超高速光通信系统关键技术研究及其系统实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着网络技术和信息技术的飞速发展,宽带网络逐渐普及;各种占用大量网络资源的新型网络应用不断涌现,使得因特网网络流量几乎每两年翻一番。现有的光通信网络受制于电子器件“电子瓶颈”的限制,单波长传输速率商用最高可达40GBit/s。为了提高传输网络传输能力和核心节点信息处理能力,必须开展新型的超高速光通信网络研究。本论文针对超高速全光网络中的关键技术以及影响网络性能的关键问题进行了研究,研究内容包括超短光脉冲产生、全光波长变换、超高速全光OTDM系统复用/解复用,以及光交换网络结构等。
     具体研究成果与创新如下:
     1、首次在线性腔主动锁模光纤激光器线性腔内内采用半导体光放大器(SOA)作为增益介质和锁模器件,实现了基于半导体光放大器的线性腔主动锁模光纤激光器。该线性腔锁模光纤激光器谐振腔内无波长选择器件,腔型结构简单,输出锁模脉冲性能稳定。实验中实现了重复频率为10GHz,脉冲宽度为6.8ps的脉冲输出,输出脉冲的时域抖动为60fs。谐振腔腔长短,输出光脉冲性能稳定。通过调节外部注入脉冲,输出的锁模脉冲能够宽波长调节范围(1528nm-1565nm)、宽重复率范围(3GHz-10GHz)内进行调节。
     2、利用外部注入脉冲同向注入到锁模激光器环型腔,实现了重复频率为10GHz,脉冲宽度为6ps的直接脉冲输出。该锁模激光器输出脉冲能够实现中心波长1530nm到1565nm可调,重复频率从1GHz到15Ghz可调。从实验测试方面,详细分析了锁模激光器环型腔内部参数,以及外部注入光参数对于该主动锁模光纤激光器输出脉冲的影响。基于该环型腔,对外部脉冲进行时域复制,实现了重复频率为40GHz的主动锁模光纤激光器。
     3、利用SOA内交叉增益调制和交叉相位调制效应,实现了速率为80Gbit/s极性保持的全光波长变换器。该波长变换器能够实现宽范围的波长变换,固定信号光中心波长为1550nm,实现了1530nm到1548nm可调范围的波长下变换以及1555nm到1565nm可调范围的波长上变换。变换输出信号与输入信号极性相同,对于输入信号的偏振态不敏感。为了优化该波长变换器的波长变换效果,分析了波长变换输出性能与滤波器相对探索光中心波长的偏移之间的关系,以及输入信号功率对于波长变换效率的影响。
     4、基于SOA的四波混频效应,利用单只SOA实现了80Gbit/s到10Gbit/s全光解压缩实验。通过测试,该解压缩系统可以无误码运行,在系统误码率为10~(-9)时,系统的功率代价最高为3.5dB。通过误码测试系统,分析了该解压缩系统输入信号光功率对于系统误码性能的影响。通过对接收信号功率进行优化,能够提高该系统的性能。
     5、利用维持-阻塞D触发器首次实现了40Gbit/s到10Gbit/s的解压缩实验。该解压缩方案性能稳定,解压缩各路信号误码性能一致。该解压缩方案在对信号解压缩的同时能够实现对归零码(RZ)到非归零码(NRZ)的变换。
     6、基于高速的全光波长变换器以及全光压缩/解压缩系统关键技术,搭建了一套三节点,速率为80Gbit/s的基于波长地址的超高速全光交换网络实验演示系统。该全光交换网络结合了超高速OTDM系统的大容量传输特性以及全光线路交换的透明传输特性,能够实现超高速的全光交换。
With the rapid developments of the internet technology and information technology, the broadband networks become widespread in the world. A variety of new emerging network applications occupy a large number of network bandwidth, making Internet traffic doubling almost every two years. Due to the limits of "electronic bottleneck" of the used electronic device in existing optical communications networks, the highest commercial single-wavelength transmission rate is limited up to 40GBit / s. In order to improve the transmission capacity of transmission and information processing capability of core network nodes, new types of ultra-high-speed optical communication network should be studied extensively. This dissertation focuses on investigations of key technologies and issues in ultrahigh-speed photonics networks, included ultra-short-pulse generation technology, all optical wavelength conversion, ultra-fast multiplexing/demultiplexing systems and all optical switching network structures. The research work and results are summarized as follows:
     1. A linear cavity actively mode-locked fiber laser is demonstrated with a semiconductor optical amplifier (SOA) employing in the cavity. Without wavelength selective device in the cavity, the demonstrated mode-locked laser shows a very simple cavity configuration. A pulse train with pulsewidth about 6.8ps in a wide wavelength tunable span (1528 nm to 1565 nm) and a wide repetition tunable span (3 GHz to 10 GHz) is achieved successfully. The generated pulses show a low timing jitter about 60 fs.
     2. By injecting an external pulse forwardly into a ring cavity, an actively mode-locked fiber ring laser is demonstrated. Without any extral pulse compression, a pulse train with pulsewidth about 6ps is achieved with low timing jitter about 70fs. The mode-locked fiber laser presents a wide wavelength tunable span (1530nm-1565nm) and a wide repetition tunable span (1 GHz-15 GHz). A detailed experimentally research is done to investigate the relationship between the pulsewidth of generated pulse trains with the parameters of cavity and external pulse sequence.
     3. 80 Gbit/s error-free polarity-preserved wavelength conversion was achieved by implementing cross gain modulation (XGM)/cross phase modulation (XPM) in an SOA in conjunction with shifted filtering. In contrast to other wavelength conversion schemes, the technique presented is advantageous in that the polarity of the output signal is preserved, the scheme exhibits polarization independence, and the set-up has a very simple configuration. In order to improve the performance of wavelength conversion, we analyze the impact of the shift between the wavelength of probe light and the central wavelength of OBPF.
     4. Base on the four-wave mixing effect in SOA, all-optical demultiplexing from 80Gbit/s to 10Gbit/s is achieved with a single SOA. The demultiplexing system can operate without bit error. For a 10~(-9) bit error rate, the maximum power penalty is 3.5dB. In addition, an experimental analysis is done for the impact of input power of signal light on the bit error performance of the demultiplexing system.
     5. A new de-multiplexing scheme is proposed with a high-speed remain-block D flip-flop. This scheme shows a lot of advantages, such as signal regeneration, RZ-NRZ conversion, and stable operation. With this new scheme, a 10Gbit/s signal is de-multiplexed from a 40Gbit/s signal successfully.
     6. By combining the transparency of optical circuit switching networks and the large transmission capacity of optical time division multiplexing (OTDM) networks, an 80Gbit/s wavelength-routed all-optical switching networks is demonstrated based on high performance all-optical wavelength converter.
引文
[1]Govind P.Agrawal,Fiber-Optic communication systems,清华大学出版社,2004.
    [2]中国互联网信息中心(CNNIC),“第22次中国互联网发展状况统计报告.”
    [3]B.Whitman,"Fibre Access Deployment Worldwide:Market Drivers,Politics and Technology Choices," Proceedings of ECOC,2004,pp.6-9.
    [4]S.L.Jansen,R.H.Derksen,C.Schubert,X.Zhou,M.Birk,C.J.Weiske,M.Bohn,D.van den Borne,P.M.Krummrich,and M.Moller,"107-Gb/s full-ETDM transmission over field installed fiber using vestigial sideband modulation,"Optical Fiber Communication and the National Fiber Optic Engineers Conference,2007,pp.1-3.
    [5]P.Winzer,G.Raybon,and M.Duelk,"107-Gb/s optical ETDM transmitter for 100G Ethernet transport," European Conference on Optical Communication,ECOC 2005.31st,pp.1-2 vol.6.
    [6]M.Nakazawa,T.Yamamoto,and K.Tamura,"1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator," Electronics Letters,vol.36,2000,pp.2027-2029.
    [7]Y.Su,L.Moller,R.Ryf,Chongjin Xie,and Xiang Liu,"Feasibility study of 0.8-b/s/Hz spectral efficiency at 160 Gb/s using phase-correlated RZ signals with vestigial sideband filtering," Photonics Technology Letters,IEEE,vol.16,2004,pp.1388-1390.
    [8]T.Ono,Y.Yano,K.Fukuchi,T.Ito,H.Yamazaki,M.Yamaguchi,and K.Emura,"Characteristics of Optical Duobinary Signals in Terabit/s Capacity,High-Spectral Efficiency WDM Systems," Journal of Lightwave Technology,vol.16,May.1998,pp.788.
    [9]M.Duelk,"Next-generation 100 G Ethernet," European Conference on Optical Communication,ECOC 2005.31st,vol.5.pp.15-18
    [10]G.Raybon and P.J.Winzer,"100 Gb/s Challenges and Solutions," Optical Fiber communication/National Fiber Optic Engineers Conference,2008.OFC/NFOEC 2008.pp.1-35.
    [11]W.S.Lee,"80+ GBit/s ETDM systems implementation:an overview of current technologies," Optical Fiber Communication Conference,2006 and the 2006National Fiber Optic Engineers Conference.2006,pp.3.
    [12]C.Doerr,P.Winzer,G.Raybon,L.Buhl,M.Cappuzzo,A.Wong-Foy,E.Chen,L.Gomez,and M.Duelk,"A single-chip optical equalizer enabling 107-Gb/s optical non-return-to-zero signal generation," European Conference on,Optical Communication,2005,pp.13-14 vol.6.
    [13]A.Umbach,G.Unterborsch,H.G.Bach,C.Schubert,R.H.Derksen,and J.H.Sinsky,"Photoreceivers for 100 Gbit/s Applications," 2007 Digest of the IEEE/LEOS Summer Topical Meetings,,2007,pp.258-259.
    [14]E.Lach,K.Schuh,B.Junginger,G.Veith,J.Lutz,and M.Moller,"Challenges for 100 Gbit/s ETDM Transmission and Implementation," Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference,OFC/NFOEC 2007.,pp.1-3.
    [15]U.Feiste,R.Ludwig,C.Schubert,J.Berger,C.Schmidt,H.G.Weber,B.Schmauss,A.Munk,B.Buchold,and D.Briggmann,"160 Gbit/s transmission over 116 km field-installed fibre using 160Gbit/s OTDM and 40 Gbit/s ETDM,"Electronics Letters,vol.37,2001,pp.443-445.
    [16]Y.Zhu,W.S.Lee,C.Scahill,D.Watley,C.Fludger,P.Bontemps,M.Jones,G. Pettitt,B.Shaw,and A.Hadjifotiou,"16-channel 40 Gb/s carrier-suppressed RZ ETDM/DWDM transmission over 720 km NDSF without polarisation channel interleaving," Optical Fiber Communication Conference and Exhibit,OFC 2001,
    [17]E.Lach,M.Schmidt,K.Schuh,B.Junginger,and G.Veith,"Advanced 160Gbit/s OTDM system based on wavelength transparent 4/spl times/40 Gbit/s ETDM transmitters and receivers," Optical Fiber Communication Conference and Exhibit,OFC 2002,pp.2-4.
    [18]张杰,徐云斌,宋鸿升,桂姮,顾畹仪,“自动交换光网络ASON,”自动变换光网络ASON,人民邮电出版社,.
    [19]J.Hecht,,"OTDM promises higher communications speeds using optical processors," Laser Focus World,pp.121-124.
    [20]S.Kawanishi,H.Takara,T.Morioka,O.Kamatani,K.Takiguchi,T.Kitoh,and M.Saruwatari,"Single channel 400 Gbit/s time-division-multiplexed transmission of 0.98 ps pulses over 40 km employing dispersion slope compensation," Electronics Letters,vol.32,1996,pp.916-918.
    [21]T.Yamamoto,E.Yoshida,K.Tamura,K.Yonenaga,and M.Nakazawa,"640-Gbit/s optical TDM transmission over 92 km through a dispersion-managed fiber consisting of single-mode fiber and "reverse dispersion fiber"," Photonics Technology Letters,IEEE,vol.12,2000,pp.353-355.
    [22]X.-C.Zhang,G.R.Hulse,and R.K.Jain,"Two-Dimensional,High-Speed Optical Time Division Multiplexing Processor," Paten Disclosure,1987.
    [23]R.Tucker,G.Eisenstein,and S.Korotky,"Optical time-division multiplexing for very high bit-rate transmission," Journal of Lightwave Technology,vol.6,1988,pp.1737-1749.
    [24]S.Kawanishi,T.Morioka,O.Kamatani,H.Takara,and M.Saruwatari,"100Gbit/s,200 km optical transmission experiment using extremely low jitter PLL timing extraction and all-optical demultiplexing based on polarisation insensitive four-wave mixing," Electronics Letters,vol.30,1994,pp.800-801.
    [25]S.Kawanishi,H.Takara,T.Morioka,O.Kamatani,and M.Saruwatari,"200Gbit/s,100 km time-division-multiplexed optical transmission using supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexing," Electronics Letters,vol.31,1995,pp.816-817.
    [26]H.Weber,S.Ferber,M.Kroh,C.Schmidt-Langhorst,R.Ludwig,V.Marembert,C.Boerner,F.Futami,S.Watanabe,and C.Schubert,"Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission," European Conference on Optical Communication,ECOC 2005.,pp.3-4 vol.6.
    [27]H.Takara,"High-speed optical time-division-multiplexed signal generation,"Optical and Quantum Electronics,vol.33,Jul.2001,pp.795-810.
    [28]T.Ohara,H.Takara,I.Shake,K.Mori,S.Kawanishi,S.Mino,T.Yamada,M.Ishii,T.Kitoh,T.Kitagawa,K.R.Parameswaran,and M.M.Fejer,"160-Gb/s optical-time-division multiplexing with PPLN hybrid integrated planar lightwave circuit," Photonics Technology Letters,IEEE,vol.15,2003,pp.302-304.
    [29]E.Tangdiongga,Y.Liu,H.de Waardt,G.D.Khoe,and H.J.S.Dorren,"320-to-40-gb/s demultiplexing using a single SOA assisted by an optical filter,"Photonics Technology Letters,IEEE,vol.18,2006,pp.908-910.
    [30]R.Leppla,S.Vorbeck,M.Schneiders,W.Weiershausen,M.Schmidt,M.Witte,F.Buchali,E.Lach,E.Le Rouzic,S.Salaiin,S.Papernyi,and K.Sanapi,"Field trials with channel bit rates of 160 Gbit/s," Optical Fiber Communication Conference,2006 and the 2006 National Fiber Optic Engineers Conference.OFC 2006,2006,p.3 pp.
    [31]J.Iness and B.Mukherjee,"Sparse Wavelength Conversion in Wavelength-Routed WDM Optical Networks*," Photonic Network Communications,vol.1,Nov.1999,pp.183-205.
    [32]D.Bishop,C.Giles,and G.Austin,"The Lucent LambdaRouter:MEMS technology of the future here today," Communications Magazine,IEEE,vol.40,2002,pp.75-79.
    [33]J.M.Yates,M.P.Rumsewicz,and J.Lacey,"Wavelength converters in dynamically-reconfigurable WDM networks," IEEE Communications Surveys, vol.2,1999.
    [34]L.W.Chen and E.Modiano,"Efficient routing and wavelength assignment for reconfigurable WDM ring networks with wavelength converters," IEEE/ACM Transactions on Networking(TON),vol.13,2005,pp.173-186.
    [35]Xueli Hou and H.Mouftah,"Design of wavelength-convertible optical switches for the all-optical next-generation Internet," IEEE Workshop on High Performance Switching and Routing,2001,pp.97-101.
    [36]简水生,“新一代、高度安全、超大容量、无阻塞全光网是信息社会的基础,”光通信,vol.12,2003,pp.15-21.
    [37]秦曦,“高速光纤传输系统及新型光路交换网的研究,”北京交通大学,2008.
    [38]P.Baran,"The beginnings of packet switching:some underlying concepts,"Communications Magazine,IEEE,vol.40,2002,pp.42-48.
    [39]D.W.Davies,"An Historical Study of the Beginnings of Packet Switching,"British Computer Society,Mar.2001.
    [40]M.J.O'Mahony,D.Simeonidou,D.K.Hunter,and A.Tzanakaki,"The application of optical packet switching in future communicationnetworks," IEEE Communications Magazine,vol.39,2001,pp.128-135.
    [41]A.Shacham,B.A.Small,O.Liboiron-Ladouceur,and K.Bergman,"A Fully Implemented 12 * 12 Data Vortex Optical Packet Switching Interconnection Network," Journal of Lightwave Technology,vol.23,Oct.2005,p.3066.
    [42]B.Small,O.Liboiron-Ladouceur,A.Shacham,J.Mack,and K.Bergman,"Demonstration of a complete 12-port Terabit capacity optical packet switching fabric," Optical Fiber Communication Conference,2005.Technical Digest.p.3pp.Vol.3.
    [43]Y.Chen,C.Qiao,and X.Yu,"Optical burst switching:A new area in optical networking research," IEEE network,vol.18,2004,pp.16-23.
    [44]M.Maier and M.Reisslein,"Trends in Optical Switching Techniques:A Short Survey," IEEE Network,vol.22,2008,pp.42-47.
    [45]C.Qiao,Labeled optical burst switching for IP-over-WDM integration,Google Patents,2001.
    [46]M.Duser and P.Bayvel,"Analysis of a dynamically wavelength-routed optical burst switched network architecture," Journal of Lightwave Technology,vol.20,2002,pp.574-585.
    [47]M.Duser and P.Bayvel,"Performance of a dynamically wavelength-routed optical burst switched network," Photonics Technology Letters,IEEE,vol.14,2002,pp.239-241.
    [48]Hongxiang Guo,Zhou Lan,Jian Wu,Zehua Gao,Xuanfei Li,Jintong Lin,and Yuefeng Ji,"A testbed for optical burst switching network," Optical Fiber Communication Conference,OFC/NFOEC,2005,p.3 pp.Vol.6.
    [1]M.J.Connelly,"Semiconductor Optical Amplifiers," Kluwer Academic Press,2002,pp.97-165.
    [2]G.Zeidler and D.Schicetanz,"Use of laser amplifiers in glass fibre communication systems," Siemens Forch.u.Entwickl.Bet.,vol.2,pp.227-234,1973.
    [3]S.D.Personick,"Applications for quantum amplifiers in simple digital optical communication systems," Bell System Technical Journal vol.52,pp.117-133,1973.
    [4]J.Simon,"GaInAsP semiconductor laser amplifiers for single-mode fiber communications," Journal of Lightwave Technology,vol.5,pp.1286-1295,1987.
    [5]M.J.O'Mahony,"Semiconductor laser optical amplifiers for use in future fiber systems," Journal of Lightwave Technology,vol.6,pp.531-544,1988.
    [6]P.J.A.Thijs,L.F.Tiemeijer,P.I.Kuindersma,J.J.M.Binsma,and T.Van Dongen,"High-performance 1.5 μm wavelength InGaAs-InGaAsP strained quantum well lasers and amplifiers," IEEE Journal of Quantum Electronics,vol.27,pp.1426-1439,1991.
    [7]N.Holonyak,R.Kolbas,R.Dupuis,and P.Dapkus,"Quantum-well heterostructure lasers," IEEE Journal of Quantum Electronics,vol.16,pp.170-186,1980.
    [8]D.Bimberg and C.Ribbat,"Quantum dots:lasers and amplifiers,"Microelectronics Journal,vol.34,pp.323-328,2003.
    [9]D.C.Hutchings,M.Sheik-Bahae,D.J.Hagan,and E.W.Van Stryland,"Kramers-Kr(o|¨)nig relations in nonlinear optics," Optical and Quantum Electronics,vol.24,pp.1-30,1992.
    [10]M.Willatzen,A.Uskov,J.Mork,H.Olesen,B.Tromborg,and A.P.Jauho,"Nonlinear gain suppression in semiconductor lasers due to carrier heating,"Photonics Technology Letters,IEEE,vol.3,pp.606-609,1991.
    [11] A. Uskov, J. Mork, and J. Mark, "Theory of short-pulse gain saturation in semiconductor laser amplifiers," Photonics Technology Letters, IEEE, vol. 4, pp. 443-446, 1992.
    [12] P. Borri, J. Mork, J. M. Hvam, and A. Mecozzi, "Measurement and Calculation of the Critical Pulsewidth for Gain Saturation in Semiconductor Optical Amplifiers," in Lasers and Electro-Optics Europe, 1998 CLEO/Europe.p. 100.
    [13] D. Marcuse, "Computer model of an injection laser amplifier," IEEE Journal of Quantum Electronics, vol. 19, pp. 63-73,1983.
    [14] N. Hamada, R. Sauerbrey, and F. K. Tittel, "Analytical model for injection-controlled excimer laser amplifiers," IEEE Journal of Quantum Electronics, vol. 24, pp. 2458-2466,1988.
    [15] A. J. Lowery, "Amplified spontaneous emission in semiconductor laser amplifiers: validity of the transmission-line laser model," Optoelectronics, IEE Proceedings J, vol. 137, pp. 241-247, 1990.
    [16] L. Gillner, "Comparative study of some travelling-wave semiconductor laser amplifier models," Optoelectronics, IEE Proceedings J, vol. 139, pp. 339-347, 1992.
    [17] S. Ruiz-Moreno and J. Guitart, "Practical method for modelling the nonlinear behaviour of a travelling wave semiconductor optical amplifier," Optoelectronics, IEE Proceedings J, vol. 140, pp. 39-43, 1993.
    [18] M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE Journal of Quantum Electronics, vol. 37, pp. 439-447, 2001.
    [19] M. J. Connelly, "Wideband steady-state numerical model of a tensile-strained bulk semiconductor optical amplifier," Optical and Quantum Electronics, vol. 38,pp. 1061-1068,2006.
    [20] R. P. Vivacqua, C. M. Gallep, and E. Conforti, "An Algorithm for the Parameters Extraction of a Semiconductor Optical Amplifier," in Telecommunications and Networking - ICT 2004, 2004, pp. 717-726.
    [21] M. J. Connelly, "Semiconductor optical amplifier parameter extraction using a wideband steady-state numerical model and the Levenberg-Marquardt method," Proceedings of the 4th International Conference on,2004,pp.38-39.
    [22]N.Frigo,"Ultrashort pulse propogation in saturable media:A simple physical model," IEEE Journal of Quantum Electronics,vol.19,pp.511-519,1983.
    [23]I.W.Marshall,D.M.Spirit,and M.J.O'Mahony,"Picosecond pulse response of a travelling-wave semiconductor laser amplifier," Electronics Letters,vol.23,pp.818-819,1987.
    [24]G.P.Agrawal and N.A.Olsson,"Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE Journal of Quantum Electronics,vol.25,pp.2297-2306,1989.
    [25]杨祥林,光纤通信系统.国防工业出版社,2001.
    [26]A.J.Lowery,"Pulse compression mechanisms in semiconductor laser amplifiers," Optoelectronics,IEE Proceedings J,,vol.136,pp.141-146,1989.
    [1]M.Nakazawa,T.Yamamoto,and K.R.Tamura,"1.28 Ybit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator," Electronics Letters,vol.36,pp.2027-2029,2000.
    [2]M.Nakazawa and T.Hirooka,"Terabit OTDM transmission Key challenges,"in IEEE/LEOS Summer Topical Meetings,2007,pp.230-231 1099-4742.
    [3]M.Saruwatari,"All-optical signal processing for terabit/second optical transmission," IEEE Journal of Selected Topics in Quantum Electronics,vol.6,pp.1363-1374,2000.
    [4]K.L.Hall and K.A.Rauschenbach,"100-Gbit/s bitwise logic," Optics Letters,vol.23,pp.1271-1273,1998.
    [5]H.Ohta,S.Nogiwa,Y.Kawaguchi,and Y.Endo,"Measurement of 200 Gbit/s optical eye diagram by optical samplingwith gain-switched optical pulse,"Electronics Letters,vol.36,pp.737-739,2000.
    [6]P.J.Winzer and A.Kalmar,"Sensitivity enhancement of optical receivers by impulsive coding," Journal of Lightwave Technology,vol.17,p.171,1999.
    [7]H.Sunnerud,M.Karlsson,and P.A.Andrekson,"A comparison between NRZ and RZ data formats with respect to PMD-induced system degradation," in Optical Fiber Communication Conference and Exhibit,OFC 2001.vol.3.
    [8]M.Daikoku,N.Yoshikane,and I.Morita,"Performance comparison of modulation formats for 40 Gbit/s DWDM transmission systems," in Optical Fiber Communication Conference,2005.OFC/NFOEC.vol.5.
    [9]A.T.Clausen,H.N.Poulsen,L.K.Oxenlowe,A.I.Siahlo,J.Seoane,and P.Jeppesen,"Pulse source requirements for OTDM systems," in Lasers and Electro-Optics Society.LEOS 2003.IEEE.vol.1,2003,pp.382-383 vol.11092-8081.
    [10]D.A.Fishman,"Design and performance of externally modulated 1.5-μm laser transmitter in the presence of chromatic dispersion," Journal of Lightwave Technology, vol. 11, pp. 624-632,1993.
    [11] J. Zhang, M. Yao, X. Chen, L. Xu, M. Chen, and Y. Gao, "Bit Error Rate Analysis of OTDM System Based on Moment Generation Function," Journal of Lightwave Technology, vol. 18, pp. 1513,2000.
    [12] P. Anandarajah, L. P. Barry, and A. Kaszubowska, "Performance issues associated with WDM optical systems using self-seeded gain switched pulse sources due to mode partition noise effects," Photonics Technology Letters, IEEE, vol. 14, pp. 1202-1204,2002.
    [13] S. Rubin, E. Buimovitz, and D. Sadot, "The dependence of side modes on modulation index in directlymodulated GCSR laser," in Electrical and ELectronic Engineers in Israel, 2000, pp. 83-86.
    [14] N. Jensen, H. Olesen, and K. Stubkjaer, "Partition noise in semiconductor lasers under CW and pulsed operation," IEEE Journal of Quantum Electronics, vol. 23, pp. 71-80,1987.
    [15] P. L. Mason, A. Wonfor, D. D. Marcenac, D. G. Moodie, M. C. Brierley, R. V. Penty, I. H. White, and S. Bouchoule, "The effects of pedestal suppression on gain-switched laser sources for 40 Gbit/s OTDM transmission," in Lasers and Electro-Optics Society Annual Meeting, 1997. LEOS. vol. 1, pp. 289-290vol.1.
    [16] A. Takada, K. Sato, M. Saruwatari, and M. Yamamoto, "Pulse width tunable subpicosecond pulse generation from an actively modelocked monolithic MQW laser/MQW electroabsorption modulator," Electronics Letters, vol. 30, pp. 898-900,1994.
    [17] K. Taira and K. Kikuchi, "Subpicosecond pulse generation using an electroabsorption modulator and a double-stage pulse compressor," Photonics Technology Letters, IEEE, vol. 15, pp. 1288-1290,2003.
    [18] Y. Arakawa, T. Sogawa, M. Nishioka, M. Tanaka, and H. Sakaki, "Picosecond pulse generation (< 1.8 ps) in a quantum well laser by a gain switching method," Applied Physics Letters, vol. 51,pp. 1295-1297,1987.
    [19] K. Y. Lau, "Gain switching of semiconductor injection lasers," Applied Physics Letters, vol. 52, pp. 257-259,1988.
    
    [20] R. S. Tucker, U. Koren, G. Raybon, C. A. Burrus, B. I. Miller, T. L. Koch, and G. Eisenstein, "40 GHz active mode-locking in a 1.5 um monolithic extended-cavity laser," Electronics Letters, vol. 25, p. 621,1989.
    
    [21] D. M. Patrick, "Modelocked ring laser using nonlinearity in a semiconductor laser amplifier," Electronics Letters, vol. 30, pp. 43-44,1994.
    
    [22] Y. Hashimoto, H. Yamada, R. Kuribayashi, and H. Yokoyama, "40-GHz tunable optical pulse generation from a highly stable external-cavity mode-locked semiconductor laser module," in Optical Fiber Communication Conference and Exhibit. OFC 2002, pp. 342-343.
    
    [23] M. J. Guy, J. R. Taylor, and K. Wakita, "10 GHz 1.9 ps actively modelocked fibre integrated ring laser atl. 3 um," Electronics Letters, vol. 33, pp. 1630-1632, 1997.
    
    [24] L. Xu, L. F. K. Lui, P. K. A. Wai, H. Y. Tarn, and C. Lu, "40 GHz actively mode-locked erbium-doped fiber ring laser using an electro-absorption modulator and a linear optical amplifier," in Optical Fiber Communication and the National Fiber Optic Engineers Conference. OFC/NFOEC 2007. pp. 1-3.
    
    [25] Y. Shuang-Yi, Z. Jian-Guo, Z. Wei, L. Hong-Qiang, and W. Wei-Qiang, "Broadly Tunable SOA-Based Active Mode-Locked Fibre Ring aser by Forward Injection Optical Pulse," Chinese Physics Letters, vol. 25, pp. 2876-2879, 2008.
    
    [26] K. Zoiros, K. Vlachos, T. Stathopoulos, C. Bintjas, and H. Avramopoulos, "40 GHz mode-locked SOA fiber ring laser with 20 nm tuning range," in Optical Fiber Communication Conference, 2000. vol. 1, 2000, pp. 254-256 vol.1.
    
    [27] G. R. Lin, Y. S. Liao, and Q. Q. Xia, "Dynamics of optical backward-injection-induced gain-depletion modulation and mode locking in semiconductor optical amplifier fiber lasers," Optics Express, vol. 12, pp. 2017-2026,2004.
    
    [28] G. R. Lin, I. H. Chiu, and M. C. Wu, "1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression," Optics Express,vol.13,pp.1008-1014,2005.
    [29]T.Papakyriakopoulos,K.Vlachos,A.Hatziefremidis,and H.Avramopoulos,"20-GHz broadly tunableand stable mode-locked semiconductor amplifierfiber ring laser," Optics Letters,vol.24,pp.1209-1211,1999.
    [30]J.M.Roth,T.G.Ulmer,N.W.Spellmeyer,S.Constantine,and M.E.Grein,"Wavelength-tunable 40-GHz picosecond harmonically mode-locked fiber laser source," Photonics Technology Letters,IEEE,vol.16,pp.2009-2011,2004.
    [31]L.Duan,C.J.K.Richardson,H.Zhaoyang,M.Dagenais,and J.Goldhar,"A stable smoothly wavelength-tunable picosecond pulse generator," Photonics Technology Letters,IEEE,vol.14,pp.840-842,2002.
    [32]L.Schares,R.Paschotta,L.Occhi,and G.Guekos,"40-GHz mode-locked fiber-ring laser using a Mach-Zehnder interferometer with integrated SOAs,"Journal of Lightwave Technology,vol.22,pp.859-873,2004.
    [33]K.Vlachos,C.Bintjas,N.Pleros,and H.Avramopoulos,"Ultrafast semiconductor-based fiber laser sources," IEEE Journal of Selected Topics in Quantum Electronics,vol.10,pp.147-154,2004.
    [34]W.Chiming and N.K.Dutta,"High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser," Journal of Quantum Electronics,IEEE,vol.36,pp.145-150,2000.
    [35]S.Yan,J.-g.Zhang,and W.Zhao,"40-GHz wavelength tunable mode-locked SOA-based fiber laser with 40-nm tuning range," Chinese Optics Letters,vol.6,p.676-678,2008.
    [36]G.T.Harvey and L.F.Mollenauer,"Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission," Optics Letters,vol.18,pp.107-109,1993.
    [1]S.J.B.Yoo,"Wavelength conversion technologies for WDM network applications," Journal of Lightwave Technology,vol.14,pp.955-966,1996.
    [2]D.Nesset,T.Kelly,and D.Marcenac,"All-Optical Wavelength Conversion Using SOA nonlinearities," IEEE Communications Magazine,vol.December pp.56-60,1998.
    [3]M.Asghari,I.H.White,and R.V.Penty,"Wavelength conversion using semiconductor optical amplifiers," Journal of Lightwave Technology,vol.15,pp.1181-1190,1997.
    [4]S.C.Cao and J.C.Cartledge,"Characterization of the Chirp and Intensity Modulation Properties of an SOA-MZI Wavelength Converter," Journal of Lightwave Technology,vol.20,pp.689,2002.
    [5]S.Yan,J.-G.Zhang,and W.Zhao,"SOA-based polarity-preserving all-optical wavelength conversion at 80Gbit/s:Wide conversion range,well dynamic characteristics and polarization insensitive," Microwave and Optical Technology Letters,vol.50,pp.2392-2399,2008.
    [6]A.D.Ellis,A.E.Kelly,D.Nesset,D.Pitcher,D.G.Moodie,and R.Kashyap,"Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor amplifier," Electronics Letters,vol.34,pp.1958-1959,1998.
    [7]S.Nakamura,Y.Ueno,and K.Tajima,"168-Gb/s all-optical wavelength conversion with a symmetric-Mach-Zehnder-type switch," Photonics Technology Letters,IEEE,vol.13,pp.1091-1093,2001.
    [8]L.Juerg,C.H.Joyner,B.Mikkelsen,G.Rabyon,J.L.Pleumeekers,B.I.Miller,K.Dreyer,C.A.Burrus,and A.Mecozzi,"100 Gbit/s all-optical wavelength conversion with an integrated SOA delayed-interference configuration." vol.44:Optical Society of America,2000,pp.OWB3.
    [9] A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s all-optical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electronics Letters, vol. 35, pp. 1477-1478,1999.
    
    [10] B. Mikkelsen, M. Vaa, H. N. Poulsen, S. L. Danielsen, C. Joergensen, A. Kloch, P. B. Hansen, K. E. Stubkjaer, K. Wunstel, K. Daub, E. Lach, G. Laube, W. Idler, M. Schilling, and S. Bouchoule, "40 Gbit/s all-optical wavelength converter and RZ-to-NRZ format adapter realised by monolithic integrated active Michelson interferometer," Electronics Letters, vol. 33, pp. 133-134, 1997.
    
    [11] S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, "Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching," IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, pp. 1131-1145,1997.
    
    [12] A. E. Kelly, A. D. Ellis, D. Nesset, R. Kashyap, and D. G. Moodie, "100 Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier," Electronics Letters, vol. 34, pp. 1955-1956,1998.
    
    [13] I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, and E. Roditi, "Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers," Photonics Technology Letters, IEEE, vol. 10, pp. 352-354, 1998.
    
    [14] M. F. C. Stephens, M. Asghari, R. V. Penty, and I. H. White, "Demonstration of ultrafast all-optical wavelength conversion utilizing birefringence in semiconductor optical amplifiers," Photonics Technology Letters, IEEE, vol. 9, pp. 449-451,1997.
    
    [15] Y. Liu, M. T. Hill, E. Tangdiongga, H. d. Waardt, N. Calabretta, G. D. Khoe, and H. J. S. Dorren, "Wavelength conversion using nonlinear polarization rotation in a single semiconductor optical amplifier," Photonics Technology Letters, IEEE, vol. 15, pp. 90-92,2003.
    
    [16] H. Soto, D. Erasme, and G. Guekos, "Cross-polarization modulation in semiconductor optical amplifiers," Photonics Technology Letters,IEEE,vol.11,pp.970-972,1999.
    [17]G.Contestabile,N.Calabretta,M.Presi,and E.Ciaramella,"Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in an SOA," Photonics Technology Letters,IEEE,vol.17,pp.2652-2654,2005.
    [18]L.Hyuek Jae and K.Hae Geun,"Polarization-independent all-optical clock division using a semiconductor-optical-amplifier/grating-filter switch," in Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communication.OFC/IOOC '99.Technical Digest.vol.2,1999,pp.95-97 vol.2.
    [19]T.Yamamoto,L.K.Oxenlowe,C.Schmidt,C.Schubert,E.Hilliger,U.Feiste,J.Berger,R.Ludwig,and H.G.Weber,"Clock recovery from 160 Gbit/s data signals using phase-locked loop with interferometric optical switch based on semiconductor optical amplifier," Electronics Letters,vol.37,pp.509-510,2001.
    [20]K.Uchiyama,S.Kawanishi,and M.Saruwatari,"100-Gb/s multiple-channel output all-optical OTDM demultiplexing using multichannel four-wave mixing in a semiconductor optical amplifier," Photonics Technology Letters,IEEE,vol.10,pp.890-892,1998.
    [21]S.Fischer,M.Dulk,E.Gamper,W.Vogt,W.Hunziker,E.Gini,H.Melchior,A.Buxens,H.N.Poulsen,and A.T.Clausen,"All-optical regenerative OTDM add-drop multiplexing at 40 Gb/s using monolithic InP Mach-Zehnder interferometer," Photonics Technology Letters,IEEE,vol.12,pp.335-337,2000.
    [22]E.Tangdiongga,Y.Liu,H.de Waardt,G.D.Khoe,A.M.J.Koonen,H.J.S.Dorren,X.Shu,and I.Bennion,"All-optical demultiplexing of 640 to 40Gbits/s using filtered chirp of a semiconductor optical amplifier," Optics Letters,vol.32,pp.835-837,2007.
    [23]I.D.Phillips,A.Gloag,P.N.Kean,N.J.Doran,I.Bennion,and A.D.Ellis, "Simultaneous demultiplexing, data regeneration, and clock recovery with a single semiconductor optical amplifier based nonlinear-optical loop mirror," Optics Letters, vol. 22, pp. 1326-1328,1997.
    
    [24] G. Raybon, B. Mikkelsen, U. Koren, B. I. Miller, K. Dreyer, L. Boivin, S. Chandrasekhar, and C. A. Burrus, "20 Gbit/s all-optical regeneration and wavelength conversion using SOA based interferometers," in Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communication. OFC/IOOC '99. Technical Digest. vol.4, 1999, pp. 27-29 vol.4.
    
    [25] Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, X. Shu, I. Bennion, and H. J. S. Dorren, "Error-Free 320-Gb/s All-Optical Wavelength Conversion Using a Single Semiconductor Optical Amplifier," Journal of Lightwave Technology, vol. 25, pp. 103-108, 2007.
    
    [26] M. L. Nielsen, J. M(?)rk, R. Suzuki, J. Sakaguchi, and Y. Ueno, "Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high-speed SOA-based all-optical switches," Optics Express, vol. 14, pp. 331-347,2006.
    
    [27] R. J. Manning, X. Yang, R. P. Webb, R. Giller, F. C. G. Gunning, and A. D. Ellis, "The "Turbo-Switch": A Novel Technique to Increase the High-Speed Response of SOAs for Wavelength Conversion," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference: Optical Society of America, 2006, pp. OWS8.
    
    [28] J. P. R. Lacey, M. A. Summerfield, and S. J. Madden, "Tunability of Polarization-Insensitive Wavelength Converters Based on Four-Wave Mixing in Semiconductor Optical Amplifiers," Journal of Lightwave Technology, vol. 16,pp. 2419,1998.
    
    [29] G. Hunziker, R. Paiella, D. F. Geraghty, K. J. Vahala, and U. Koren, "Polarization-independent wavelength conversion at 2.5 Gb/s by dual-pump four-wave mixing in a strained semiconductor optical amplifier," Photonics Technology Letters, IEEE, vol. 8,pp. 1633-1635,1996.
    [30]S.Chelles,F.Devaux,D.Meichenin,D.Sigogne,and A.Carenco,"Extinction ratio of cross-gain modulated multistage wavelength converters:model and experiments," Photonics Technology Letters,IEEE,vol.9,pp.758-760,1997.
    [31]M.L.Nielsen,B.Lavigne,and B.Dagens,"Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering," Electronics Letters,vol.39,pp.1334-1335,2003.
    [32]S.J.Savage,B.S.Robinson,S.A.Hamilton,and E.P.Ippen,"A Wavelength-Maintaining Polarization-Insensitive All-Optical 3R Regenerator," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference:Optical Society of America,2006,pp.OThB7.
    [33]A.E.Kelly,"Ultra high-speed wavelength conversion and regeneration using semiconductor optical amplifiers." vol.1,2001,pp.MB1-1-MB1-3 vol.1.
    [34]X.Yang,D.Lenstra,G.D.Khoe,and H.J.S.Dorren,"Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier," Optics Communications,vol.223,pp.169-179,2003.
    [35]M.L.Nielsen and J.MΦrk,"Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering,"Journal of the Optical Society of America B,vol.21,pp.1606-1619,2004.
    [36]Y.Hsiao-Yun,D.Mahgerefteh,P.S.Cho,and J.Goldhar,"Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating," Journal of Lightwave Technology,vol.17,pp.308-315,1999.
    [37]Y.Liu,E.Tangdiongga,Z.Li,Z.Shaoxian,W.Huug de,G.D.Khoe,and H.J.S.Dorren,"Error-free all-optical wavelength conversion at 160 gb/s using a semiconductor optical amplifier and an optical bandpass filter," Journal of Lightwave Technology,vol.24,pp.230-236,2006.
    [38]王伟强,张建国,姚保利,和延双毅,”一种全光归零码到非归零码变换的新技术方案,”光子学报,vol.37,pp.1837-1841,2008.
    [1]X.-C.Zhang,G.R.Hulse,and R.K.Jain,"Two-Dimensional,High-Speed Optical Time Division Multiplexing Processor," 1987.
    [2]R.Tucker,G.Eisenstein,and S.Korotky,"Optical time-division multiplexing for very high bit-rate transmission," Journal of Lightwave Technology,vol.6,1988,pp.1737-1749.
    [3]S.Kawanishi,H.Takara,K.Uchiyama,T.Kitoh,and M.Saruwatari,"100 Gbit/s,50 km,and nonrepeated optical transmission employing all-optical multi/demultiplexing and PLL timing extraction," Electronics Letters,vol.29,pp.1075-1077,1993.
    [4]S.Kawanishi,T.Morioka,O.Kamatani,H.Takara,and M.Saruwatari,"100Gbit/s,200 km optical transmission experiment using extremely low jitter PLL timing extraction and all-optical demultiplexing based on polarisation insensitive four-wave mixing," Electronics Letters,vol.30,pp.800-801,1994.
    [5]S.Kawanishi,H.Takara,O.Kamatani,T.Morioka,and M.Saruwatari,"100Gbit/s,560km optical transmissionn experiment with 80km amplifier spacing employing dispersion management," Electronics Letters,vol.32,p.470,1996.
    [6]S.Kawanishi,H.Takara,T.Morioka,O.Kamatani,and M.Saruwatari,"200Gbit/s,100 km time-division-multiplexed optical transmission using supercontinuum pulses with prescaled PLL timing extraction and all-optical demultiplexing," Electronics Letters,vol.31,pp.816-817,1995.
    [7]S.Kawanishi,H.Takara,T.Morioka,O.Kamatani,K.Takiguchi,T.Kitoh,and M.Saruwatari,"Single channel 400 Gbit/s time-division-multiplexed transmission of 0.98 ps pulses over 40 km employing dispersion slope compensation," Electronics Letters,vol.32,pp.916-918,1996.
    [8]S.Ferber,C.Schubert,R.Ludwig,C.Boerner,C.Schmidt-Langhorst,and H.G.Weber,"640 Gbit/s DQPSK,single wavelength-channel transmission over 480 km fibre link," Electronics Letters,vol.41,pp.1236-1237,2005.
    [9]H.G Weber,S.Ferber,M.Kroh,C.Schmidt-Langhorst,R.Ludwig,V.Marembert,C.Boerner,F.Futami,S.Watanabe,and C.Schubert,“Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission,” in Optical Communication,ECOC 2005.vol.6,2005,pp.3-4
    [10]A.H.Gnauck,G.Raybon,P.G.Bernasconi,J.Leuthold,C.R.Doerr,and L.W.Stulz,“1-Tb/s(6 170.6 Gb/s) transmission over 2000-km nzdf using otdm and rz-dpsk format,” IEEE Photonics Technology Letters,vol.15,pp.1618-1620,2003.
    [11]P.Gunning,R.Kashyap,A.S.Siddiqui,and K.Smith,“Picosecond pulse generation of <5 ps from gain-switched DFB semiconductor laser diode using linearly step-chirped fibre grating,” Electronics Letters,vol.31,pp.1066-1067,1995.
    [12]M.Suzuki,H.Tanaka,N.Edagawa,K.Utaka,and Y.Matsushima,“Transform-limited optical pulse generation up to 20-GHz repetition rate by a sinusoidally driven InGaAsP electroabsorption modulator,” Journal of Lightwave Technology,vol.11,pp.468-473,1993.
    [13]J.Mulet,M.Kroh,and J.M□rk,“Pulse properties of external-cavity mode-locked semiconductor lasers,” Optics Express,vol.14,pp.1119-1124,2006.
    [14]Y.Shuang-Yi,Z.Jian-Guo,Z.Wei,L.Hong-Qiang,and W.Wei-Qiang,“Broadly Tunable SOA-Based Active Mode-Locked Fibre Ring Laser by Forward Injection Optical Pulse,” Chinese Physics Letters,vol.25,pp.2876-2879,2008.
    [15]T.Morioka and M.Saruwatari,“Ultrafast all-optical switching utilizing the optical Kerr effect in polarization-maintaining single-mode fibers,” IEEE Journal on Selected Areas in Communications,,vol.6,pp.1186-1198,1988.
    [16]T.Morioka,S.Kawanishi,K.Uchiyama,H.Takara,and M.Saruwatari,“Polarisation-independent 100 Gbit/s all-optical demultiplexer using four-wave mixing in a polarisation-maintaining fibre loop,” Electronics Letters,vol.30,pp.591-592,1994.
    [17]T.Morioka,H.Takara,S.Kawanishi,K.Uchiyama,and M.Saruwatari,“Polarisation-independent all-optical demultiplexing up to 200 Gbit/s using four-wave mixing in a semiconductor laser amplifier," Electronics Letters,vol.32,pp.840-842,1996.
    [18]T.Morioka,K.Mori,and M.Saruwatari,"Ultrafast polarisation-independent optical demultiplexer using optical carrier frequency shift through crossphase modulation," Electronics Letters,vol.28,pp.1070-1072,1992.
    [19]N.J.Doran and D.Wood,"Nonlinear-optical loop mirror," Optics Letters,vol.13,pp.56-58,1988.
    [20]M.Eiselt,W.Pieper,and H.G.Weber,"All-optical high speed demultiplexing with a semiconductor laser amplifier in a loop mirror configuration," Electronics Letters,vol.29,pp.1167-1168,1993.
    [21]J.P.Sokoloff,P.R.Prucnal,I.Glesk,and M.Kane,"A terahertz optical asymmetric demultiplexer(TOAD)," Photonics Technology Letters,IEEE,vol.5,pp.787-790,1993.
    [22]A.S.Lenihan,R.Salem,T.E.Murphy,and G.M.Carter,"All-optical 80-Gb/s time-division demultiplexing using polarization-insensitive cross-phase modulation in photonic crystal fiber," IEEE Photonics Technology Letters,vol.18,p.1329,2006.
    [23]C.Hsu-Feng,C.Yi-Jen,W.Wei,J.E.Bowers,and D.J.Blumenthal,"Compact 160-Gb/s demultiplexer using a single-stage electrically gated electroabsorption modulator," Photonics Technology Letters,IEEE,vol.15,pp.1458-1460,2003.
    [24]W.Wei-qiang,Z.Jian-Guo,Y.Bao-li,and Y.Shuang-Yi,"A novel scheme of all-optical RZ-NRZ format converter," ACTA PHOTONICA SINICA 光子学报,vol.37,pp.1837-1841,2008.
    [1]K.C.Kao and G.A.Hockham,"Dielectric-fibre surface waveguides for optical frequencies," Optoelectronics,IEE Proceedings J,,vol.133,pp.191-198,1986.
    [2]B.Hoanca,"DWDM Fundamentals,Components,and Applications," Journal of Optical Networking,vol.1,pp.184-185,2002.
    [3]G.Charlet,E.Corbel,J.Lazaro,A.Klekamp,R.Dischler,P.Tran,W.Idler,H.Mardoyan,A.Konczykowska,F.Jorge,and S.Bigo,"WDM Transmission at 6-Tbit/s Capacity Over Transatlantic Distance,Using 42.7-Gb/s Differential Phase-Shift Keying Without Pulse Carver," Journal of Lightwave Technology,vol.23,pp.104,2005.
    [4]K.Fukuchi,T.Kasamatsu,M.Morie,R.Ohhira,T.Ito,K.Sekiya,D.Ogasahara,and T.Ono,"10.96-Tb/s(273× 40-Gb/s) triple-band/ultra-dense WDM optical-repeated transmission experiment," in Tech.Dig.Optical Fiber Communication Conf.(OFC),Anaheim,CA,Paper PD24,2001.
    [5]Y.Mochida,N.Yamaguchi,and G.Ishikawa,"Technology-Oriented Review and Vision of 40-Gb/s-Based Optical Transport Networks," Journal of Lightwave Technology,vol.20,pp.2272,2002.
    [6]H.Ooi,K.Nakamura,Y.Akiyama,T.Takahara,T.Terahara,Y.Kawahata,H.Isono,and G.Ishikawa,"40-Gb/s WDM transmission with virtually imaged phased array(VIPA) variable dispersion compensators," Journal of Lightwave Technology,vol.20,pp.2196-2203,2002.
    [7]T.Ono,Y.Yano,K.Fukuchi,T.Ito,H.Yamazaki,M.Yamaguchi,and K.Emura,"Characteristics of Optical Duobinary Signals in Terabit/s Capacity,High-Spectral Efficiency WDM Systems," Journal of Lightwave Technology,vol.16,pp.788,1998.
    [8]C.Rasmussen,T.Fjelde,J.Bennike,F.Liu,S.Dey,B.Mikkelsen,P.Mamyshev,P.Serbe,P.Wagt,and Y.Akasaka,"DWDM 40G transmission over trans-Pacific distance(10 000 km) using CSRZ-DPSK,enhanced FEC,and all-Raman-amplified 100-km UltraWave fiber spans," Journal of Lightwave Technology,vol.22,p.203,2004.
    [9]C.Hsu-Feng,H.Zhaoyang,J.E.Bowers,D.J.Blumenthal,K.Nishimura,R.Inohara,and M.Usami,"Simultaneous 160-Gb/s demultiplexing and clock recovery by utilizing microwave harmonic frequencies in a traveling-wave electroabsorption modulator," Photonics Technology Letters,IEEE,vol.16,pp.608-610,2004.
    [10]B.Mikkelsen,G.Raybon,R.J.Essiambre,A.J.Stentz,T.N.Nielsen,D.W.Peckham,L.Hsu,L.Gruner-Nielsen,K.Dreyer,and J.E.Johnson,"320-Gb/s single-channel pseudolinear transmission over 200 km of nonzero-dispersion fiber," Photonics Technology Letters,IEEE,vol.12,pp.1400-1402,2000.
    [11]M.Nakazawa,T.Yamamoto,and K.R.Yamura,"1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator," Electronics Letters,vol.36,pp.2027-2029,2000.
    [12]H.C.H.Mulvad,E.Tangdiongga,O.Raz,J.Herrera,H.de Waardt,and H.J.S.Dorren,"640 Gbit/s OTDM Lab-Transmission and 320 Gbit/s Field-Transmission with SOA-based Clock Recovery," in Optical Fiber communication/National Fiber Optic Engineers Conference,OFC/NFOEC 2008,pp.1-3.
    [13]P.Gambini,M.Renaud,C.Guillemot,F.Callegati,I.Andonovic,B.Bostica,D.Chiaroni,G.Corazza,S.L.Danielsen,P.Gravey,P.B.Hansen,M.Henry, C. Janz, A. Kloch, R. Krahenbuhl, C. Raffaelli, M. Schilling, A. Talneau, and L. Zucchelli, "Transparent optical packet switching: network architecture and demonstrators in the KEOPS project," IEEE Journal on Selected Areas in Communications, vol. 16, pp. 1245-1259,1998.
    [14] L. Xu, H. G. Perros, and G. Rouskas, "Techniques for optical packet switching and optical burst switching," IEEE Communications Magazine, vol. 39, pp. 136-142,2001.
    [15] S. Yao, S. J. B. Yoo, B. Mukherjee, and S. Dixit, "All-optical packet switching for metropolitan area networks: Opportunities and challenges," IEEE Communications Magazine, vol. 39, pp. 142-148, 2001.
    [16] D. J. Bishop, C. R. Giles, and G. P. Austin, "The Lucent LambdaRouter: MEMS technology of the future here today," Communications Magazine, IEEE, vol. 40, pp. 75-79, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700