受者来源的PIR-B转染的树突状细胞对小鼠异基因骨髓移植GVHD的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:建立一个稳定可靠的异基因骨髓移植(allogeneic bone marrow transplantation, allo-BMT)小鼠急性移植物抗宿主病(acut graft-versus-host disease, aGVHD)动物模型,为后期实研究验allo-BMT后aGVHD和移植耐受提供理想的实验平台。
     方法:将供者C57BL/6J (H-2b)雄性小鼠骨髓细胞和脾细胞按不同比例(1:1和1:2)混合,输入接受致死性全身照射(8.5Gy)的受鼠雌性BALB/C (H-2d)小鼠以引起不同程度的aGVHD,检测嵌合体情况,根据受鼠的一般情况、临床表现、生存期和组织病理学等判断aGVHD程度。
     结果:混合不同比例的供鼠骨髓细胞和脾细胞allo-BMT的小鼠均发生了aGVHD,但出现aGVHD的时间和程度均有差异。其中骨髓与脾细胞1:2组小鼠可在相对集中的时间内观察到典型的aGVHDI临床和病理改变,所有小鼠均在14-24d死亡。骨髓与脾细胞1:1组aGVHD程度较轻,移植后4周小鼠均全部存活。
     结论:骨髓细胞和脾细胞比例为1:2组比1:1组出现更典型的aGVHD,其发病和死亡时间较集中。选定TBI8.5Gy及细胞移植的混合比例(1:2)构建小鼠aGVHD模型,为后续实验提供理想模型。
     目的:探讨不同方法诱导的受者来源树突状细胞(dendritic cells, DCs)输注对异基因骨髓移植(allogeneic bone marrow transplantation, allo-BMT)小鼠急性移植物抗宿主病(acut graft-versus-host disease,aGVHD)和造血重建的影响。
     方法:受鼠为雌性BALB/C (H-2d)小鼠,供鼠为雄性C57BL/6J (H-2b)小鼠。无菌分离受鼠骨髓细胞(bone marrow cell, BMC),与GM-CSF共培养得到未成熟树突状细胞(immature dendritic cells, imDCs);受鼠BMC与GM-CSF、IL-10共培养得到IL-10-DCs;用配对性免疫球蛋白样受体B (Paired immunoglobin-like receptor B, PIR-B)慢病毒载体转染imDCs得到PIR-B-DCs。受鼠随机分为四组,在移植骨髓后分别予尾静脉注射imDCs、IL-10-DCs、PIR-B-DCs和RPMI1640培养液。以移植后aGVHD临床表现,肝脏、小肠、皮肤病理组织改变,生存期为观察指标并进行组间比较。
     结果:PIR-B-DCs移植组、IL-10-DCs移植组、imDCs移植组和单纯移植组受鼠平均生存时间为(46.0±13.6)天、(36.4±13.0)天、(21.6±2.8)天和(17.4±3.6)天,p<0.01;4组小鼠在移植后15天GVHD临床评分为(5.28±0.27)、(5.26±0.31)、(2.46±0.18)和(0.86±0.21),p<0.05。单纯移植组病理显示肝脏汇管区大量淋巴细胞浸润,小胆管塌陷破坏,皮肤基底层连续性中断,有大量淋巴细胞,肠粘膜下层淋巴细胞浸润,肠绒毛萎缩变性,PIR-B-DCs移植组病理组织检查仅有轻微GVHD表现。
     结论:受者来源PIR-B-DCs联合骨髓移植能够明显延长受鼠生存时间,减轻移植后aGVHD反应,促进造血重建。
Object:To establish a murine model of acute graft-versus-host disease (aGVHD) induced by allogeneic bone marrow transplantation (allo-BMT) for providing experimental studies of aGVHD and transplantation tolerance.
     Methods:All recipients female BALB/C (H-2d) mice were received total body irradiation 8.5Gy at 4 hours prior to transplantation. Bone marrow cells mixed with spleen cells of donors male C57BL/6J (H-2b) mice based upon different proportions (1:1 and 1:2) were injected into tail vein. The chimeras were evaluated as well as the recipients'survival time, clinical and pathologic manifestations of aGVHD.
     Result:All mice received allo-BMT with different ratios of bone marrow cells and spleen cells showed aGVHD evidence. However, there were significant differences in the incidence and severity of aGVHD. The group with co-transplantation of bone marrow cells and spleen cells in ratio of 1:2 showed typical clinical and pathological manifestations of aGVHD at a relatively concentrated time, and died within 14-24d. Mice in group infused with bone marrow cells and spleen cells in ratio of 1:1 showed insignificant aGVHD, and were all alived (4 weeks after allo-BMT).
     Conclusion:The group with co-transplantation of bone marrow cells and spleen cells in ratio of 1:2 showed more significant manifestations and more concentrated time of incident and death than the group that of 1:1. Thus, infusion of bone marrow cells and spleen cells in ration of 1:2 is perfect as to establish aGVHD murine model induced by allogeneic bone marrow transplantation for successoral experimental studies.
     Object:To explore the influence of recipient-derived dendritic cells induced by different methods infused after allogeneic bone marrow transplantation (allo-BMT) on acute graft-versus-host disease (aGVHD) and hematopoietic reconstitution of mice.
     Methods:Recipients were female BALB/c (H-2kd) mice, donors were male C57BL/6 (H-2kb) mice. Recipients'bone marrow cells were isolated sterilely. ImDCs were prepared by culturing BM cells with GM-CSF. IL-10-DCs were generated from BM cells cultured with GM-CSF and recombinant murine interleukin 10. PIR-B-DCs were obtained by Paired immunoglobin-like receptor B lentivirus transfected imDCs. The recipient mice were randomly divided into four groups, and received intravenous injections of various additional DCs from BALB/C mice (imDCs、IL-10-DCs、PIR-B-DCs) or PRMI 1640 at the time of BMS transplantation respectively. Incidence of GVHD, pathological lesion of liver、small intestine、skin, survival time and hematopoietic reconstitution in the recipients were observed after allo-BMT.
     Result:The mean survival time of the four groups (PIR-B-DCs group, IL-10-DCs group, imDCs group and BMT group) was (46.0±13.6) days、(36.4±13.0) days、(21.6±2.8) days and (17.4±3.6) days, p<0.01. The GVHD clinical score at 15 days after transplantation in the four groups was (5.28±0.27)、(5.26±0.31)、(2.46± 0.18) and (0.86±0.21),P<0.05. Histopathologic analyses of BMT group showed extensive lymphocytic infiltration of the liver, small intestine and skin, bile duct damaged, intestinal villus atrophy or denaturation. Samples from the liver and skin of a mouse did not show clinical or histological signs of GVHD following the injection of PIR-B-DCs.
     Conclusion:Recipient-derived paired immunoglobin-like receptor B lentivirus transfected dendritic cells infusion can mitigate the aGVHD so as to prolong survival time after allo-BMT in murine.
引文
1. Ferrara JL, Levy R, Chao NJ. Pathophysiologic mechanisms of acute graft-versus-host disease. Bio Blood Marrow Transplant,1999,5(6):347-356.
    2. Antin JH, Ferrara JL. Cytokine dysregulation and acute graft-versus-host disease. Blood,1992,8:2964-2968.
    3. Narita M, Takahashi M, Liu A, et al. Generation of dendritic cells from leukaemia cells of a patient with acute promyelocytic leukaemia by culture with GM-CSF, IL-4 and TNF-alpha. Acta Haematol,2001,106:89-94.
    4. Tiurbe G, Matuschek A, Kammerer U, et al. Inhibitory effects of rat bone marrow-derived dendritic cells on naive and alloantigen-specific CD4+T cells:a com parison between dendritic cells generated with GM-CSF plus IL-4 and dendritic cells generated with GM-CSF plus IL-10. BMC Res Notes,2009,23,2:12.
    5. Chang CC, Ciubotariu R, Manavalan JS, et al. Tolerization of dendritic cells by T(S) cells:the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol,2002,3: 237-243.
    6. Manavalan JS, Rossi PC, Vlad G, et al. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol,2003,11:245-258.
    7. Suciu-Foca Cortesini N, Piazza F, Ho E, Ciubotariu R, LeMaoult J, Dalla-Favera R, Cortesini R:Distinct mRNA microarray profiles of tolerogenic dendritic cells. Hum Immunol 2001; 62:1065.
    8. Suciu-Foca N, Manavalan JS, Cortesini R. Generation and function of antigen-specific suppressor and regulatory T cells. Transpl Immunol,2003,11(3-4):235-244.
    9. Chang CC, Ciubotariu R, Manavalan JS, et al. Tolerization of dendritic cells by T(S) cells:the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol,2002, 3:237-243.
    10. Zhou H, Wang ZD, Zhu X, et al. CD8+FOXP3+T cells From Renal Transplant
    Recipients in Quiescence Induce Immunoglobulin-like transcripts-3 and-4 on Dendritic Cells From Their Respective Donor. Transplant Proc,2007,39(10): 3065-3067.
    11. Liu J, Liu Z, Witkowski P, et al. Rat CD8+ FOXP3+T suppressor cells mediate tolerance to allogeneic heart transplants, inducing PIR-B in APC and rendering the graft invulnerable to rejection. Transpl Immunol,2004,13:239-247.
    12. Samaridis J, M Colonna. Cloning of novel immunoglobulin superfamily expressed on human myeloid and lymphoid cells:structural evidence for new stimulatory and inhibitory pathways. Eur J Immunol,1997,27:660-665.
    13. Blery M, H Kubugawa, C Chen, et al. The paired lg-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1. Proc Natl Acad Sd USA, 1998,95:2446-2451.
    14. Masuda A, N A, M Tsut, et al. Cis binding between inhibitory receptors and MHC class can regulate mast cell activation. JEM,2007,4:907-920.
    15. Liu Z, Li W, Zhang M, et al. Paired Immunoglobin-like Peceptors A and B Are New Targets for Inducing Dendritic Cells Tolerance in Mice. J Huazhong Univ Sci Technolog Med Sci,2007,27(3):252-256.
    16. Nakamura A, Kobayashi E,Takai T. Exacerbated graft-versus-host disease in Pirb-/-mice.Nat Immunol,2004,5:623-629.
    17. Frankel AD, Young JA. HIV-1:fifteen proteins and an RNA. Annu Rev Bio chem,1998, 67:1-25.
    18.刘峥嵘,张敏,黎纬明等。IL-10诱导小鼠树突状细胞耐受的分子机制。中国病理生理杂志,2008,24(2):373-378。
    1. Robin M, Porcher R, Dc Castro Araujo R, et al. Risk factors for late infections after allogeneic hematopoietic stem cell transplantation from a matched related donor. Biol Blood Marrow Transplant,2007,13(11):1304-1312.
    2. Sprent J, Schaefler M, Gao EK, et al. Role of T cell subsets in lethal graft-versus-host disease directed to class versus class H-2 differences. J Exp Med,1988,167(4):556-569.
    3. Speiser DE, Bachmann MF, Shahinian A, et al. Acute graft-versus-host disease without costimulation via CD28. Transplantation,1997,63(7):1042-1050.
    4. Seung E, Iwakoshi N, Woda BA, et al. Allogeneic hematopoietic chimerismin mice treated with sublethal myeloablation and anti-CD 154 antibody:absence of graft versus host disease, induction of skin allograft tolerance, and prevention of recurrent autoimmunity in islet allografted NOD/Lt mice. Blood,2000,95(6):2175-2187.
    5. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S:Donor-type CD4(+) CD25(+) regulatory T cells suppress lethal acute graft-versushost disease after allogeneic bone marrow transplantation. J Exp Med,2002; 196:389-399.
    6. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell allorea ctivity in mismatched hematopoietic transplants. Science,2002,295:2097-2100.
    7. Cooke KR, Kobzik L, Martin TR, Brewer J, Delmonte J Jr, Crawford JM, Ferrara JL: An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation:Ⅰ. the roles of minor H antigens and endotoxin. Blood 1996; 88: 3230-3239.
    8. Bryson JS, Jennings CD, Caywood BE, et al.Enhanced graft-versus host disease in older recipient mice following allogeneic bone marrow transplantation. Bone Marrow Transplant,1997,19:721-728.
    9. Ferrara JL, Levy R, Chao NJ. Pathophysiologic mechanisms of acute graft-versus-host disease. Bio Blood Marrow Transplant,1999,5(6):347-356.
    10. Mapara MY, Kim YM, Wang SP, et al. Donor lymphocyte infusions mediate superior graft-versus-leukemia effects in mixed compared to fully allogeneic chimeras:a critical role for host antigen-presenting cells. Blood,2002,100(5):1903-1909.
    11. Hashimoto N, Narumi S, Itabashi Y, et al.Efficacy of donor splenocytes mixed with bone marrow cells for induction of tolerance in sublethally irradiated mice. Transpl Immunol,2002,10(1):37-41.
    12. Yoshia A, Narumi S, Hahimoto N, et al. CD8 T cell of donor splenocyte mixed with bone marrow cells is more effective than CD4 T cell for induction of donor-specific tolerance in sublethally irradiated mice. Transplant Proc,2004,36:2418-2422.
    13. Kuwatani M, Ikarashi Y, Mineishi S, et al. An irradiation-free nonmyeloablative bone marrow transplantation model:importance of the balance between donor T-cell number and the intensity of conditioning. Transplantation,2005,80(9):1145-52.
    1. Ferrara JL, Levy R, Chao NJ. Pathophysiologic mechanisms of acute graft-versus-host disease. Bio Blood Marrow Transplant,1999,5(6):347-356.
    2. Antin JH, Ferrara JL. Cytokine dysregulation and acute graft-versus-host disease. Blood,1992,8:2964-2968.
    3. Narita M, Takahashi M, Liu A, et al. Generation of dendritic cells from leukaemia cells of a patient with acute promyelocytic leukaemia by culture with GM-CSF, IL-4 and TNF-alpha. Acta Haematol,2001,106:89-94.
    4. Tiurbe G, Matuschek A, Kammerer U, et al. Inhibitory effects of rat bone marrow-derived dendritic cells on naive and alloantigen-specific CD4+T cells:a com parison between dendritic cells generated with GM-CSF plus IL-4 and dendritic cells generated with GM-CSF plus IL-10. BMC Res Notes,2009,23,2:12.
    5. Chang CC, Ciubotariu R, Manavalan JS, et al. Tolerization of dendritic cells by T(S) cells:the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol,2002,3: 237-243.
    6. Manavalan JS, Rossi PC, Vlad G, et al. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol,2003,11:245-258.
    7. Lu L, McCaslin D, Starzl TE, et al. Bone marrow derived dendritic cell progenitors (NLDC145+, MHC class Ⅱ+, B7-1dim, B7-2-) induce alloantigen-specific hyporesp-onsiveness in murine T lymphocytes. Transplantation,1995,60:1539-1545.
    8. Lutz MB, Kukutsch NA, Menges M, et al. Culture of bone marrow cells in GM-CSF plus high doses of lipopolysacharide generates exclusively immature dendritic cells which induce alloantigen-specific CD4 T cell anergy in vitro. Eur J Immunol, 2000,30:1048-1052.
    9. Rastellini C, Lu L, Ricordi C, et al. Granulocyte/macrophage colony stimulating factor stimulated hepatic dendritic cell progenitors prolong pancreatic islet allograft survival. Transplantation,1995,60:1366-1370.
    10. Fu F, Li Y, Qian S, et al. Costimulatory molecule deficient dendritic cell progenitors (MHC class Ⅱ+, CD80dim, CD86-) prolong cardiac allograft survival in nonimmun-osuppressed recipients. Transplantation,1996,62:659-665.
    11. Morelli AE, Thomson AW. Dendritic cells:regulators of alloimmunity and opportun ties for tolerance induction. Immunol Rev,2003,196:125-146.
    12. Min WP, Gorcynski R, Huang XY, et al. Dendritic cells genetically engineered to express Fas ligand induce donor specific hyporesponsiveness and prolong allograft survival. J Immunol,2000,164:161-167.
    13. Liu J, Liu Z, Witkowski P, et al. Rat CD8+ FOXP3+ T suppressor cells mediate tolerance to allogeneic heart transplants, inducing PIR-B in APC and rendering the graft invulnerable to rejection. Transpl Immunol,2004,13:239-247.
    14. Samaridis J, M Colonna. Cloning of novel immunoglobulin superfamily expressed on human myeloid and lymphoid cells:structural evidence for new stimulatory and inhibitory pathways. Eur J Immunol,1997,27:660-665.
    15. Blery M, H Kubugawa, C Chen, et al. The paired lg-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1. Proc Natl Acad Sd USA, 1998,95:2446-2451.
    16. Masuda A, N A, M Tsut, et al. Cis binding between inhibitory receptors and MHC class can regulate mast cell activation. JEM,2007,4:907-920.
    17. Liu Z, Li W, Zhang M, et al. Paired Immunoglobin-like Peceptors A and B Are New Targets for Inducing Dendritic Cells Tolerance in Mice. J Huazhong Univ Sci Technolog Med Sci,2007,27(3):252-256.
    18. Nakamura A, Kobayashi E,Takai T. Exacerbated graft-versus-host disease in Pirb(?) mice.Nat Immunol,2004,5:623-629.
    19. Frankel AD, Young JA. HIV-1:fifteen proteins and an RNA. Annu Rev Bio chem,1998, 67:1-25.
    20.刘峥嵘,张敏,黎纬明等。IL-10诱导小鼠树突状细胞耐受的分子机制。中国病理生理杂志,2008,24(2):373-378。
    21. Hirano A, Luke PP, Specht SM, et al. Graft hyporeactivity induced by immature donor-derived dendritic cells. Transpl Immunol,2000,8:161-168.
    22. Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-timulating factor. J Exp Med,1992,176:1693-1702.
    23. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S:Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versushost disease after allogeneic bone marrow transplantation. J Exp Med 2002;196:389-399.
    24. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell allore activity in mismatched hematopoietic transplants. Science,2002; 295:2097-2100.
    25. Cooke KR, Kobzik L, Martin TR, Brewer J, Delmonte J Jr, Crawford JM, Ferrara JL: An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation:Ⅰ. the roles of minor H antigens and endotoxin. Blood 1996;88: 230-3239.
    26. Bryson JS, Jennings CD, Caywood BE, et al.Enhanced graft-versus host disease in older recipient mice following allogeneic bone marrow transplantation. Bone Marrow Transplant,1997,19:721-728.
    27. Kang HG, Lee JE, Yang SH, et al.Donor-strain-derived immature dendritic cell pre-reatment induced hyporesponsiveness against allogeneic antigens.Immunology, 2010,129(4):567-577.
    28. Oh BC, Lee HM, Lim DP, et al. Effect of immature dendritic cell injection before heterotropic cardiac allograft. Transplant Proc,2006,38(10):3189-3192.
    29. James F,John L, Pavan R, et al. Graft-versus-host disease. Lancet,2009,373 (9674): 550-1561.
    30. Shlomchik WD. Antigen presentation in graft-vs-host disease. Exp Hematol,2003, 31:1187-1197.
    31. Lechler R, Ng WF, Steinman RM. Dendritic cells in transplantation-friend or foe? Immunity.2001,14:357-368.
    32. Sayegh MH, Carpenter CB. Role of indirect allorecognition in allograft rejection. Int Rev Immunol.1996; 13:221-229.
    33. Yaping Sun, Isao Tawara,Tomomi Toubai, et al. Pathophysiology of Acute Graft-versus-Host Disease:Recent Advances. Transl Res,2007,150(4):197-214.
    34. Auffermann-Gretzinger S, Lossos IS, Vayntrub TA, Leong W, Grumet FC, Blume KG, Stockerl-Goldstein KE, Levy R, Shizuru JA. Rapid establishment of dendritic cell chimerism in allogeneic hematopoietic cell transplant recipients. Blood,2002,99: 1442-1448.
    35. Shlomchik WD. Antigen presentation in graft-vs-host disease. Exp Hematol,2003, 31:1187-1197.
    36. Riddell SR, Bleakley M, Nishida T, Berger C, Warren EH. Adoptive transfer of allogeneic antigen-specific T cells. Biol Blood Marrow Transplant.2006;12:9-12.
    37. Anderson BE, McNiff JM, Jain D, Blazar BR, Shlomchik WD, Shlomchik MJ. Distinct roles for donor-and host-derived antigen-presenting cells and costimulatory molecules in murine chronic graft-versus-host disease:requirements depend on target organ. Blood,2005;105:2227-2234.
    38. Sayegh MH, Carpenter CB. Role of indirect allorecognition in allograft rejection. Int Rev Immunol.1996; 13:221-229.
    39. Appleman LJ, Boussiotis VA. T cell anergy and costimulation. Immunol Rev,2003, 192:161-180.
    40. Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol,2002,2: 116-126.
    41. Trurb G, Matuschek A, Kammerer U, et al. Inhibitory effects of rat bone marrow derived dendritic cells on naive an alloantigen specific CD4+ T cells:a comparison between dendritic cells generated with GM-CSF plus IL-4 and dendritic cells generated with GM-CSF plus IL-10. BMC Res Notes,2009,2(12):1-9.
    42. Tsai BY, Suen JL, Chiang BL. Lentivival mediated Foxp3 RNAi suppresses tumor growth of regulatory T cell like leukemia in a murine tumor model. Gene Ther,2010, 1, epub ahead of print.
    43. Besche V, Wiechmann N, Castor T, et al. Dendritic cells lentivirally engineered to overexpress interleukin-10 inhibit contact hypersensitivity responses, despite their partial activation induced by transduction-associated physical stress. J Gene Med. 2010,12(3):231-243.
    44. Zhou H, Wang ZD, Zhu X, et al. CD8+FOXP3+T cells From Renal Transplant Recipients in Quiescence Induce Immunoglobulin-like transcripts-3 and-4 on Dendritic Cells From Their Respective Donor. Transplant Proc,2007,39(10):3065-3067.
    45. Dillon S, Agrawal S, Banerjee K,et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigenpresenting cells and immunological tolerance. J Clini Invest,2006,116(4):916-928.
    46. Hui FZ, Wen HQ, Ping L, et al. IL-10 gene modified dendritic cells inhibit T helper type 1 mediated alloimmune responses and promote immunological tolerance in diabetes. Cell Mol Immunol,2008,5(1):41-46.
    47. Adorini L, Penna G. Dendritic cell tolerogenicity:a key mechanism in immuno modulation by vitamin receptor agonists. Human Immunol,2009,70(5):345-352.
    48. Zhang XS, Li M, Lian DM, et al. Generation of therapeutic dendritic cells and regulatory T cells for preventing allogeneic cardiac graft rejection. Clin Immunol, 2008,127(3):313-321.
    49. Min WP, Zhou D, Ichim TE, et al. Inhibitory feedback loop between tolerogenic dendritic cells and regulatory T cells in transplant tolerance. J Immunol,2003; 170: 1304-1312.
    50. Sato K, Yamashita N, Baba M, et al. Regulatory dendritic cells protect mice from murine acute graft-versus-host disease and leukemia relapse.Immunity,2003,18(3): 367-379.
    51. Imamura M, Tanaka J. Immunoregulatory cells for transplantation tolerance and graft versus leukemia effect. Int J Hematol,2003,78(3):188-194.
    1. Hayami K, Fukuta D, Nishikawa Y, et al. Molecular cloning of a novel murine cell-surface glycoprotein homologous to killer cell inhibitory receptors. J Biol Chem 1997; 272:7320-7327.
    2. Kubagawa H, Burrows PD, Cooper MD. A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells. Proc Natl Acad Sci USA,1997; 94:5261-5266.
    3. Yamashita Y, Ono M, Takai T. Inhibitory and stimulatory functions of paired Ig-like receptor (PIR) family in RBL-2H3 cells.J Immunol,1998; 161:4042-4047.
    4. Wende H, Colonna M, Ziegler A, et al. Organization of the leukocyte receptor cluster (LRC) on human chromosome 19q13.5. Mamm Genome,1999; 10:154-160.
    5. Yamashita Y, Fukuta D, Tsuji A, et al. Genomic structures and chromosomal location of p91, a novel murine regulatory receptor family. J Biochem,1998; 123:358-368.
    6. Takai T, Ono M. Activating and inhibitory nature of the murine paired Ig-like receptor (PIR) family. Immunol Rev,2001;181:215-222.
    7. Ho LH, Uehara T, Chen C-C,et al. Constitutive tyrosine phosphorylation of the inhibitory paired Ig-like receptor PIR-B. Proc Natl Acad Sci USA,1999;96:86-90.
    8. Liang S, Baibakov B, Horuzsko A. HLA-G inhibits the functions of murine dendritic cells via the PIR-B immune inhibitory receptor. Eur J Immunol,2002; 32:2418-2426.
    9. Nakamura A, Kobayashi E, Takai T. Exacerbated graft-versushost disease in Pirb-/-mice. Nat Immunol,2004; 5:623-629.
    10. Colonna M, Navarro F, Bellon T, et al. A common inhibotory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomono-cytic cells. J Exp Med,1997; 186:1809-1818.
    11. Wilson MJ, Torkar M, Haude A, et al. Plasticity in the organization and sequences of human KIR/ILT gene families. Proc Natl Acad Sci USA,2000;97:4778-4783.
    12. Lebbink RJ, de Ruiter T, Verbrugge A, et al. The mouse homologue of the
    luekocyte-associated Ig-like receptor-1 is an inhibitory receptor that recruits Src homology region 2-containing protein tyrosine phosphatase (SHP)-2 but not SHP-1. J Immunol,2004;172:5535-5543.
    13. Dennis G, JrStephan RP, Kubagawa H, et al. Characterization of paired Ig-like receptors in rats. J Immunol,1999;163:6371-6377.
    16. Kubagawa H, Chen CC, Ho LH, et al. Biochemical nature and cellular distribution of the paired immunoglobulin-like receptors, PIR-A and PIR-B. J Exp Med,1999; 189:309-318.
    17. Castells MC, Wu X, Arm JP, et al. Cloning of the gp49B gene of the immunoglobulin superfamily and demonstration that one of its two products is an early-expressed mast cell surface protein originally described as gp49. J Biol Chem,1994;269:8393-8401.
    18. Wagtmann N, Biassoni R, Cantoni C, et al. Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra-and intracellular domains. Immunity,1995;2:439-449.
    19. Colonna M, Samaridis J. Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science 1995; 268:405-408.
    20. Litwin V, Gumperz J, Parham P, et al. NKB1:a natural killer cell receptor involved in the recognition of polymorphic HLA-B molecules. J Exp Med,1994; 180:537-543.
    21. Phillips JH, Gumperz JE, Parham P, et al. Superantigendependent, cell-mediated cytotoxicity inhibited by MHC class I receptors on T lymphocytes. Science,1995; 268:403-405.
    22. Maliszewski CR, March CJ, Schoenborn MA, et al. Expression cloning of a human Fc receptor for IgA. J Exp Med,1990; 172:1665-1672.
    23. Zhang G, Young JR, Tregaskes CA, et al. Identification of a novel class of mammalian Fc c receptor. J Immunol,1995;155:1534-1541.
    25. Ono M, Yuasa T, Ra C, et al. Stimulatory function of paired immunoglobulin-like receptor-A in mast cell line by associating with subunits common to Fc receptors.J Biol Chem,1999; 274(30):288-296.
    26. Maeda A, Kurosaki M, Kurosaki T. Paired immunoglobulin-like receptor (PIR)-A is involved in activating mast cells through its association with Fc receptor c chain. J Exp Med,1998;188:991-995.
    28. Takai T. Roles of Fc receptors in autoimmunity. Nat Rev Immunol,2002;8:580-592.
    30. Ujike A, Takeda K, Nakamura A, et al. Impaired dendritic cell maturation and increased TH2 responses in PIR-B-/-mice. Nat Immunol,2002; 3:542-548.
    31. Ravetch JV, Lanier LL. Immune inhibitory receptors. Science,2000;290:84-89.
    32. Long EO. Regulation of immune responses through inhibitory receptors. Annu Rev Immunol,1999; 17:875-904.
    33. Maeda A, Kurosaki M, Ono M, et al. Requirement of SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 for paired immunoglobulin-like receptor B (PIR-B)-mediated inhibitory signal. J Exp Med,1998;187:1355-1360.
    35. Uehara T, Blery M, Kang DW, et al. Inhibition of IgE-mediated mast cell activation by the paired Ig-like receptor PIR-B. J Clin Invest,2001;108:1041-1050.
    36. Timms JF, Carlberg K, Gu H, et al. Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phospahtase SHP-1 in macrophages. Mol Cell Biol,1998;18:3838-3850.
    37. Maeda A, Scharenberg AM, Tsukada S, et al. Paired immunoglobulin-like receptor-B (PIR-B) inhibits BCR-induced activation of Syk and Btk by SHP-1.Oncogene, 1999; 18:2291-2297.
    39.O'Keefe TL, Williams GT, Davies SL, et al. Hyperresponsive B cells in CD22-deficient mice. Science,1996; 274:798-801.
    40. Otipoby KL, Andersson KB, Draves KE, et al. CD22 regulates thymus-independent responses and the lifespan of B cells. Nature,1996; 384:634-637.
    41. Pereira S, Lowell C. The Lyn tyrosine kinase negatively regulates neutrophil integrin signaling. J Immunol,2003; 171:1319-1327.
    42. Pereira S, Zhang H, Takai T, et al. The inhibitory receptor PIR-B negatively regulates neutrophil and macrophage integrin signaling. J Immunol,2004,173:5757-5765.
    43. Magram J, Connaughton SE, Warrier RR et al. IL-12-deficient mice are defective in IFNc production and type 1 cytokine responses. Immunity,1996,4:471-481.
    44. Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol,2006,24: 571-606.
    45. Gallegos AM, Bevan MJ. Central tolerance:Good but imperfect. Immunol Rev,2006, 209:290-296.
    46. Redmond WL, Sherman LA. Peripheral tolerance of CD8 T lymphocytes. Immunity, 2005,22:275-284.
    47. Hoyne GF, Dallman MJ, Lamb JR. T-cell regulation of peripheral tolerance and immunity:The potential role for Notch signaling. Immunology,2000,100:281-288.
    48. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol,2008,8:523-532.
    49. Sakaguchi S, Sakaguchi N, Shimizu J, et al. Immunologic tolerance maintained by CD25+ CD4+regulatory T cells:Their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev,2001,182:18-32.
    50. Shevach EM, DiPaolo RA, Andersson J,et al. The lifestyle of naturally occurring CD4+ CD25+ Foxp3+regulatory T cells. Immunol Rev,2006;212:60-73.
    51. Collison LW, Workman CJ, Kuo TT, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature,2007; 450:566-569.
    52. Grossman WJ, Verbsky JW, Tollefsen BL, et al. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood,2004, 104:2840-2848.
    53. Gondek DC, Lu LF, Quezada SA,et al. Cutting edge:Contactmediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent
    mechanism. J Immunol,2005,174:1783-1786.
    54. Liu Z, Tugulea S, Cortesini R, et al. Specific suppression of T helper alloreactivity by allo-MHC class I-restricted CD8+CD28-T cells. Int Immunol,1998,10:775-783.
    55. Suciu-Foca N, Manavalan JS, Scotto L, et al. Molecular characterization of allospecific T suppressor and tolerogenic dendritic cells:Review. Int Immunop harmacol,2005,5: 7-11.
    56. Manavalan JS, Kim-Schulze S, Scotto L, et al. Alloantigen specific CD8+CD28-FOXP3+T suppressor cells induce ILT3+ILT4+ tolerogenic endothelial cells, inhibiting alloreactivity. Int Immunol,2004,16:1055-1068.
    57. Scotto L, Naiyer AJ, Galluzzo S, et al. Overlap between molecular markers expressed by naturally occurring CD4+CD25+regulatory T cells and antigen specific CD4+ CD25+ and CD8+CD28-T suppressor cells. Hum Immunol,2004,65:1297-1306.
    58. Vlad G, Cortesini R, Suciu-Foca N. CD8+T suppressor cells and the ILT3 master switch. Hum Immunol,2008,69:681-686.
    59. Suciu-Foca N, Cortesini R. Central role of ILT3 in the T suppressor cell cascade. Cell Immunol,2007,248:59-67.
    60. Li D, Wang L, Yu L, et al. Ig-like transcript 4 inhibits lipid antigen presentation through direct CD1d interaction. J Immunol,2009,182:1033-1040.
    61. Lichterfeld M, Kavanagh DG, Williams KL, et al. A viral CTL escape mutation leading to immunoglobulin-like transcript 4-mediated functional inhibition of myelomonocytic cells. J Exp Med,2007,204:2813-2824.
    62. Chang CC, Ciubotariu R, Manavalan JS, et al. Tolerization of dendritic cells by T(S) cells:The crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol,2002,3: 237-243.
    63. Ristich V, Liang S, Zhang W, et al. Tolerization of dendritic cells by HLA-G. Eur J Immunol,2005,35:1133-1142.
    64. Young NT, Waller EC, Patel R, et al. The inhibitory receptor LILRB1 modulates the differentiation and regulatory potential of human dendritic cells. Blood,2008,111: 3090-3096.
    65. Vlad G, Cortesini R, Suciu-Foca N. CD8+T suppressor cells and the ILT3 master switch. Hum Immunol,2008,69:681-686.
    66. Vlad G, Liu Z, Zhang QY, et al. Immunosuppressive activity of recombinant ILT3. Int Immunopharmacol,2006,6:1889-1894.
    67. Vlad G, D'Agati VD, Zhang QY, et al. Immunoglobulinlike transcript 3-Fc suppresses T-cell responses to allogeneic human islet transplants in hu-NOD/SCID mice. Diabetes,2008,57:1878-1886.
    68. Kim-Schulze S, Scotto L, Vlad G, et al. Recombinant Ig-like transcript 3-Fc modulates T cell responses via induction of Th anergy and differentiation of CD8+ T suppressor cells. J Immunol,2006,176:2790-2798.
    69. Beinhauer BG, McBride JM, Graf P, et al. Interleukin 10 regulates cell surface and soluble LIR-2 (CD85d) expression on dendritic cells resulting in T cell hyporesp-onsiveness in vitro. Eur J Immunol,2004,34:74-80.
    70. Hayami K, Fukuta D, Nishikawa Y,, et al. Molecular cloning of a novel murine cell-surface glycoprotein homologous to killer cell inhibitory receptors. J Biol Chem, 1997,272:7320-7327.
    71. Kubagawa H, Burrows PD, Cooper MD. A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells. Proc Natl Acad Sci U S A,1997,94: 5261-5266.
    72. Yamashita Y, Fukuta D, Tsuji A, et al.Genomic structures and chromosomal location of p91, a novel murine regulatory receptor family. J Biochem,1998,123:358-368.
    73. Takai T. A novel recognition system for MHC class I molecules constituted by PIR. Adv Immunol,2005,88:161-192.
    74. Kollnberger S, Bird LA, Roddis M, et al. HLA-B27 heavy chain homodimers are expressed in HLA-B27 transgenic rodent models of spondyloarthritis and are ligands
    for paired Ig-like receptors. J Immunol,2004,173:1699-1710.
    75. Allan DS, Colonna M, Lanier LL, et al. Tetrameric complexes of human histocompatibility leukocyte antigen (HLA)-G bind to peripheral blood myelomono-cytic cells. J Exp Med,1999,189:1149-1156.
    76. Liu J, Liu Z, Witkowski P, et al. Rat CD8+ FOXP3+ T suppressor cells mediate tolerance to allogeneic heart transplants, inducing PIR-B in APC and rendering the graft invulnerable to rejection. Transpl Immunol,2004,13:239-247.
    77. Manavalan JS, Rossi PC, Vlad G, et al. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl Immunol,2003,11:245-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700