黄酮类药物与生物大分子的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小分子与生物大分子的相互作用研究已经成为化学、生命科学及临床药理学的重要研究内容。DNA和蛋白质是生物体中重要的生物大分子。临床上使用的许多抗癌、抗病毒药物都是以DNA为作用靶点,研究药物与DNA的相互作用,有助于从分子水平上了解抗癌、抗病毒药物的作用机理,为设计临床上更为有效的抗癌、抗病毒药物提供理论指导。蛋白质是药物的一种非常重要的运输载体。药物与蛋白质的相互作用不仅影响药物在体内的分布,而且还影响药物在体内的代谢与排泄方式,研究药物与蛋白质的结合为药物分子结构与药效之间的关系提供了有利的信息。基于研究生物大分子与小分子相互作用的的重要意义,本文采用荧光光谱、紫外可见吸收光谱和圆二色普研究了白杨素与人血清白蛋白的相互作用和葛根素与溶菌酶和DNA的相互作用。
     本论文共分为四部分:
     第一章:介绍了药物小分子与生物大分子相互作用的研究方法及研究现状。
     第二章:利用光谱学方法研究了白杨素与人血清白蛋白的相互作用,荧光光谱和CD谱表明由于白杨素的结合HSA的构象发生了变化,由CD数据计算了白杨素不存在和存在时HSA中α-螺旋结构的含量。此外,计算了反应的结合常数、结合位点数、热力学参数以及白杨素在HSA上的结合位置与色氨酸残基间的距离。
     第三章:应用荧光光谱和圆二色谱研究了葛根素与溶菌酶的相互作用。计算了不同温度下药物与溶菌酶相互作用的结合常数和结合位点数,根据热力学参数确定了作用力类型,并分析了药物对溶菌酶二级结构的影响。
     第四章:本章研究了模拟生理条件下葛根素与DNA的相互作用。利用紫外可见吸收光谱、荧光偏振方法和CD方法确定了葛根素与DNA的结合模式,根据荧光数据计算了反应的结合常数和结合位点数。
The molecular interactions between molecule and biological molecular have become of an important research field in chemistry, life sciences and clinical medicine. DNA and proteins are key biological moleculars. DNA is the primary target molecular for most of anticancer and antivirus therapies. The investigation of the interaction of DNA with drugs is helpful to understand the mechanism by anticancer and antivirus medicines act and provide theoretical guidance for designing the effective drugs. Protein serves as a transport carrier for drugs, the binding of drugs with protein has a great influence not only upon the distribution of the drugs in the body but also upon their patterns of metabolism and excretion. The studies on this aspect may provide information of the structural features that determine the therapeutic effectiveness of drug. On the basis of the previous research, the fluorescence spectroscopy, UV-visible absorption spectroscopy and CD spectroscopy were used to investigate the interaction of drug with biological molecular.
     This paper consists of four sections as follows:
     Chapter 1: The methods and actuality about the research of the interaction between small molecular substances and biological molecular were summarized.
     Chapter 2: The binding of chrysin with HSA has been investigated by spectroscopy. The fluorescence and CD spectroscopy indicated that the conformation of HSA changed due to the binding of chrysin. Theα-helix contents of HSA in the absence and presence of chrysin were calculated by quantitative analysis of the CD spectra data. In addition, the binding constant, the number of binding sites, thermodynamic parameters and the distance between the binding location and tryptophan residue were calculated.
     Chapter 3: The interaction between puerarin and lysozyme has been studied using fluorescence and CD spectroscopy. The binding constant and the number of binding sites at three different temperature were calculated. The mainly intermolecular force induced by drugs binding was obtained according to the thermodynamic parameters. The effects of puerarin on Lysozyme secondary structure were investigated by CD spectroscopy.
     Chapter 4: This study was designed to examine the interaction between puerarin and DNA under simulated physiological conditions. The binding mode of puerarin and DNA was determined through UV-visible absorption spectroscopy, fluorescence polarization measurement and CD measurement. The binding constant and the number of binding sites were calculated from the data obtained from fluorescence experiments.
引文
[1]M.X.Xie,M.Long,Y.Liu,C.Qin,Y.D.Wang,Characterization of the interaction between human serum albumin and morin,Biochim.Biophys.Acta 1760(2006)1184-1191.
    [2]C.O.Anderson,J.F.M.Niesenl,H.W.Blancha,J.M.Prausnitza,Interactions of proteins in aqueous electrolyte solutions from fluorescence anisotropy and circular dichroism measurements,Biophys.Chem.84(2000)177-188.
    [3]P.B.Kandagal,S.Ashoka,J.Seetharamappa,V.Vani,S.M.T.Shaikh,Study of the interaction between doxepin and human serum albumin by spectroscopic methods,J.Photochem.Photobiol.A 179(2006)161-166.
    [4]Y.Li.W.Y.He,Y.M.Dong,F.L.Shen,Z.D.Hu,Human serum albumin interaction with fomononetin studied using fluorescence anisotropy,FT-IR spectroscopy,and molecular modeling methods,Bioorg.Med.Chem.14(2006)1431-1436.
    [5]J.M.B.Octaaf,L.M.V.Eugene,C.I.B.Janpual,J.E.F.Marcel,J.Wilting,H.M.J.Lambert,Location and characterization of the suramin binding sites of human serum albumin,Biochem.Pharmacol.40 91990)1595-1599.
    [6]F.Barbato,G.Martino,L.Grumetto,M.I.L.Rotonda,Retention of quinolones on human serum albumin and α_1-acid glycoprotein HPLC columns:Relationships with different scales of lipophilicity,Eur.J.Pharm.Sci.30(2007)211-219.
    [7]王学亮,孙伟,焦奎,测定人血清白蛋白的电化学研究及分析应用,分析测试学报,2005(6):106-109.
    [8]M.A.Martinez-Gomez,M.M.Carril-Aviles,S.Sagrado,R.M.Villanueva-Camanas,M.J.Medina-Hemandez,Characterization of antihistamine-human serum protein interactions by capillary electrophoresis,J.Chromatogr.A 1147(2007)261-269.
    [9]R.W.Sarver,H.Gao,F.Tian,Determining molecular binding sites on human serum albumin by displacement of oleic acid,Anal.Biochem.347(2005)297-302.
    [10]Z.Ji,H.Yuan,M.Liu,J.Hu,~1H-NMR study of the effect of acetonitrile on the interaction of ibuprofen with human serum albumin,J.Pharm.Biomed.Anal.30 (2002)151-159.
    [11]Y.Ma,M.Liu,X.Mao,J.K.Nicholson,J.C.Lindon,NMR spectroscopic diffusion,chemical shift and linewidth measurements of low-affinity binding of ibuprofen enantiomers to human serum albumin,Magn.Res.Chem.37(1999)269-273.
    [12]沈同,王镜岩,生物化学(第二版),北京,高等教育出版社,1990,347。
    [13]R.F.Pastemack,E.J.Gibbs,J.Villatmaca,Interactions of porphyrins with nucleic acids,J.Biochem.22(1983)2406-2414.
    [14]杨频,高飞,生物无机化学原理,科学出版社,北京 2002.
    [15]刘媛,谢孟峡,康娟,三七总皂对牛血清白蛋白溶液构象的影响,化学学报 61(2003)1305-1310.
    [16]迟燕华,庄稼,李娜,李克安,童沈阳,锌试剂与牛血清白蛋白作用机理的研究,高等学校化学学报 20(1999)1697-1702.
    [17]J.R.Lakowica,Principles of fluorescence spectroscopy,2~(nd)edition.Kluwer/Plenum,New York,1999.
    [18]陈国珍,荧光分析法,科学出版社,北京,1990.
    [19]S.S.Lehrer,Solute perturbation of protein fluorescence.Quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion,Biochemistry 10(1971)3254-3263.
    [20]J.N.Miller,Recent advances in molecular luminescence analysis,Anal.Proc.16(1979)203-209.
    [21]E.A.Brustein,N.S.Vedenkina,M.N.Irkova,Fluorescence and the location of tryptophan residues in protein molecules,Photochem.Photobiol.18(1973)263-279.
    [22]S.M.Twine,M.G.Gore,P.Morton,B.C.Fish,A.G.Lee,J.M.East,Mechanism of binding of warfarin enantiomers to recombinant domains of human albumin,Arch.Biochem.Biophy.414(2003)83-90.
    [23]张勇,张贵珠,王月梅,卢继新,光谱法研究丝裂霉素、血清白蛋白以及金属离子间的相互作用,分析科学学报,6(2000)445-449.
    [24]J.Bhattacharya,M.Bhattacharya,A.Chakraborty,U.Chowdhury,R.K.Podder,Interaction of chlorpromazine with mioglobin and haemoglobin.A comparative study, Biochem.Pharmacol.47(1994)2049-2052.
    [25]J.D.McGhee,P.H.Von Hippel,Theoretical aspects of DNA-protein interactions:Co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice,J.Mol.Biol.86(1974)469-489.
    [26]J.B.Chaires,N.Dattagupta,D.M.Crothers,Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid:equilibrium binding studies on the interaction of daunomycin with deoxyribonucleic acid,Biochemistry 21(1982)3933-3940.
    [27]S.Goya,A.Takadate,H.Fujino,M.Otagiri,K.Uekama,New fluorescence probes for drugs-albumin interaction studies,Chem.Pharm.Bull.30(1982)1363-1369.
    [28]徐岩,沈含熙,黄汉国,利用标记药物布洛芬及保秦松研究萘啶酸与血清白蛋白的结合作用,高等学校化学学报,17(1996)1855-1858.
    [29]F.L.Cui,J.Fan,Y.C.Fan,W.Li,Z.D.Hu,Fluorescence spectroscopy studies on 5-aminosalicylic acid and zinc 5-aminosalylicylate interaction with human serum albumin,J.Pharma.Biomed.Anal.34(2004)189-197.
    [30]J.N.Tian,J.Q.Liu,J.Y.Zhang,Z.D.Hu,X.G.Chen,Fluorescence studies on the interactions of barbaloin with bovine serum albumin,Chem.Pharm.Bull.51(2003)579-582.
    [31]张晓威,赵凤林,李克安,环丙沙星与牛血清白蛋白相互作用的研究,高等学校化学学报,7(1999)1063-1067.
    [32]聂丽华,赵惠春,王学斌,王旭,荧光法研究氟罗沙星与牛血清白蛋白的相互作用,北京师范大学学报(自然科学版),1(2001)87-91.
    [33]杨斌盛,杨频,稀土离子与人血清白蛋白的作用,生物化学与生物物理学报,5(1988)499-503.
    [34]P.D.Ross,S.Subramanian,Thermodynamic of protein association reactions:forces contributing to stability,Biochemistry,20(1981)3096-3102.
    [35]G.Lober,J.Luminescence,The fluorescence of dye-nucleic acid complexes,22(1981)221-265.
    [36]C.V.Kumar,E.H.Asuncion,DNA binding studies and site selective fluorescence sensitization of an anthryl probe, J. Am. Chem. Soc. 115 (1993) 8547-8553.
    
    [37] M. Gielen, H. Pan, In vitro effect of organotin-substituted steroids in human tumor cell lines, Inorg. Chim. Acta. 196 (1992) 115-117.
    
    [38] Z.X. Lu, T. Cui, Q.L. Shi, Applications of Circular Dichroism and Optical Rotatory Dispersion in Molecular Biology, 1st ed., Science Press, 1987, pp. 79-82.
    
    [39] V.I. Ivanov, L.E. Minchenkova, A.K. Schyolkina, A.I. Poletayer, Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism, Biopolymers 12 (1973) 89-110.
    [1] U. Kragh-Hansen, Molecular aspects of ligand binding to serum albumin, Pharmacol. Rev. 33 (1981) 17-53.
    
    [2] L.Z. Benet, D.L. Kroetz, L.B. Sheiner, Pharmacokinetics. The dynamics of drug absorption distribution and elimination, in: G.A. Goodman, R.H. Gilman (Eds), The pharmacological basis of therapeutics, ninth ed., McGraw-Hill, New York, 1996, pp. 3-27.
    
    [3] X.M. He, D.C. Carter, Atomic structure and chemistry of human serum albumin, Nature 358 (1992) 209-215.
    
    [4] A. Dugiaczyk, S.W. Law, O.E. Dennison, Nucleotide sequence and the encoded amino acids of human serum albumin mPNA, Proc. Natl. Acad. Sci. U.S.A. 79 (1982) 71-73.
    
    [5] G. Colmenarejo, In silico prediction of drug-binding strengths to human serum albumin, Med. Res. Rev. 23 (2003) 275-301.
    
    [6] H.R. Mohammed, M. Toru, O. Tomoko, Y. Keishi, O. masaki, Study of interaction of carprofen and its enantiomers with human serum albumin-1: Mechanism of binding studied by dialysis and spectroscopic methods, Biochem. Pharm. 46 (1993) 1721-1731.
    
    [7] T. Sakai, T. Akira, O. Masaki, Characterization of binding site of uremic toxins on human serum albumin, Biol. Pharm. Bull. 18 (1995) 1755-1761.
    
    [8] C. Jean-Marie, B. Jerome, U. Saik, H. Georges, T. Jean-Paul, Diclofenac binding to albumin and lipoproteins in human serum, Biochem. Pharm. 34 (1985) 1695-1700.
    
    [9] U. Kragh-Hansen, Molecular aspects of ligand binding to serum albumin, Pharmacol. Rev. 33 (1981) 17-22.
    
    [10] J. Kuhnau, The flavonoids. A class of semi-essential food components: their role in human nutrition, in: GH. Bourne (Ed.), World Rev. Nutr. Diet, S. Karger, Basel, Switzerland, 1976, pp.117-120.
    
    [11] E.J. Middleton, C. Kandaswami, T.C. Theoharides, The effects of plant flavonoid on mammalian cells: implications for inflammation, heart disease and cancer, Pharmacol Rev. 52 (2000) 673-751.
    [12] C.A. Rice-Evans, Flavonoid antioxidants, Curr. Med. Chem. 8 (2001) 797-807.
    [13] C.A. Williams, J.B. Harbome, M. Newman, J. Greenham, J. Eagles, Chrysin and other leaf exudates flavonoids in the genus Pelargonium, Phytochemistry 46 (1997) 1349-1353.
    
    [14] K.J. Woo, Y.J. Jeong, H. Inoue, J.W. Park, T.K. Kwon, Chrysin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression through the inhibition of nuclear factor for IL-6 (NF-IL6) DNA-binding activity, FEBS lett 579 (2005) 705-711.
    
    [15] A. Monasterio, M.C Urdaci, I.V. Pinchuk, N. Lopez-Moratalla, J.J. Martinez-Irujo, Flavonoids induce apoptosis in human leukemia U937 cells through caspase- and caspase-calpaindependent pathways, Nutr. Cancer 50 (2004) 90-100.
    [16] K.J. Woo, Y.J. Jeong, J.W. Park, T.K.Kwon, Chrysin-induced apoptosis is mediated through caspase activation and Aktinactivation in U937 leukemia cells, Biochem Biophys. Res. Commun. 325 (2004) 1215-1222.
    [17] L. Cipak, P. Rauko, E. Miadokova, I. L. Cipakova, Novotny. Effects of flavonoids on cisplatin-induced apoptosis of HL-60 and L1210 leukemia cells, Leuk. Res. 27 (2003) 65-72.
    [18] C.D. Kanakis, P.A. Tarantilis, M.G Polissiou, S. Diamantoglou, H.A. Tajmir-Riahi, Antioxidant flavonoids bind hunman serum albumin, J. Mol. Struct. 798 (2006) 69-74.
    [19] A. Sulkowska, Interaction of drugs with bovine and human serum albumin, J. Mol. Struct. 614 (2002) 227-232.
    [20] J.N. Miller, Recent advances in molecular luminescence analysis, Pro. Anal. Div. Chem. Soc. 16 (1979) 203-208.
    [21] J.Q. Liu, J.N. Tian, W.Y. He, J.P. Xie, Z.D. Hu, X.G. Chen, Spectrofluorimetric study of the binding of daphnetin to bovine serum albumin, J. Pharm. Biomed. Anal. 35(2004)671-677.
    [22] Z.X. Lu, T. Cui, Q.L. Shi, Applications of Circular Dichroism and Optical Rotatory Dispersion in Molecular Biology, 1st ed., Science Press, 1987, pp. 79-82.
    [23] M.R. Eftink, Fluorescence Quenching Reaction: Probing Biological Macromolecular Structures, Biophysical and Biochemical Aspects of Fluorescence Spectroscopy, Plenum Press, New York, 1991.
    
    [24] J.R. Lakowica, G. Weber, Quenching of fluorescence by oxygen, Probe for structural fluctuations in macromolecules, Biochemistry 12 (1973) 4161-4170.
    
    [25] J.N. Tian, J.Q. Liu, J.Y. Zhang, Z.D. Hu, X.G. Chen, Fluorescence studies on the interactions of barbaloin with bovine serum albumin, Chem. Pharm. Bull. 21 (2003) 579-582.
    
    [26] J.Q. Liu, J.N. Tian, J.Y. Zhang, Z.D. Hu, X.G. Chen, Interaction of magnolol with bovine serum albumin: a fluorescence quenching study, Anal. Bioanal. Chem. 376 (2003) 864-867.
    
    [27] J.N. Tian, J.Q. Liu, Z.D. Hu, X.G. Chen, Interaction of wogoninwith bovine serum albumin, Bioorg. Med. Chem. 13 (2005) 4124-4129.
    
    [28] P.D. Ross, S. Subramanian, Thermodynamics of protein association reactions: forces contributing to stability, Biochemistry 20 (1981) 3096-3102.
    
    [29] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd Ed., Plemum Press, New York, 1999, pp.13.
    
    [30] T. Forster, in: O. Sinanoglu(Ed.), Modern Quantum Chemistry, vol.3, Academic Press, New York, 1996.
    
    [31] L. Cyril, J.K. Earl, W.M. Sperry, Biochemists Handbook, E&FN Epon Led. Press, London, 1961,83.
    [1] Z.Guo, Q. Jin, G. Fan, Y. Duan, C. Qin, M. Wen, Microwave-assisted extraction of effective constituents from a Chinese herbal medicine Radix puerariae, Anal. Chim. Acta. 436 (2001)41-47.
    
    [2] F.L. Xiong, X.H. Sun, L. Gan, X.L. Yang, H.B. Xu, Puerarin protects rat pancreatic islets from damage by hydrogen peroxide, Eur. J. Pharmacol. 529 (2006) 1-7.
    
    [3] B. Jiang, J.H. Liu, Y.M. Bao, L.J. An, Hydrogen peroxide-induced apoptosis inpc 12 cells and the protective effect of puerarin, Cell Biol. Int. 27 (2003) 1025-1031.
    
    [4] X.H. Xu, Effects of puerarin on fatty superoxide in aged mice induced by D-galactose, Zhongguo Zhong Yao Za Zhi, 28 (2003) 66-69.
    
    [5] E. Benlhabib, J.I. Baker, D.E. Keyler, A.K. Singh, Effect of purified puerarin on voluntary alcohol intake and alcohol withdrawal symptoms in P rats receiving free access to water and alcohol, J. Med. Food, 7 (2004) 180-186.
    
    [6] L. Ding, Y. Yang, S. Han, Puerarin injection for perfusion for treating heart disease, CN1249178.
    
    
    
    [7] R.Q. Xie, J. Du, Y.M. Hao, Myocardial protection and mechanism of puerarin injection on patients of coronary heart disease with ischemia/reperfusion, Zhongguo Zhong-Xiyi Jiehe Zazhi, 23 (2003) 895-897.
    
    [8] Q. Wang, T. Wu, X. Chen, J. Ni, X. Duan, J. Zheng, J. Qiao, L. Zhou, J. Wei, Puerarin injection for unstable angina pectoris, Cochrane Database Syst. Rev. 3 (2006) CD004196.
    
    [9] C.C.F. Blake, D.F. Koenig, G.A. Mair, A.C.T.North, D.C. Philips, V.R. Sarma, Structure of hen eggwhite lysozyme, Nature 206 (1965) 757-761.
    
    [10] Z.Y. Gu, X.N. Zhu, S.W. Ni, Z.G Su, H.M. Zhou, Conformational changes of lysozyme refolding intermediates and implications for aggregation and renaturation, Int. J. Biochem. Cell. B 36 (2004) 795-805.
    
    [11] T. Croguennec, F. Nau, D. Molle, Y.L. Gract, G. Brule, Iron and Citrate interactions with hen egg white lysozyme, Food Chem. 68 (2000) 29-35.
    
    [12] S. Deepa, A.K. Mishra, Fluorescence spectroscopic study of serum albumin-bromadiolone interaction: fluorimetric determination of bromadiolone, J. Pharm. Biomed. Anal. 38 (2005) 556-563
    
    [13] T.G Dewey(Eds.), Biophysical and Biochemical Aspects of Fluorescence Spectroscopy, Plenum Press, New York, 1991, pp. 1-41.
    
    [14] C.Q. Jiang, T. Wang, Study of the interactions between tetracycline analogues and lysozyme, Bioorg. Med. Chem. 12 (2004) 2043-2047.
    
    [15] J.R. Lakowica, G. Weber, Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules, Biochemistry 12 (1973) 4161-41 70.
    
    [16]W.R. Ware, Oxygen quenching of fluorescence in solution: An experimental study of the diffusion process, J. Phys. Chem. 66 (1962) 455-458.
    
    [17] Y.J. Hu, Y. Liu, J.B. Wang, X.H. Xiao, S.S. Qu, Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin, J. Pharm. Biomed. Anal. 36(2004)915-919.
    
    [18] S.M.T. Shaikh, J. Seetharamappa, S. Ashoka, P.B. Kandagal, A study of the interaction between bromopyrogallol red and bovine serum albumin by spectroscopic methods, Dyes and Pigments 73 (2007) 211-216.
    
    [19] Y.L. Wei, J.Q. Li, C. Dong, S. Shuang, D.S. Liu, C.W. Huie, Investigation of the association behaviors between biliverdin and bovine serum albumin by fluorescence spectroscopy, Talanta 70 (2006) 377-382.
    
    [20] W.C. Abert, W.M. Gregory, G.S. Allan, The binding interaction of Coomassie blue with proteins, Anal. Biochem. 213 (1993) 407-413.
    
    [21] B. Klajnert, M. Bryszewska, Fluorescence studies on PAMAM dendrimers interactions with bovine serum albumin, Bioelectrochemistry 55 (2002) 33-35.
    
    [22] D.P. Ross, S. Subramanian, Thermodynamics of Protein association reaction: forces contributing to stability, Biochemistry 20 (1981) 3096-3102.
    
    [23] L. Stryer, Fluorescence energy transfer as a spectroscopic ruler, Annu. Rev. Biochem. 47 (1978) 819-846.
    
    [24] J. Eisinger, B. Feuer, A.A. Lamola, Intramolecular singlet excitation transfer. Applications to polypeptides, Biochemistry 8 (1969) 3908-3915.
    
    [25] L. Stryer, R.P. Haugland, Energy transfer: a spectroscopic ruler, Pro. Natl. Acad. Sci. U.S.A. 58(1967)719-726.
    
    [26] I.Z. Steinberg, Longrange nonradiative transfer of electronic excitation energy in proteins and polypeptides, Annu. Rev. Biochem. 40 (1971) 83-114.
    
    [27] W.Y. He, Y. Li, H.Z. Si, Y.M. Dong, F.L. Sheng, X.I. Yao, Z.D. Hu, Molecular modeling and spectroscopic studies on the binding of guaiacol to human serum albumin, J. Photochem. Photobiol. A182 (2006) 158-167.
    
    [28] N. Greenfield, G.D. Fasman, Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry 8 (1969) 4108-4116.
    
    [29] I.Staprans, S. Watanabe, Optical properties of troponin, tropomyosin, and relaxing protein of rabbit skeletal muscle, J. Biol. Chem. 245 (1970) 5962-5966.
    [1] R. Langer, Drugs on target, Science 293 (2001) 58-59.
    
    [2] M.P. Singh, T. Joseph, S. Kumar, J.W. Lown, Synthesis and sequence-specific DNA binding of a topoisomerase inhibitory analog of Hoechst 33258 designed for altered base and sequence recognition, Chem. Res. Toxicol. 5 (1992) 597-607.
    
    [3] S.O. Kelley, G. Orellana, J.K. Barton, Luminescence quenching by DNA-bound viologens: effect of reactant identity on efficiency and dynamics of electron transfer in DNA, J. Photochem. Photobiol. B 58 (2000) 72-79.
    
    [4] D.L. Banville, L.G. Marzilli, J.A. Strickland, W.D. Wilson, Comparison of the effects of cationic porphyrins on DNA properties: influence of GC content of native and synthetic polymer, Biopolymers 25 (1986) 1837-1858.
    
    [5] J.A. Strickland, D.L. Banville, W.D. Wilson, L.G. Marzilli, Metalloporphyrin effects on properties of DNA polymers, Inorg. Chem. 26 (1987) 3398-3406.
    
    [6] N.E. Mukundan, G. Petho, D.W. Dixon, M.S. Kim, L.G. Marzilli, Interaction of an electron-rich tetracationic tentacle porphyrin with calf thymus DNA, Inorg. Chem. 33 (1994) 4676-4687.
    
    [7] B. Armitage, Photocleavage of nuclein acids, Chem. Rev. 98 (1998) 1171-1200.
    
    [8] K.E. Erkkila, D.T. Odom, J.K. Barton, Recognition and reaction of metallo-intercalators with DNA, Chem. Rev. 99 (1999) 2777-2795.
    
    [9] R.Y. Zahng, D.W. Pang, R.X. Cai, Interactions between DNA and DNA-targeting molecules, Chem. J. Chin. Univ. 20 (1999) 1210-1217.
    
    [10] P. Gamache, E. Ryan, I.N. Acworth, Analysis of phenolic and Flavonoid compounds in juice beverages using high performance liquid chromatography with coulometric array detection, J. Chromatogr, 635 (1993) 143-150.
    
    [11] L. Coward, N.Barnes, K. Setchell, S. Barnes, Genistein, daidzein, and their β-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets, J. Agric. Food Chem. 41 (1993) 1961-1967.
    
    [12] S.W. Lamson, M.S. Brignall, Antioxidants and cancerIII: Quercetin, Alt. Med. Rev. 5 (2000) 196-208.
    
    [13] Pharmacopoeia of the People's Republic of China, vol. 1, Chemical Industry Press, Beijing, 2000, pp. 273.
    [14] M.E. Xu, S.Z. Xiao, Y.H. Sun, X.X. Zheng, Y. Ou-yang, C. Guan, The study of anti-metabolic syndrome effect of puerarin in vitro, Life Sci. 77 (2005) 3183-3196.
    [15] W.L. Yu, Y.P. Zhao, B. Shu, The radical scavenging activities of radix puerariae isoflavonoids: A chemiluminescence study, Food Chem. 86 (2004) 525-529.
    [16] S.M. Boue, T.E. Wiese, S. Nehls, M.E. Burow, S. Elliott, C.H. Carter-Wientjies, et al. Evaluation of the estrogenic effects of legume extracts containing phytoestrogens, J. Agric. Food Chem. 51 (2003) 2193-2199.
    [17] J.B. Chaires, Analysis and interpretation of ligand-DNA binding isotherms, Methods Enzymol. 340 (2001) 3-23.
    [18] H.X. Sun, Y.L. Tang, J.F. Xiang, G.Z. Xu, Y.Z. Zhang, Spectroscopic studies of the interaction between quercetin and G-quadruplex DNA, Bioorg. Med. Chem. Lett. 16(2006)3586-3589.
    [19] F. Rosu, N. Chi-Hung, E. De Pauw, V. Gabelica, Ligand binding mode to duplex and triplex DNA assessed by combining electrospray tandem mass spectrometry and molecular modeling, J.Am. Soc. Mass Spectrom, 18 (2007) 1052-1062. [20] J.B. Chaires, Structural selectivity of drug-nuclein acid interactions probed by competition dialysis. DNA binders and related subjects, Topics Curr. Chem. 253 (2005)33-53.
    [21] J.B. Chaires, Competition dialysis: An assay to measure the structural selectivity of drug-nuclein acid interactions, Curr. Med. Chem. Anticancer Agents 5 (2005) 339-352.
    [22] E. Freire, O.L. Mayorge, M. Straume, Isothermal titration calorimetry, Anal. Chem.950(1990)A-959A.
    [23] K.J. Breslauer, E. Freire, M. Straume, Calorimetry: A tool for DNA and ligand-DNA studies, Methods Enzymol. 211 (1992) 533-567. [24] J. Marmur, A procedure for the isolation of deoxyribonuclein acid from micro-organisms, J. Mol. Biol. 3 (1961) 208-218.
    [25] A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro, J.K. Barton, Mixed-ligand complexes of ruthenium (II): factors governing binding to DNA. J. Am. Chem. Soc. 111 (1989) 3051-3058.
    
    [26] T.L. Netzel, K. Nafisi, M. Zhao, J.R. Lenhard, I. Yohnson, Base-content dependence of emission enhancements, quantum yields, and lifetimes for cyanine dyes bound to double-strand DNA: potophysical properties of monomeric and bichromomphoric DNA stains, J. Phys. Chem. 99 (1995) 17936-17947.
    
    [27] C.V. Kumar, E.H. Asuncion, DNA binding studies and site selective fluorescence sensitization of an anthryl probe, J. Am. Chem. Soc. 115 (1993) 8547-8553.
    
    [28] X. Jiang, L. Shang, Z. Wang, S. Dong, Spectrometric and voltammetric investigation of interaction of neutral red with calf thymus DNA: pH effect, Biophys. Chem. 118(2005)42-50.
    
    [29] RU. Maheswai, M. Palaniandavar, DNA binding and cleavage properties of certain tetrammine ruthenium( II) complexes of modified 1,10-phenanthrolines - effect of hydrogen-bonding on DNA-binding affinity, J. Inorg. Biochem. 98 (2004) 219-230.
    
    [30] Z.H. Xu, F.J. Chen, P.X. Xi, X.H. Liu, Z.Z. Zeng, Synthesis, characterization, and DNA-binding properties of the cobalt(II) and nickel(II) complexes with salicylaldehyde 2-phenylquinoline-4-carboylhydrazone, J. Photochem. Photobiol. A: Chemistry 196 (2008) 77-83.
    
    [31] V.I. Ivanov, L.E. Minchenkova. A.K. Schyolkina, A.I. Poletayer, Different conformation of double-stranded nucleic acid in solution as revealed by circular dichroism, Biopolymers 12 (1973) 89-110.
    
    [32] J.D. McGhee, P.H. Von Hippel, Theoretical aspects of DNA-protein interactions: Co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice, J. Mol. Biol. 86 (1974) 469-489.
    
    [33] J.B. Chaires, N. Dattagupta, D.M. Crothers, Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid: equilibrium binding studies on the interaction of daunomycin with deoxyribonucleic acid, Biochemistry 21 (1982) 3933-3940.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700