem. After the expression of WUS was inhibited by anti-gene strategy, the regeneration of inflorescence was reduced obviously. Thus, these results suggest that the expression of WUS, earlier than that of CLV3, is essential for the inflorescence formation.
     The generation of stem cell was inhibited after the polar transportation of auxin was interrupted by adding NPA, an inhibitor of auxin polar transportation, in media. And the frequency of inflorescences formation was reduced significantly after adding NPA. These results suggest that auxin polar transportation is very important for the generation of stem cell and inflorescence formation in vitro.
     These results indicate that inflorescence and floral meristem identity genes are induced during the regeneration of inflorescence. Further study indicates that organizing center cell and stem cell formation is necessary for the regenerated inflorescence development.
引文
陈永宁,李文安D-色氨酸对烟草花柄外植体花芽分化的影响。实验生物学报,1995(28):103-107
    杜黎明,毛传澡,毛伟海植物茎分枝的分子调控。中国生物化学与分子生物学报,2008(24):120~126
    谷瑞升,蒋湘宁,郭仲琛植物离体培养中器官发生调控机制的研究进展.。植物学通报,1999(16):238-244
    李学红,张举仁玉米茎尖离体培养直接产生雌、雄花序的研究。中国科学(C辑),1999(29):185-190
    陆文樑植物器官的克隆—实践、理论和在人与动物器官克隆中应用的可能性。农业生物技术学报,2005(13):1-9
    庞基良,林波,梁海曼几种生长调节剂对离体培养黄瓜子叶直接开花的作用(简报)。植物生理学通讯,1994(30):185-188
    Achard P., Herr A., Baulcombe D. C., and Harberd N. P. Modulation of floral development by a gibberellin-regulated microRNA. Development, 2004 (131): 3357-3365
    Alvarez J., Guli C. L., Yu X. H., and Smyth D. R. Terminal flower: A gene affecting inflorescence development in Arabidopsis thaliana. Plant J., 1992 (2): 103-116
    An Y. R., Li X. G., Su Y. H., Zhang X. S. Pistill induction by hormones from callus of Oryza sativa in vitro. Plant Cell Reports, 2004 (23): 448-452
    Andrew H., and Justin G. Plant meristems: Cell signalling keeps the balance. Current Biology, 1997 (7): 427-429
    Angenent G. C., Franken J., Busscher M., Weiss D., and van Tunen A. J. Co-suppression of the petunia homeotic gene FBP2 affects the identity of the generative meristem. Plant J., 1994 (5): 33-44
    Banno H., Ikeda Y., Niu Q. W., and Chua N. H. Overexpression of ArabidopsisESR1 induces initiation of shoot regeneration. Plant Cell, 2001 (12): 2609-2618
    Benedetti C. E., Xie D., and Turner J. G.. COI1-Dependent Expression of an Arabidopsis Vegetative Storage Protein in Flowers and Siliques and in Response to Coronatine or Methyl Jasmonate. Plant Physiology, 1995 (109): 567-572
    Benjamins R., Quint A., Weijers D., Hooykaas P., and Offringa R. The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development, 2001 (128): 4057-4067
    Bernier G., Havelange A., Houssa C., Petitjean A., and Lejeune P. Physiological signals that induce flowering. Plant Cell, 1993 (5): 1147-1155
    Bennett M. J., Marchant A., Green H. G., May S. T., Ward S. P., Millner P. A., Walker A. R., Schulz B., and Feldmann K. A. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science, 1996 (273): 948-950
    Blāzquez M. A., Green R., Nilsson O., Sussman M. R., and Weigel D. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell, 1998 (10): 791-800
    Blilou I., Xu J., Wildwater M., Willemsen V., Paponov I., Friml J., Heidstra R., Aida M., Palme K., and Scheres B. The PIN auxin effux facilitator network controls growth and patterning in Arabidoopsis roots. Nature, 2005 (433): 39-44
    Bonhomme F., Kurz B., Melzer S., Bernier G., and Jacqmard A. Cytokinin and gibberellin activate SaMADS, a gene apparently involved in regulation of the floral transition in Sinapis alba. Plant Journal, 2000 (24): 103-110
    Boss P. K., Bastow R. M., Mylne J. S., and Dean C. Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell, 2004 (16): S18-S31
    Bowman J. L., Alvarez J., Weigel D., Meyerowitz E. M., and Smyth D. R. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development, 1993 (119): 721-743
    Bradley D., Carpenter R., Copsey L., Vincent C., Rothstein S., and Coen E. Control of inflorescence architecture in Antirrhinum. Nature, 1996 (379): 791-797
    Bradley D. J., Ratcliffe O., Vincent C., Carpenter R., and Coen E. Inflorescence commitment and architecture in Arabidopsis. Science, 1997 (275): 80-83
    Brand U., Grünewald M., Hobe M., and Simon R. Regulation of CLV3 expression by two homeobox genes in Arabidopsis. Plant Physiology, 2002 (129): 565-575
    Brand U., Fletcher J., Hobe M., Meyerowitz E., and Simon R. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science, 2000 (289): 617-619
    Byrne M. E., Ross B., Mark C., Arroya J. M., Maitreya D., Hudson A., and Martienssen R. A. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature, 2000 (408): 967-971
    Cary A. J., Che R., and Howell S. H. Developmental events and shoot meristem gene expression patterns during shoot development in Arabidopsis thaliana. Plant J., 2002 (32): 867-877
    Chang H., Jones M. L., Banowetz G.. M., and Clark D. G. Overproduction of cytokinins in petunia flowers transforms with PSAG12-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiology, 2003 (132): 2174-2183
    Cheng Y., Dai X., and Zhao Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev., 2006 (20): 1790-1799
    Chen R., Hilson R., Sedbrook J., Rosen E., Caspar T., and Masson R. H. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc. Natl. Acad. Sci. USA, 1998 (95): 15112-15117
    Chow B., and McCourt P. Hormone signalling from a developmental context.Journal of Experimental Botany, 2004 (55): 247-251
    Christensen S. K., Dagenais N., Chory J., and Weigel D. Regulation of auxin response by the protein kinase PINOID. Cell, 2000 (100): 469-478
    Chuck G., Lincoln C., and Hake S. KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell, 1996 (8): 1277- 1289
    Coen E. S., and Meyerowitz E. M. The war of the whorls: Genetic interactions controlling flower development. Nature, 1991 (353): 31-37
    Colombo L., Franken J., Koetje E., Van Went J., Dons H., Angenent G., and Van Tunen A. The petunia MADS box gene FBP11 determines ovule identity. Plant Cell, 1995 (7): 1859-1868
    Corbesier L., Prinsen E., Jacqmard A., Lejeune P., Van Onckelen H., Périlleux C., and Bernier G. Cytokinin levels in leaves, leaf exudates and shoot apical meristem of Arabidopsis thaliana during floral transition. Journal of Experimental Botany, 2003 (54): 2511-2517
    De Veylder L., Beeckman T., Beemster G. T. S., Luc K., Franky T., Isabelle L., Els Van Der S., Sara M., Mirande N., and Dirk I. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell, 2001 (13): 1653-1668
    Ditta G., Pinyopich A., Robles P., Pelaz S., and Yanofsky M. F. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol., 2004 (14): 1935-1940
    Doerner P. Plant stem cells: the only constant thing is change. Curr Biol., 2000 (10): R826-R829
    Egea-Cortines M., Saedler H., and Sommer H. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS, and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J., 1999 (18): 5370-5379
    Estelle M. Polar Auxin Transport: New Support for an Old Model. Plant Cell, 1998 (10): 1775-1778
    Favaro R., Pinyopich A., Battaglia R., Kooiker M., Borghi L., Ditta G., Yanofsky M. F., Kater M. M., and Colombo L. MADS box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell, 2003 (15): 2603-2611.
    Ferrario S., Immink R. G., Shchennikova A., Busscher-Lange J., and Angenent G. C. The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell, 2003 (15): 914-925
    Fletcher J. C., Brand U., Running M. P., Simon R., and Meyerowitz E. M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 1999 (283): 1911-1914
    Fowler S., Lee K., Onouchi H., Samach A., Richardson K., Morris B., Coupland G., and Putterill J. GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J., 1999 (18): 4679-4688
    Franziska T., Fabio F., and George C. Regulation and Identity of Florigen: FLOWERING LOCUS T Moves Center Stage. Annual Review of Plant Biology, 2008 (59): 573-594
    Friml J., Benkova E., Blilon I., Wisniewska J., Hamann T., Ljung K., Woody S., Sandberg G., Seheres B., Jfirgens G., and Palme K. AtPIN4 mediates sink driven auxin gradients and patterning in Arabidopsis roots. Cell, 2002a (108): 661-673
    Friml J., Wisniewska J., Benkova E., Mendgen K., and Palme K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Aiabidopsis. Nature, 2002b (415): 806-809
    Friml J., and Palme K. Polar auxin transport old questions and new concepts? Plant Mol.Biol., 2002 (49): 273-284
    Friml J., Yang X., Michniewicz M., Veijers D., Quint A., Tietz O., Benjamins R., Ouwerkerk P. B., Ljung K., Sandberg G.., Hooykaas P. J., Palme K., and Offringa R. A PINDID-dependent binary switch in apical-basal PIN polartargeting directd auxin efflux. Science, 2004 (306): 862-865
    Gallois J. L., Woodward C., Reddy G. V., and Sablowski R. Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development, 2002 (129): 3207-3217
    Galweiler L., Guan C., Muller A., Wisman E., Mendgen K., Yephremov A., and Palme K. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science, 1998 (282): 2226-2230
    Gross-Hardt R., and Laux T. Stem cell regulation in the shoot meristem. J. Cell Sci., 2003 (116): 1659-1666
    Gross-Hardt R., and Laux T. Shoots and Buds. Encyclopedia of Life Science, 2001 1-4
    Guan C. M., Zhu S. S., Li X. G., and Zhang X. S. Hormone-regulated inflorescence induction and TFL1 expression in Arabidopsis callus in vitro. Plant Cell Rep., 2006 (25): 1133-1137
    Han M. H., Goud S., Song L., and Fedoroff N. The Axabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA mediated gene regulation. Proc. Natl. Acad. Sci. USA, 2004 (101): 1093- 1098
    Hardtke C. S., and Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J., 1998 (17): 1405-1411
    Harper R. M., Stowe-Evans E. L., Luesse D. R., Muto H., Tatematsu K., Watahiki M. K., Yamamoto K., and Liscum E. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell, 2000 (12): 757-770
    Hicks G. S., and McHughen A. Altered morphogenesis of placental tissues of tobacco in vitro: Stigmatoid and carpelloid outgrowths. Planta, 1974 (121): 193-196
    Higuchi M., Pischke M.S., Mahonen A. P., Miyawaki K., Hashimoto Y., Seki M., Kobayashi M., Shinozaki K., Kato T., Tabata S., Helariutta Y., SnssmanM. R., and Kakimoto T. In planta functions of the Arabidopsis cytokinin receptor family. Proc.Natl.Acad.Sci. USA, 2004 (101): 8821-8826
    Honma T., and Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 2001 (409): 525-529
    Huala E., and Sussex I. M. LEAFY interactes with floral homeotic genes to regulate Arabidopsis floral development. Plant Cell, 1992 (4): 901-903
    Huang S., Cerny R. E., Qi Y., Bhat D., Aydt C. M., Hanson D. D., Malloy K. P., and Ness L. A. Transgenic studies on the involvement of cytokinin and gibberellin in male development. Plant Physiol, 2003 (131): 1270-1282
    Hutchison C. E., and Kieber J. J. Cytokinin signaling in Arabidopsis. Plant Cell, 2002 (14): S47-S59
    Isabel B., and Caroline D. The Timing of Developmental Transitions in Plant. Cell, 2006 (125): 655-664
    Isabel B., and Thomas L. Regulation of WUSCHEL Transcription in the Stem Cell Niche of the Arabidopsis Shoot Meristem. Plant Cell, 2005 (17): 2271-2280
    Irish V. F., and Sussex I. M. Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell, 1990 (2): 741-753
    Jackson D., Veit B., and Hake S. Expression of maize knotted1-related homeobox gene in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development, 1994 (120): 405-413
    Jack T. Molecular and genetic mechanisms of floral control. Plant Cell, 2004 (16): S1-S17
    Kaur-Sawhney R., Tiburcio A. F., and Galston A. W. Spermidine and flower-bud differentiation in thin-layer explants of tobacco. Planta, 1988 (173): 282-284
    Kerk N., and Feldman L. The quiescent center in the roots of maize: initiation,maintenance and role in organization of the root apical meristem. Protoplasma, 1994 (183):100-106
    Kerstetter R., Vollbrecht E., Lowe B., Veit B., Yamaguchi J., and Hake S.Sequenee analysis and expression patterns divide the maize knottedl-like homeobox genes into two classes. Plant Cell, 1994 (6): 1877-1887
    Kerstetter R. A., and Hake S. Shoot meristem formation in vegetative development. Plant Cell, 1997 (9): 1001-1010
    Kieber J. J. Cytokinins. The Arabidopsis Book. 2002
    Laskowski M. J., Williams M. E., Nusbaum H. C., and Sussex I. M. Formation of lateral root meristems is a two-stage proeess. Development, 1995 (121): 3303-3310
    Laux T., Mayer K. F., Berger J., and Jurgens G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development, 1996 (122): 87-96
    Leibfried A., To J. P., Busch W., Stehling S., Kehle A., Demar M., Kieber J. J., Lohmann J. U. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature, 2005 (438): 1172-1175
    Lenhard L., and Laux T. Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development, 2003 (130): 3163-3173
    Lenhard M., Bohnert A., Jurgens G., and Laux T. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell, 2001 (105): 805-814
    Lenhard M., Jurgens G., and Laux T. The WUSCHEL and SHOOT MERISTEMLESS genes fulfill complementary roles in Arabidopsis shoot meristem regulation. Development, 2002 (129): 3195-3206
    Li L., Xu J., Xu Z. H., and Xue H. W. Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell, 2005 (17): 2738-2753
    Li Q. Z., Li X. G., Bai S. N., Lu W. L., and Zhang X. S. Isolation of HAG1 and its regulation by plant hormones during in vitro floral organogenesis in Hyacinthus orientalis L. Planta, 2002 (215): 533-540
    Lin W. C., Shuai B., and Springer P. S. The Arabidopsis LATERAL ORGANBOUNDARIES-Domain Gene ASYMMETRIC LEAVES2 Functions in the Repression of KNOX Gene Expression and in Adaxial-Abaxial Patterning. Plant Cell, 2003 (15): 2241-2252
    Lincoln C., Long J., Yamaguchi J., Serikawa K., and Hake S. A knotted1-like Homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell, 1994 (6): 859 -1876
    Lohmann J. U., and Weigel D. Building beauty: the genetic control of floral patterning. Development Cell, 2002 (2): 135-142
    Lohmann J., Hong R., Hobe M., Busch M., Parcy F., Simon R., and Weigel D. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell, 2001 (105): 793-803
    Long J. A., Moan E. L., Medford J., and Barton M. K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 1996 (379): 66-69
    Luschnig C., Gaxiola R. A., Grisafi P., and Fink G. R. EIRI, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev., 1998 (12): 2175-2187
    Lu W., Enomoto K., Fukunaga Y., and Kuo C. Regeneration of tepals, stamens and ovules in explants from perianth of Hyacinthus orientalis L. Importance of explant age and exogenous hormones. Planta, 1988 (175): 478-484
    Lu W. L. The direct regeneration of inflorescence from callus in Dracaena fragrans cv. Massangeana Hort. Acta Botanica Sinica, 2002 (44): 113-116
    Lu W. L. Control of In Vitro regeneration of individual reproductive and vegetative organs in Dracaena fragrans cv. Massangeana Hort. -Regularities of the direct regeneration of individual organs In Vitro. Acta Botanica Sinica, 2003 (45): 1453-1464
    Lu W. L. Study on the direct regeneration of spikelets and pistil-like structures from callus derived from glumelle and lemma explants of wheat. Acta Biologiae Experimentalis Sinica, 1992 (25): 9-15
    Lu W. L., Bai S. N., and Zhang X. S. Induction of continuous tepal differentiation from in vitro regenerated flower buds of Hyacinthus orientalis (in Chinese). Acta Botanica Sinica, 1999 (41): 921-926
    Lu W. L., Bai S. N., and Zhang X. S. The exogenous hormonal control of the development of regenerated flower buds in Hyacinthus orientalis (in Chinese). Acta Botanica Sinica, 2000 (42): 996-1002
    Lu W. L., and Liang B. In vitro induction of regeneration of fruit-like structure in Lycopersicon esculentum Mill. Acta Botanica Sinica, 1994 (36): 325-330
    Lu W. L., and Zhu Y. J. Cytological observations on microsporogenesis and pollen development of regenerated stamen in Hyacinthus orientalis (in Chinese). Acta Botanica Sinica, 1991 (33): 343-349
    Ma H., Yanofsky M. F., and Meyerowitz E. M. AGL1-AGL6, an Arabidopsis gene family with similarity to floral hometic and transcription factor genes. Genes Dev., 1991 (5): 484-495
    Mandel M. A., and Yanofsky M. F. A gene triggering flower formation in Arabidopsis. Nature, 1995 (377): 522-524
    Mayer K., Schoof H., Haecker A., Lenhard M., Jurgens G., and Laux T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 1998 (95): 805-815
    McNellis T. W., and Deng X. W. Light control of seedling morphogenetic pattern. Plant Cell, 1995 7(11): 1749-1761
    Meeks-Wagner D. R., Dennis E. S., Tran Thanh Van K., and Peacock W. J. Tobacco genes expressed during in vitro floral initiation and their expression during normal plant development. Plant Cell, 1989 (1): 25-35
    Michaels S. D., and Amasino R. M. Memories of winter vernalization and the competence to flower. Plant Cell Environment, 2000 (23): 1145-1153
    Mizukami Y., and Fiseher R. L. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc. Natl. Acad. Sci. USA, 2000 (97): 942-947
    Muller A., Guan C., Galweiler L., Tanzler P., Huijser P., Marchant A., Parry G..,Bennett M., Wisman E., and Palme K. AtPINZ defines a locus of Axabidopsis for root gravitropism control. EMBO J., 1998 (17): 6903-6911
    Narasimhulu S. B., and Reddy G. M. In vitro flowering and pod formation from cotyledons of groundnut (Arachis hypogaen L). Theor. Appl. Genet., 1984 69-89
    Nemhauser J. L., Zambryski P. C., and Roe J. L. Auxin signaling in Arabidopsis flower development? Curr. Opin. Plant Biol., 1998 1(6): 531-535
    Okada K., Ueda J., Komaki M. K., Bell C. J., and Shimura Y. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell, 1991 (3): 677-684
    Okamuro J. K., Szeto W., Lotys-Prass C., and Jofuku K. D. Photo and hormonal control of meristem identity in Arabidopsis flower mutants apetala2 and apetala1. Plant Cell, 1997 (9): 37-47
    Okushima Y., Overvoorde P. J., Arima K., Alonso J. M., Chan A., Chang C., Ecker J. R., Hughes B., Lui A., and Nhuyen D. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping function of ARF7 and ARF19. Plant Cell, 2005 (17): 444-463
    Ori N., Eshed Y., Chuck G., Bowman J. L., and Hake S. Mechanisms of KNOX gene expression in the Arabidopsis shoot. Development, 2000 (127): 5523-5532
    Parry G., Delbarre A., Marchant A., Swarup R., Napier R., Perrot-Rechenmann C., and Bennett M. J. Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J., 2001 (25): 399-406
    Park D. H., Somers D. E., Kim Y. S., Choy Y. H., Lim H. K., Soh M. S., Kim H. J., Kay S. A., and Nam H. G. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA Gene. Science, 1999 (285): 1579-1582
    Pelaz S., Ditta G. S., Baumann E., Wisman E., and Yanofsky M. F. B and Cfloral organ identity functions require SEPALLATA MADS-box genes. Nature, 2000 (405): 200-203
    Pelaz S., Gustafson-Brown C., Kohalmi S. E., Crosby W. L., and Yanofsky M. F. APETALA1 and SEPALLATA3 interact to promote flower development. Plant J., 2001a (26): 385-394
    Petrásek J., Mravec J., Bouchard R., Blakeslee J. J., Abas M., SeifertováD., Wisniewska J., Tadele Z., Kubes M., CovanováM., Dhonukshe P., Skupa P., BenkováE., Perry L., Krecek P., Lee O. R., Fink G. R., Geisler M., Murphy A. S., Luschnig C., ZazímalováE., and Friml J. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science, 2006 312(5775): 914-918
    Pidkowich M. S., Klenz J. E., and Haughn G. W. The making of a flower: control of floral meristem identify in Arabidopsis. Trends Plant Sci., 1999 (4): 64-70
    Pinyopich A., Ditta G.. S., Savidge B., Liljegren S. J., Baumann E., Wisman E., and Yanofsky M. F. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 2003 (424): 85-88
    Przemeck G. K. H., Mattsson J., Hardtke C. S., Sung Z. R., and Berleth T. Studies on the role of the Aiabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta, 1996 (200): 229-237
    Ratcliffe O. J., Amaya I., Vincent C. A., Rothstein S., Carpenter R., Coen E. S., and Bradley D. J. A common mechanism controls the life cycle and architecture of plants. Development, 1998 (125): 1609-1615
    Riefler M., Novak O., Strnad M., and Schmülling T. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell, 2006 (18): 40-45
    Reinhardt D. Regulation of phyllotaxis. Int. J. Dev. Biol., 2005 (49): 539-46 Reinhardt D., Mandel T., and Kuhlemeier C. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell, 2000 (12): 507-518
    Rojo E., Sharma V. K., Kovaleva V., Raikhel N. V., and Fletcher J. C. CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell, 2002 (14): 969-977
    Savidge B., Rounsley S. D., and Yanofsky M. F. Temporal relationships between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell, 1995 (7): 721-733
    Schoof H., Lenhard M., Haecker A., Mayer K. F., Jurgens G., and Laux T. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 2000 (100): 635-644
    Schultz E. A., and Haughn G. W. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell, 1991 (3): 771-781
    Serrano-Cartagena J., Robles P., Ponce M. R., and Micol J. L. Genetic analysis of leaf form mutants from the Arabidopsis information service collection. Mol. Gen. Genet., 1999 (261): 725-739
    Sessions A., Nemhauser J. L., McColl A., Roe J. L., Feldmann K. A., and Zambryski P. C. ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development, 1997 (124): 4481-4491
    Shannon S., and Meeks-Wagner D. R. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell, 1991 (3): 877-892
    Shannon S., and Meeks-Wagner D. R. Genetic interactions that regulate inflorescence development in Arabidopsis. Plant Cell, 1993 (3): 639-655
    Sieburth L. E., and Meyerowitz E. M. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located lntragenically. Plant Cell, 1997 (9): 355-365
    Skoog F., and Miller C. O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol., 1957 (11): 118-131
    Skoog F., and Tsui C. Chemical control of growth and bud formation intobacco stem segments and callus cultured in vitro. America Journal of Botany, 1948 (35): 782-787
    Smyth D. R., Bowman J. L., and Meyerowitz E. M. Early flower development in Arabídopsis. The Plant Cell, 1990 (2): 755-767
    Stals H., and InzéD. When plant cells decide to divide. Trends Plant Sci., 2001 (6): 359-364
    Su H. Y., Li Q. Z., Li X. G.., and Zhang X. S. Characterization and expression analysis of a MADS box gene, HoMADS2, in Hyacinthus orientalis L. Acta Genetica Sinica, 2005 (32): 1191-1198
    Sung Z. R., Belachew A., Shunong B., and Bertrand-Garcia R. EMF, an Arabidopsis gene required for vegetative shoot development. Science, 1992 (258): 1645-1647
    Sun Y., Zhou Q., Zhang W., Fu Y., and Huang H. ASYMMETRIC LEAVES1, an Arabidopsis gene that is involved in the control of cell differentiation in leaves. Planta, 2002 (214): 694-702
    Terzaghi W. B., and Cashmore A. R. Light-regulated transcription. Plant Physiol. Mol. Biol., 1995 (46): 445-474
    Thei?en G. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol., 2001 (4): 75-85
    Thei?en G., and Saedler H. Plant biology. Floral quartets. Nature, 2001 (409): 469-471
    Thomas L., and Klaus F. X. Cell fate regulation in the shoot meristem. Cell Developmental Biology, 1998 (9): 195-200
    Tiburcio A. F., Kaur-Sawhney R., and Galston A. W. Polyamine biosynthesis during vegenerative and floral bud differentiation in thin layer tobacco tissue cultures. Plant Cell Physiology, 1988 (29): 1241-1249
    Tran Thanh Van M. Direct flower neoformation from superficial tissue of small explants of Nicotiana tabacum L. Planta, 1973 (115): 87-92
    Tobena-Santamaria R., Bliek M., Ljung K., Sandberg G.., Mol J. N., Souer E., and Koes R. FLOOZY of petunia is a flavin mono-oxygenase-like proteinrequired for the specification of leaf and flower architecture. Genes Dev., 2002 (16): 753-763
    Veit B. Determination of cell fate in apical meristems. Curr. Opin. Plant Biol., 2004 7(1): 57-64
    Wagner D., Wellmer F., Dilks K., William D., Smith M. R., Kumar P. P., Riechmann J. L., Greenland A. J., and Meyerowitz E. M. Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation. The Plant Journal, 2004 (39): 273-282
    Waites R., and Hudson A. Phantastica: A gene required for dorsoventrality of leaves in Antirrhinum majus. Development, 1995 (121): 2143- 2154
    Waites R., Selvadurai R. N., Oliver I. R., and Hudson A. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell, 1998 (93): 779-789
    Werner T., Motyka V., Laueou V., Smets R., Van Onckelen H., and Schmülling T. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell, 2003 (15): 2532-2550
    Weigel D., Alvarez J., Smyth D. R., Yanofsky M. F., and Meyerowitz E. M. LEAFY controls floral meristem identity in Arabidopsis. Cell, 1992 (69): 843-859
    Weigel D., and Nilsson O. A. developmental switch sufficient for flower initiation in diverse plants. Nature, 1995 (377): 495-500
    White P. R. Tissue culture. In White P R ed: A handbook of plant. Lancaster, Pa: Jaques Cattell Press 1943
    Williams R. W. Plant homeobox genes: many functions stem from a common motif. Bio. Essays, 1998 (20): 280-282
    Winkler H. Uber die umwandlung des blattstieles zum atengel. Jb. Wissenschaft fur Botanik, 1908 (45): 81-82
    Wisniewska J., Xu J., Seifertova D., Brewer P. B., Ruzicka K., Blilou I.,Rouquie D., Bnekova E., Scheres B., and Friml J. Polar PIN localization direct auxin flow in plants. Science, 2006 (312): 883-885
    Wu B. H., Zheng Y. L., Liu D. C., Zhou Y. H., and Yan Z. H. Unisexual pistillate flower regeneration in immature embryo culture of wheat. Acta Bot. Sin., 2003 (45): 452-459
    Woodward A. W., and Bartel B. Anxin: regulation, action, and interaction. Annals Bot., 2004 (95): 707-735
    Woodward A. W., and Bartel B. A receptor for auxin. Plant Cell, 2005 (17): 2425-2429
    Wu X. Q., Li X. G., and Zhang X. S. Molecular analysis of hormone-regulated petal regeneration in Petunia. Plant Cell Rep., 2008 online Xu P., Vernooy S. Y., Guo M., and Hay B. A. The Drosophila microRNA MiR-14 suppresses cell death and is required for normal fat metalbolism. Curr Biol., 2003 (13): 790-795
    Xu H. Y., Li X. G., Li Q. Z., Bai S. N., Lu W. L., and Zhang X. S. Characterization of HoMADS1 and its induction by plant hormones during in vitro ovule development in Hyacinthus orientalis L. Plant Molecular Biology, 2004 (55): 209-220
    Young T. E., Giesler-Lee J., and Gallie D. R. Senescence-induced expression of cytokinin reverses pistil abortion during maize flower development. Plant J., 2004 (38): 910-922
    Yu H., Ito T., Zhao Y., Peng J., Kumar P., and Meyerowitz E. M. Floral homeotic genes are targets of gibberellin signaling in flower development. Proc. Natl. Acad. Sci. USA, 2004 101(20): 7827-7832
    Zhao Y., Christensen S. K., Fankhauser C., Cashman J. R., Cohen J. D., Weigel D., and Chory J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science, 2001 (291): 306-309
    Zuo J., Niu Q., and Chua N. H. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in plants. Plant J., 2000 (24): 265-273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700