肝脏靶向治疗载体系统的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1.通过分子生物学技术对腺相关病毒(Adeno-associated virus, AAV)的改构以获得既能够特异性结合乙肝表面抗原(Hepatitis B surface antigen, HBsAg)又携带shRNA的重组病毒,为开发治疗HBV的靶向性试剂和药物奠定基础。
     2.研究肝脏去唾液酸糖蛋白受体(asialoglycoprotein receptor, ASGPR)大亚基异构体的生物学功能,为进一步以其为靶标的肝脏靶向治疗奠定基础。
     方法
     1.运用重组PCR技术将本室筛选得到的针对乙肝表面抗原的特异性多肽插入到2型腺相关病毒(AAV2)核衣壳蛋白的587位氨基酸处,同时将针对HBsAg的shRNA插入到AAV2的基因组。构建既携带shRNA又靶向HBsAg的重组AAV2病毒。
     2.运用磷酸钙共转染法包装重组的病毒,病毒经过纯化后,Real-Time PCR测定滴度。重组病毒按照一定的滴度感染HepG2、HepG2.215细胞,流式细胞仪检测感染效率。
     3.肝素封闭实验和HBsAb封闭实验验证重组病毒感染HepG2.215细胞的特异性,ELISA检测病毒对HBsAg、HBeAg的抑制。
     4.从正常人肝组织中克隆出ASGPR大亚基Hla、Hlb和小亚基H2c,构建EGFP融合表达质粒,荧光显微镜下观察大亚基Hla、Hlb和小亚基H2c的细胞定位。
     5.建立稳定表达ASGPRH1a、ASGPRH2c的功能性细胞系来研究ASGPR大亚基异构体H1b在ASGPR分子结合配体功能中的作用,同时研究sASGPR的生物学功能。
     结果
     1.成功构建了同时携带靶向HBsAg多肽和携带shRNA的重组AAV2,命名为rAAVssyU6-shRNA-hrGFP.纯化的病毒滴度在109v.g/ml以上。
     2. rAAVssyU6-shRNA-hrGFP对HepG2、HepG2.215细胞的感染率较AAV2明显升高,并且对HepG2.215细胞最为明显。并且可以抑制HepG2.215细胞HBsAg、HBeAg的表达。
     3.肝素封闭实验可以促进rAAVssyU6-shRNA-hrGFP病毒感染HepG2.215细胞,同时HBsAb封闭实验明显降低rAAVssyU6-shRNA-hrGFP病毒感染HepG2.215细胞。
     4.成功构建了EGFP融合表达质粒,EGFP-H1a主要在细胞膜表达;EGFP-H1b主要在细胞质内形成块状或颗粒状的聚集物;EGFP-H2c在细胞膜和细胞质内均匀分布。
     5.成功建立了表达ASGPR分子的功能性细胞系。并且ASGPR大亚基异构体H1b不影响ASGPR分子结合配体分子ASOR, sASGPR下调ASGPR分子结合配体的功能;sASGPR可以非特异性地和细胞结合,ASOR可以特异性上调sASGPR与细胞的结合。
     结论
     1. rAAVssyU6-shRNA-hrGFP对HepG2.215细胞的感染率明显升高,并且可以抑制HepG2.215细胞HBsAg、HBeAg的表达。
     2.rAAVssyU6-shRNA-hrGFP同时保留天然的趋向性和对HBsAg的靶向性。
     3.单独的ASGPR大亚基异构体H1b不影响ASGPR分子结合配体分子ASOR。
     4. sASGPR可以和ASOR分子形成复合物。sASGPR在维持体内糖基配体复合物代谢中发挥保护作用。当大量有害的糖基配体在外周血中出现时,sASGPR结合配体使其转运至肝脏代谢。本研究的创新点及意义
     1.首次构建了rAAVssyU6-shRNA-hrGFP病毒,并且该病毒在体外具有一定的靶向性和效应性。为靶向HBV的基因治疗提供了实验基础。
     2.首次探索了ASGPR大亚基异构体H1b及sASGPR在ASGPR结合配体功能中的作用。为系统了解ASGPR的生物学特性奠定了基础。
Objective
     1. To obtain HBsAg targeting recombinant adeno-associated virus (rAAV) encoding HBsAg-shRNA by molecular biological techniques, and lay a foundation for developing new reagents or drugs for the targeting treatment of HBV.
     2. To study the biological function of the major subunit variants of human asialoglycoprotein receptor and provide foundation for hepatic targeting therapy through ASGPR.
     Methods
     1. In order to construct both expressing shRNA and HBsAg targeting recombinant AAV2 virus,a HBsAg specific peptide was inserted into the 587AA position of AAV2 capside by recombinant PCR and meanwhile a DNA sequence expressing HBsAg-shRNA was inserted into the genome of AAV2.
     2. The recombinant AAV2 was paked by cotransfected with three plasmids into AAV-293 cells mediated by calcium acid phosphate. The rAAVs (rAAVssy-shHBs) infected HepG2,HepG2215 after purified and quntitated by Real-Time PCR.The efficiency of infection was tested by FACS.
     3. The specificity of the rAAVssyU6-shRNA-hrGFP on HepG2.215 cell was identified by heparin and HBsAb blocking Test. The silencing effect of the virus on HBsAg, HBeAg gene expression was assessed by ELISA.
     4. Two major subunit variants of ASGPRH1 (Hla and Hlb) and a minor.subunit variant H2c were cloned from normal human liver tissues. These genes were subcloned into eukaryotic expression vector to construct EGFP fusion protein in order to test their location in cell.
     5. To constructed a cell line which stably expression ASGPRH1a and H2c. The function of the cell line was tested by FACS.The influence of the split variant ASGPRHlb on the ASGPR-ASOR binding ability was tested by this cell line; the biological function of sASGPR was also studied by this cell line.
     Results
     1. The HBsAg targeting and shRNA expressing recombinant AAV2 virus was constructed successfully, designated rAAVssyU6-shRNA-hrGFP.The titer of the purified rAAVssyU6-shRNA-hrGFP was above 1×109v.g/ml.
     2. The efficiency of rAAVssyU6-shRNA-hrGFP infection on HepG2, HepG2.215 was increased, especially on HepG2.215. The HBsAg, HBeAg expression in HepG2.215 cells was down-regulated markedly after infection of rAAVssy-shHBs.
     3. The efficiency of the rAAVssyU6-shRNA-hrGFP on HepG2.215 cell was increased by heparin and decreased by HBsAb.
     4. The EGFP fusional protein vectors were constructed successfully. EGFP-Hla located on cell membrane; EGFP-Hlb expressed in cytoplasm by particle; EGFP-H2c expressed on cell membrane and in cytoplasm equably.
     5. A cell line which stably expression ASGPRHla and H2c was constructed successfully. The function of the cell line was confirmed by ASOR binding assay. Single Hlb showed no effect on ASOR binding to cells.sASGPR down regulated the ASGPR-ASOR binding.sASGPR could nonspecific bind to cells and ASOR specifically increased its binding.
     Conclusions
     1. The efficiency of rAAVssyU6-shRNA-hrGFP infection on HepG2.215 were increased markly.The HBsAg, HBeAg expression in HepG2.215 cells was down-regulated markedly after infection of rAAVssyU6-shRNA-hrGFP.
     2. rAAVssyU6-shRNA-hrGFP could target HBsAg but remain natural tropism.
     3. Single H1b showed no effect on ASGPR-ASOR binding.
     4. sASGPR could bind ASOR to form complex. SASGPR played a protective role in maintaining the balance of glycoconjugates metabolism.SASGPR recognized and bound the deleterious soluble glycoconjugates and then transported them safely to the liver, where they will be removed and degraded by the hepatic ASGPR system.
     Significances of the study
     1. This is the first reported rAAVssyU6-shRNA-hrGFP could targeting HBsAg and silencing HBsAg, HBeAg in vitro. This study laid a foundation for targeting gene therapy of HBV.
     2. Our works provide the first evidence of the function of human hepatic ASGPR Hlb and sASGPR in ASGPR-ligand binding. The study laid a foundation for further comprehensive study of the bionomics of ASGPR.
引文
[1]Jules L, Dienstag MD, Hepatitis B Virus Infetion. N Engl J Med,2008,359(14): 1486-1500.
    [2]Wright TL. Introduction to chronic hepatitis B infection. Am J Gastroenterol.2006, 101,1-6.
    [3]Lee S, Kim S. Gene regulations in HBV-related liver cirrhosis closely correlate with disease severity. J Biochem Mol Biol,2007,40(5),814-824.
    [4]Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caneorhabditis elegans. Nature,1998; 391:806-811.
    [5]Bernstein, E. et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature,2001; 409:363~366.
    [6]Mccaffrey AP, Nakai H, Pandery K, etal. Inhibition of hepatitis B virus in mice by RNA interference. Nat. Biotechnol,2003,21(6),639-644.
    [7]Wu H L, Huang LR, Huang CC, etal. RNA interference-mediated control of hepatitis B virus and emergence of resistant mutant.Gastroenterology,2005,128(3),708-716.
    [8]Sun Y, Li Z, Li L, etal.Effective inhibition of hepatitis B virus replication by small interfering RNAs expressed from human foamy virus vectors. Int J Mol Med.2007,19(4),705-711.
    [9]Kawa K, Higu C, Ha.Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. J Pharm Sci,2008,97:726-745
    [10]汤谷平,陆晓.非病毒载体研究进展.浙江大学学报(医学版),2009,38(1):1-6
    [11]Bouard D, Alazard-Dany D,Cosset FL.Viral vectors:from virology to transgene expression.Br J pharmacol,2009,157(2):153-165
    [12]Hohmann EL. Gene therapy-still a work in clinical and regulatory progress.N Engl J Med,2009,361(2):161-169
    [13]Flotte TR. Gene therapy progress and prospects:recombinant adeno-associated virus (rAAV) vectors. Gene Therapy,2004,11(10):805-810.
    [14]Shiau AL, Liu PS, Wu CL. Novel strategy for generation and titration of recombinant adeno-associated virus vectors. Journal of Virology,2005,79(1):193-201.
    [15]Girod A, Ried M, Wobus C, et al. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2.Nat Med.1999; 5:1052-1056.
    [16]Shi W, Bartlett JS. RGD inclusion in VP3 provides adenoassociated virus type 2 (AAV2)-based vectors with a heparin sulfate-independent cell entry mechanism. Mol Ther.2003; 7:515-525.
    [17]Dizhe EB, Akifiev BN, Missul BV, Orlov SV, Kidgotko OV, Sukonina VE, Denisenko AD, Perevozchikov AP. Receptor-mediated transfer of DNA-galactosylated poly-L-lysine complexes into mammalian cells in vitro and in vivo. Biochemistry (Mosc).2001,66(1):55-61.
    [18]Wang S, Cheng L, Yu F, Pan W, Zhang J. Delivery of different length poly (L-lysine)-conjugated ODN to HepG2 cells using N-stearyllactobionamide-modified liposomes and their enhanced cellular biological effects. Int J Pharm.2006, 311(1-2):82-85.
    [19]Peng DJ, Sun J, Wang YZ, Tian J, Zhang YH, Noteborn MH, Qu S. Inhibition of hepatocarcinoma by systemic delivery of Apoptin gene via the hepatic asialoglycoprotein receptor. Cancer Gene Ther.2007,14(1):66-73.
    [1]Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caneorhabditis elegans. Nature,1998; 391:806~811.
    [2]Bernstein, E. et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature,2001; 409:363~366.
    [3]Mccaffrey AP, Nakai H, Pandery K, etal. Inhibition of hepatitis B virus in mice by RNA interference. Nat. Biotechnol,2003,21(6),639-644.
    [4]Wu H L, Huang LR, Huang CC, etal. RNA interference-mediated control of hepatitis B virus and emergence of resistant mutant.Gastroenterology,2005,128(3),708-716.
    [5]Sun Y, Li Z, Li L, etal.Effective inhibition of hepatitis B virus replication by small interfering RNAs expressed from human foamy virus vectors. Int J Mol Med.2007,19(4),705-711.
    [6]Flotte TR. Gene therapy progress and prospects:recombinant adeno-associated virus (rAAV) vectors. Gene Therapy,2004,11(10):805-810.
    [7]Shiau AL, Liu PS, Wu CL. Novel strategy for generation and titration of recombinant adeno-associated virus vectors. Journal of Virology,2005,79(1):193-201.
    [8]Lai CL, Ratziu V, Yuen ME, et al. Viral hepatitis B. Lancet,2003,362(9401): 2089-2094.
    [9]Ocama P, Opio CK, Lee WM. Hepatitis B virus infection:current status. Am J Med, 2005,118 (12):1413.
    [10]Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev,2000, 64(1):51-68.
    [11]Wright T L. Introduction to chronic hepatitis B infection. Am J Gastroenterol.2006, 101,1-6.
    [12]Lee S, Kim S. Gene regulations in HBV-related liver cirrhosis closely correlate with disease severity. J Biochem Mol Biol,2007,40(5),814-824.
    [13]Chan HL, Hui AY, Wong VW, etal. Long-term follow-up of peginterferon and lamivudine combination treatment in HBeAg-positive chronic hepatitis B. Hepatology, 2005,41(6),1357-1364.
    [14]Buti M, Rodriguez FF, Jardi R, etal. Hepatitis B virus genome variability and disease progression:the impact of pre-core mutants and HBV genotypes. J Clin Virol,34 (Suppl 1), S79-S82.
    [15]Marcellin P. Advances in therapy for chronic hepatitisB. Semin L iverDis,2002,22 (Suppl1):33-36.
    [16]Milligan J. F. et al Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res,1987; 15(21):8783-8798.
    [17]Donze O. et al. RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Res,2002; 30(10):e46.
    [18]Paule M. R. et al. Survey and summary:transcription by RNA polymerases I and III. Nucleic Acids Res,2000; 28(6):1283-1298.
    [19]Myslinski E et al An unusually compact external promoter for RNA polymerase III transcription of the human H1RNA gene. Nucleic Acids Res 2001; 29(12):2502-2509.
    [20]Brummelkamp T. R. et al. A system for stable expression of short interfering RNAs in mammalian cells. Science,2002; 296(5567):550-553.
    [21]Paul C. P. et al. Effective expression of small interfering RNA in human cells. Nat Biotechnol,2002; 20(5):505-508.
    [22]Mccarty DM, Young SM, Samulski RJ. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet,2004,38(1):819-845.
    [23]Smitharica JR. Bartlett JS. Gene therapy:recombinant adeno-associated virus vectors. Curr Cardiol Rep,2001,3(1):43-49.
    [24]Daly TM. Overview of adeno-associated viral vectors. Methods Mol Biol,2004, 246(1):157-65.
    [25]Grieger JC, Samulski RJ. Adeno-associated virus as a gene therapy vector:vector development, production and clinical applications. Adv Biochem Eng Biotechnol, 2005,99(1):119-45.
    [26]Malecki M, Wozniak A, Janik P. Adeno-associated viruses (AAV). Postepy Biochem, 2008,54(1):57-63.
    [27]Liu T, Cong M, Wang P, etal. Adeno-associated virus Rep78 protein inhibits Hepatitis B virus replication through regulation of the HBV core promoter. Biochemical and Biophysical Research Communications.2009,385(1):106-111.
    [28]Li Z, He ML, Yao H, etal. Inhibition of HBV replication and gene expression in vitro and in vivo with a single AAV vector delivering two shRNA molecules. BMB Rep, 2009,42(1):59-64.
    [29]Chen CC, Sun CP, Ma HI, etal.Comparative study of anti-hepatitis B virus RNA interference by double-stranded adeno-associated virus serotypes 7,8, and 9. Mol Ther,2009,17(2):352-9.
    [30]Li Z, Yao H, Ma Y, etal.Inhibition of HBV gene expression and replication by stably expressed interferon-alphal via adeno-associated viral vectors. J Gene Med.2008, 10(6):619-27.
    [31]Moore MD, McGarvey MJ, Russell RA, etal.Stable inhibition of hepatitis B virus proteins by small interfering RNA expressed from viral vectors. J Gene Med.2005, 7(7):918-25.
    [32]Summerford C, Samulski RJ. Membrane-Associated Heparan Sulfate Proteoglycan Is a Receptor for Adeno-Associated Virus Type 2 Virions.J Virol,1998, 72(2):1438-1445.
    [33]Opie S R, Warrington K H, Agbandje-McKenna M,etal.Identification of Amino Acid Residues in the Capsid Proteins Adeno-Associated Virus Type 2 That Contribute to Heparan Sulfate Proteoglycan Binding. J Virol,2003,77(12):6995-7006.
    [34]张正茂,田拥军,孟忠吉,等.RNA干扰抑制人乙型肝炎病毒复制的研究.中国病毒学,2006,21(4):348-352.
    [35]Glebe D, Urban S, Knoop E V, etal. Mapping of the Hepatitis B Virus Attachment Site by Use of Infection-Inhibiting preS1 Lipopeptides and Tupaia Hepatocytes. GASTROENTEROLOGY 2005,129(1):234-245
    [36]Petersen J, Dandri M, Mierw W, etal. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat Biotechnol, 26(3):335-341
    [37]Girod A, Ried M, Wobus C, et al. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2.Nat Med.1999; 5:1052-1056.
    [38]Shi W, Bartlett JS. RGD inclusion in VP3 provides Aden associated virus type 2 (AAV2)-based vectors with a heparin sulfate-independent cell entry mechanism. Mol Ther.2003; 7:515-525.
    [39]Nicklin SA, Buening H, Dishart KL, et al. Efficient and selective AAV2-mediated gene transfer directed to human vascular endothelial cells. Mol Ther.2001; 4: 174-181.
    [40]Grifman M, Trepel M, Speece P, et al. Incorporation of tumortargeting peptides into recombinant adeno-associated virus capsids. Mol Ther.2001; 3:964-975.
    [41][41] Perabo L, Buning H, Kofler DM, et al. In vitro selection of viral vectors with modified tropism:the adeno-associated virus display. Mol Ther.2003; 8:151-157.
    [42][42] M"uller OJ, Kaul F, Weitzman MD, et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol.2003; 21:1040-1046.
    [43]Work LM, Nicklin SA, Brain NJ, et al. Development of efficient viral vectors selective for vascular smooth muscle cells. Mol Ther.2004; 9:198-208.
    [44]Work LM, Buning H, Hunt E, et al. Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses. Mol Ther.2006; 13:683-693.
    [45]Waterkamp DA, Muller OJ, Ying Y, et al. Isolation of targeted AAV2 vectors from novel virus display libraries. J Gene Med.2006; 8:1307-1319.
    [46]White SJ, Nicklin SA, Buning H, et al. Targeted gene delivery to vascular tissue in vivo by tropism-modified adeno-associated virus vectors. Circulation.2004; 109: 513-519.
    [47]Yu CY, Yuan Z, Cao Z, etal. A muscle-targeting peptide displayed on AAV2 improves muscle tropism on systemic delivery. Gene Ther,2009,16(8):953-962.
    [48]Li H, Murphy SL, Giles-Davis W, et al. Pre-existing AAV capsidspecificCD8+T cells are unable to eliminate AAV-transduced hepatocytes. Mol Ther 2007; 15: 792-800.
    [49]Wang L, Figueredo J, Calcedo R, et al. Cross-presentation of adeno-associated virus serotype 2 capsids activates cytotoxic T cells but does not render hepatocytes effective cytolytic targets.Hum Gene Ther 2007; 18:185-194.
    [50]Li C, Hirsch M, Asokan A, et al. Adeno-associated virus type 2 (AAV2) capsid-specific cytotoxic T lymphocytes eliminate only vector-transduced cells coexpressing the AAV2 capsid in vivo.J Virol 2007; 81:7540-7547
    [51]Nathwani AC, Davidoff AM, Hanawa H, et al. Sustained highlevel expression of human factor IX (hFIX) after liver-targeted delivery of recombinant adeno-associated virus encoding the hFIX gene in rhesus macaques. Blood 2002; 100:1662-1669.
    [52]Snyder RO, Miao C, Meuse L, et al. Correction of hemophilia B in canine and murine models using recombinant Aden associated viral vectors. Nat Med 1999; 5:64-70.
    [53]Mount JD, Herzog RW, Tillson DM, et al. Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy. Blood 2002,99:2670-2676.
    [1]Stockert RJ. The asialoglycoprotein receptor:relationships between structure, function, and expression. Physiol Rev,1995,75(3):591-609.
    [2]Schwartz AL. The hepatic asialoglycoprotein receptor. CRC Crit Rev Biochem 1984; 16(3):207-233.
    [3]Bischoff J, Lodish HF. Two asialoglycoprotein receptor polypeptides in human hepatoma cells. J Biol Chem.1987,262(24):11825-11832.
    [4]Spiess M, Lodish HF. Sequence of a second human asialoglycoprotein receptor: conservation of two receptor genes during evolution. Proc Natl Acad Sci U S A,1985, 82(19):6465-9.
    [5]Stockert RJ, Morell AG. Hepatic binding protein:the galactose-specific receptor of mammalian hepatocytes. Hepatology,1983,3(5):750-757.
    [6]Spiess M, Schwartz AL, Lodish HF. Sequence of human asialoglycoprotein receptor cDNA. An internal signal sequence for membrane insertion. J Biol Chem.1985, 260(4):1979-1982.
    [7]Chiacchia KB, Drickamer K. Direct evidence for the transmembrane orientation of the hepatic glycoprotein receptors. J Biol Chem,1984,259(24):15440-15446.
    [8]刘嘉,丁红晖,杨燕等.抗人ASGPR大亚基异构体蛋白H1b多克隆抗体的制备和鉴定.细胞与分子免疫学,2009,25(10):917-919
    [9]Meier M, Bider M D, Malashkevich V N, etal.Crystal structure of the carbohydrate recognition domain of the H1 subunit of the asialoglycoprotein receptor. J Mol Biol, 2000,300(4):857-865.
    [10]Hardy MR, Townsend RR, Parkhurst SM, Lee YC. Different modes of ligand binding to the hepatic galactose/N-acetylgalactosamine lectin on the surface of rabbit hepatocytes. Biochemistry,1985,24(1):22-28
    [11]Oka JA, Herzig MC, Weigel PH. Functional galactosyl receptors on isolated rat hepatocytes are hetero-oligomers. Biochem Biophys Res Commun,1990, 170(3):1308-1313.
    [12]Paietta E, Stockert RJ, Racevskis J. Differences in the abundance of variably spliced transcripts for the second asialoglycoprotein receptor polypeptide, H2, in normal and transformed human liver. Hepatology,1992,15(3):395-402.
    [13]Tolchinsky S, Yuk MH, Ayalon M, Lodish HF, Lederkremer GZ. Membrane-bound versus secreted forms of human asialoglycoprotein receptor subunits. Role of a juxtamembrane pentapeptide. J Biol Chem,1996,271(24):14496-14503.
    [14]Tolchinsky S, Yuk MH, Ayalon M, et al. Membrane-bound versus secreted forms of human asialoglycoprotein receptor subunits:Role of a juxtamembrane pentapeptide. J Biol Chem.1996;271(24):14496-503.
    [15]Yago H, Kohgo Y, Kato J, et al. Detection and quantification of soluble asialoglycoprotein receptor in human serum. Hepatology.1995;21(2):383-8.
    [16]Yik JH, Saxena A,Weigel PH.The minor subunit splice variants, H2b and H2c, of the human asialoglycoprotein receptor are present with the major subunit H1 in different hetero-oligomeric receptor complexes.J Biol Chem,2002,277(25):23076-23083.
    [17]Spiess M, Lodish HF. An internal signal sequence:the asialoglycoprotein receptor membrane anchor. Cell,1986,44(1):177-185.
    [18]Spiess M, Handschin C. Deletion analysis of the internal signal-anchor domain of the human asialoglycoprotein receptor H1. EMBO J,1987,6(9):2683-2691.
    [19]Bider MD, Cescato R, Jeno P, Spiess M. High-affinity ligand binding to subunit H1 of the asialoglycoprotein receptor in the absence of subunit H2. Eur J Biochem.1995, 230(1):207-212.
    [20]Saxena A, Yik JH,Weigel PH.H2, the minor subunit of the human asialoglycoprotein receptor, trafficks intracellularly and forms homo-oligomers, but does not bind asialo-orosomucoid. J Biol Chem,2002,277(38):35297-35304.
    [21]Weigel PH, Yik JH. Glycans as endocytosis signals:the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors. Biochim Biophys Acta,2002, 1572(2-3):341-363.
    [22]Weigel PH. Galactosyl and N-acetylgalactosaminyl homeostasis:a function for mammalian asialoglycoprotein receptors. Bioessays,1994,16(7):519-524.
    [1]Muzyczka N, Berns KI. Parvoviridae:the viruses and their replication. In Fields in Virology (4th edn), Knipe DM, Howley PM, Griffin DE, et al. (eds). Philadeliphia, PA:Lippincott Williams & Wilkins.2001; 2327-2359.
    [2]Carter PJ, Samulski RJ. Adeno-associated viral vectors as gene delivery vehicles. Int J Mol Med,2000.6:17-27.
    [3]Samulski RJ, Chang LS, Shenk T. A recombinant plasmid from which an infectious adeno-associated virus genome can be excised in vitro and its use to study viral replication. J Virol.1987; 61:3096-3101.
    [4]McLaughlin SK, Collis P, Hermonat PL, et al. Adeno-associated virus general transduction vectors:analysis of proviral structures. J Virol.1988; 62:1963-1973.
    [5]Snyder RO, Samulski RJ, Muzyczka N. In vitro resolution of covalently joined AAV chromosome ends. Cell.1990; 60:105-113.
    [6]Snyder RO, Im DS, Ni T, et al. Features of the adeno-associated virus origin involved in substrate recognition by the viral Rep protein. J Virol.1993; 67: 6096-6104.
    [7]McCarty DM, Ryan JH, Zolotukhin S, et al. Interaction of the adeno-associated virus Rep protein with a sequence within the A palindrome of the viral terminal repeat. J Virol.1994; 68:4998-5006.
    [8]Lusby EW, Berns KI. Mapping of the 5_ termini of two adenoassociated virus 2 RNAs in the left half of the genome. J Virol.1982; 41:518-526.
    [9]Smith RH, Kotin RM. The Rep52 gene product of adenoassociated virus is a DNA helicase with 3_-to-5_ polarity. JVirol.1998; 72:4874-4881.
    [10]King JA, Dubielzig R, Grimm D, et al. DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids. EMBO J.2001; 20: 3282-3291.
    [11]Dubielzig R, King JA, Weger S, et al. Adeno-associated virus type 2 protein interactions:formation of pre-encapsidation complexes. J Virol.1999; 73: 8989-8998.
    [12]Kyostio SR, Owens RA, Weitzman MD, et al. Analysis of adenoassociated virus (AAV) wild-type and mutant Rep proteins for their abilities to negatively regulate AAV p5 and p19 mRNA levels. J Virol.1994; 68:2947-2957.
    [13]Rabinowitz JE, Samulski RJ. Building a better vector:the manipulation of AAV virions. Virology.2000; 278:301-308.
    [14][14] Kronenberg S, Kleinschmidt JA, Bottcher B. Electron cryomicroscopy and image reconstruction of adeno-associated virus type 2 empty capsids. EMBO Rep.2001; 2:997-1002.
    [15]Becerra SP, Koczot F, Fabisch P, et al. Synthesis of adenoassociated virus structural proteins requires both alternative mRNA splicing and alternative initiations from a single transcript. J Virol.1988; 62:2745-2754.
    [16]] Seisenberger G, Ried MU, Endress T, et al. Real-time singlemolecule imaging of the infection pathway of an adenoassociated virus. Science.2001; 294:1929-32.
    [17]Atchison RW, Casto BC, Hammon WM. Adenovirus-associated defective virus particles. Science.1965; 149:754-756.
    [18]Bantel-Schaal U, zur Hausen H. Characterization of the DNAof a defective human parvovirus isolated from a genital site.Virology.1984; 134:52-63.
    [19]Bantel-Schaal U, Delius H, Schmidt R, et al. Human adenoassociated virus type 5 is only distantly related to other known primate helper-dependent parvoviruses. J Virol.1999; 73:939-947.
    [20]Hoggan MD, Blacklow NR, Rowe WP. Studies of small DNAviruses found in various adenovirus preparations:physical, biological, and immunological characteristics. Proc Natl Acad Sci USA.1966; 55:1467-1474.
    [21]Mayor HD, Melnick JL. Small deoxyribonucleic acid-containing viruses (picodnavirus group). Nature.1966; 210:331-332.
    [22]Georg-Fries B, Biederlack S, Wolf J, et al. Analysis of proteins, helper dependence, and seroepidemiology of a new human parvovirus. Virology.1984; 134:64-71.
    [23]Rutledge EA, Halbert CL, Russell DW. Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol.1998; 72: 309-319.
    [24]Gao GP, Alvira MR, Wang L, et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA.2002; 99: 11854-11859.
    [25]Gao G, Vandenberghe LH, Alvira MR, et al. Clades of Aden associated viruses are widely disseminated in human tissues. J Virol.2004; 78:6381-6388.
    [26]Melnick JL, Mayor HD, Smith KO, et al. Association of 20-millimicron particles with adenoviruses. J Bacteriol.1965; 90:271-274.
    [27]Mori S, Wang L, Takeuchi T, et al. Two novel Aden-associated viruses from cynomolgus monkey:pseudotyping characterization of capsid protein. Virology.2004; 330:375-383
    [28]Schmidt M, Voutetakis A, Afione S, et al. AAV12, isolated from vervet monkey, has unique tropism and biological as well as neutralization properties. Mol Ther.2006;13:S288.
    [29]Lochrie MA, Tatsuno GP, Arbetman AE, et al. Adeno-associated virus (AAV) capsid genes isolated from rat and mouse liver genomic DNA define two new AAV species distantly related to AAV-5. Virology.2006; 353:68-82.
    [30]Jiang H, Lillicrap D, Patarroyo-White S, et al. Multi year therapeutic benefit of AAV serotypes 2,6, and 8 delivering factor VIII to hemophilia A mice and dogs. Blood.2006; 108:107-115.
    [31]Sun B, Zhang H, Franco LM, et al. Efficacy of an adenoassociated virus 8-pseudotyped vector in glycogen storage disease type Ⅱ. Mol Ther.2005; 11: 57-65 57-65.
    [32]Conlon TJ, Cossette T, Erger K, et al. Efficient hepatic delivery and expression from a recombinant adeno-associated virus 8 pseudotyped alpha 1-antitrypsin vector. Mol Ther.2005; 12:867-875.
    [33]Wang L, Calcedo R. Nichols TC, et al. Sustained correction of disease in naive and AAV2-pretreated hemophilia B dogs:AAV2/8-mediated, liver-directed gene therapy. Blood.2005; 105:3079-3086.
    [34]Wang AY, Peng PD, Ehrhardt A, et al. Comparison of adenoviral and adeno-associated viral vectors for pancreatic gene delivery in vivo. Hum Gene Ther.2004; 15:405-413.
    [35]Wang Z, Zhu T, Qiao C, et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol.2005; 23:321-328.
    [36]Halbert CL, Allen JM, Miller AD. Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol.2001; 75:6615-6624.
    [37]Kawamoto S, Shi Q, Nitta Y, et al. Widespread and early myocardial gene expression by adeno-associated virus vector type 6 with a beta-actin hybrid promoter. Mol Ther.2005; 11:980-985.
    [38]Sun B, Zhang H, Franco LM, et al. Correction of glycogen storage disease type Ⅱ by an adeno-associated virus vector containing a muscle-specific promoter. Mol Ther.2005; 11:889-898.
    [39]Blankinship MJ, Gregorevic P, Allen JM, et al. Efficient transduction of skeletal muscle using vectors based on adenoassociated virus serotype 6. Mol Ther.2004; 10:671-678.
    [40]Mingozzi F, Schuttrumpf J, Arruda VR, et al. Improved hepatic gene transfer by using an adeno-associated virus serotype 5 vector. J Virol.2002; 76:10497-10502.
    [41]Apparailly F, Khoury M, Vervoordeldonk MJ, et al. Adenoassociated virus pseudotype 5 vector improves gene transfer in arthritic joints. Hum Gene Ther.2005; 16:426-434.
    [42]Reich SJ, Auricchio A, Hildinger M, et al. Efficient transsplicing in the retina expands the utility of adeno-associated virus as a vector for gene therapy. Hum Gene Ther.2003; 14:37-44.
    [43]Lotery AJ, Yang GS, Mullins RF, et al. Adeno-associated virus type 5:transduction efficiency and cell-type specificity in the primate retina. Hum Gene Ther.2003; 14: 1663-1671.
    [44]Liu Y, Okada T, Sheykholeslami K, et al. Specific and efficient transduction of Cochlear inner hair cells with recombinant adeno-associated virus type 3 vector. Mol Ther.2005; 12:725-733.
    [45]Liu G, Martins I, Wemmie JA, et al. Functional correction of CNS phenotypes in a lysosomal storage disease model using adeno-associated virus type 4 vectors. J Neurosci.2005; 25:9321-9327.
    [46]Liu G, Chen YH, He X, et al. Adeno-associated virus type 5 reduces learning deficits and restores glutamate receptor subunit levels in MPS VII mice CNS. Mol Ther.2007; 15:242-247.
    [47]Sandalon Z, Bruckheimer EM, Lustig KH, et al. Long-term suppression of experimental arthritis following intramuscular administration of a pseudotyped AAV2/1-TNFR:Fc Vector. Mol Ther.2007; 15:264-269.
    [48]Sandalon Z, Bruckheimer EM, Lustig KH, et al. Secretion of a TNFR:Fc fusion protein following pulmonary administration of pseudotyped adeno-associated virus vectors. J Virol.2004; 78:12355-12365.
    [49]Vandendriessche T, Thorrez L, Acosta-Sanchez A, et al. Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9 versus lentiviral vectors for hemophilia B gene therapy. J Thromb Haemost.2007; 5:16-24.
    [50]Riviere C, Danos O, Douar AM. Long-term expression and repeated administration of AAV type 1,2 and 5 vectors in skeletal muscle of immunocompetent adult mice. Gene Ther.2006; 13:1300-1308.
    [51]Grimm D, Streetz KL, Jopling CL, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature.2006; 441:537-541.
    [52]Pacak CA, Mah CS, Thattaliyath BD, et al. Recombinant adenoassociated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res.2006.
    [53]Inagaki K, Fuess S, Storm TA, et al. Robust systemic transduction with AAV9 vectors in mice:efficient global cardiac gene transfer superior to that of AAV8. Mol Ther.2006; 14:45-53.
    [54]Summerford C, Samulski RJ. Membrane-associated heparin sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol.1998; 72:1438-1445.
    [55]Asokan A, Hamra JB, Govindasamy L, et al. Adeno-associated virus type 2 contains an integrin alpha5betal binding domain essential for viral cell entry. J Virol.2006; 80:8961-8969.
    [56]Sanlioglu S, Benson PK, Yang J, et al. Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by racl and phosphatidylinositol-3 kinase activation. J Virol.2000;74:9184-9196.
    [57]Li E, Stupack D, Bokoch GM, et al. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J Virol.1998; 72: 8806-8812.
    [58]Odorizzi G, Babst M, Emr SD. Fablp PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell.1998; 95:847-858.
    [59]Pajusola K, Gruchala M, Joch H, et al. Cell-type-specific characteristics modulate the transduction efficiency of adenoassociated virus type 2 and restrain infection of endothelial cells. J Virol.2002; 76:11530-11540.
    [60]Douar AM, Poulard K, Stockholm D, et al. Intracellular trafficking of adeno-associated virus vectors:routing to the late endosomal compartment and proteasome degradation. J Virol.2001; 75:1824-1833.
    [61]Bartlett JS, Wilcher R, Samulski RJ. Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors.J Virol.2000; 74:2777-2785.
    [62][62] Xiao W, Warrington KH Jr, Hearing P, et al. Adenovirusfacilitated nuclear translocation of adeno-associated virus type2. J Virol.2002; 76:11505-11517.
    [63]Sonntag F, Bleker S, Leuchs B, et al. Adeno-associated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus. J Virol.2006; 80:11040-11054.
    [64]Kronenberg S, Bottcher B, von der Lieth CW, et al. A conformational change in the adeno-associated virus type 2 capsid leads to the exposure of hidden VP1 N termini. J Virol.2005; 79:5296-5303.
    [65]Zadori Z, Szelei J, Lacoste MC, et al. A viral phospholipase A2 is required for parvovirus infectivity. Dev Cell.2001; 1:291-302.
    [66]Girod A, Wobus CE, Zadori Z, et al. The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. J Gen Virol.2002; 83:973-978.
    [67]Yan Z, Zak R, Zhang Y, et al. Distinct classes of proteasomemodulating agents cooperatively augment recombinant adenoassociated virus type 2 and type 5-mediated transduction from the apical surfaces of human airway epithelia. J Virol.2004; 78:2863-2874.
    [68]Duan D, Yue Y, Yan Z, et al. Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. J Clin Invest.2000; 105: 1573-1587.
    [69]Ding W, Zhang L, Yan Z, et al. Intracellular trafficking of adeno-associated viral vectors. Gene Ther.2005; 12:873-880.
    [70]Denby L, Nicklin SA, Baker AH. Adeno-associated virus (AAV)-7 and-8 poorly transduce vascular endothelial cells and are sensitive to proteasomal degradation. Gene Ther.2005; 12:1534-1538.
    [71]Hacker UT, Wingenfeld L, Kofler DM, et al. Adeno-associated virus serotypes 1-5 mediated tumor cell directed gene transfer and improvement of transduction efficiency. J Gene Med.2005; 7:1429-1438.
    [72]Jennings K, Miyamae T, Traister R, et al. Proteasome inhibition enhances AAV-mediated transgene expression in human synoviocytes in vitro and in vivo. Mol Ther.2005; 11:600-607.
    [73]Lux K, Goerlitz N, Schlemminger S, et al. Green fluorescent protein-tagged adeno-associated virus particles allow the study of cytosolic and nuclear trafficking. J Virol.2005; 79:11776-11787.
    [74]Hansen J, Qing K, Srivastava A. Infection of purified nuclei by adeno-associated virus 2. Mol Ther.2001; 4:289-296.
    [75]Mani B, Baltzer C, Valle N, et al. Low pH-dependent endosomal processing of the incoming parvovirus minute virus of mice virion leads to externalization of the VP1 N-terminal sequence (N-VP1), N-VP2 cleavage, and uncoating of the full-length genome. J Virol.2006; 80:1015-1024.
    [76]Grieger JC, Snowdy S, Samulski RJ. Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly. J Virol.2006; 80:5199-5210.
    [77]Kotin RM, Menninger JC, Ward DC, et al. Mapping and direct visualization of a region-specific viral DNA integration site on chromosome 19ql3-qter. Genomics.1991; 10:831-834.
    [78]Kotin RM, Linden RM, Berns KI. Characterization of a preferred site on human chromosome 19q for integration of adenoassociated virus DNA by non-homologous recombination.EMBO J.1992; 11:5071-5078.
    [79]Redemann BE, Mendelson E, Carter BJ. Adeno-associated virus rep protein synthesis during productive infection. J Virol.1989; 63:873-882.
    [80]Brister JR, Muzyczka N. Mechanism of Rep-mediated adenoassociated virus origin nicking. J Virol.2000; 74:7762-7771.
    [81]Linden RM, Winocour E, Berns KI. The recombination signals for adeno-associated virus site-specific integration. Proc Natl Acad Sci USA.1996; 93: 7966-7972.
    [82][82] Linden RM, Ward P, Giraud C, et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA.1996; 93:11288-11294.
    [83]Weitzman MD, Kyostio SR, Kotin RM, et al. Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA. Proc Natl Acad Sci USA.1994; 91:5808-5812.
    [84]Berns KI, Giraud C. Biology of adeno-associated virus. Curr Top Microbiol Immunol.1996; 218:1-23.
    [85]Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes:vector toolkit for human gene therapy. Mol Ther.2006; 14:316-327.
    [86]Blouin V, Brument N, Toublanc E, et al. Improving rAAV production and purification:towards the definition of a scaleable process. J Gene Med.2004; 6(Suppl 1):S223-S228.
    [87]Grimm D, Kay MA, Kleinschmidt JA. Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1-6. Mol Ther.2003; 7:839-850.
    [88]Xiao X, L i J, Samulski R J. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol.1998, 72:2224-2232.
    [89]Zolotukhin S, Byrne BJ, Mason E, et al. Recombinant adenoassociated virus purification using novel methods improves infectious titer and yield. Gene Ther.1999; 6:973-985.
    [90]Grimm D, Kern A, Rittner K, et al. Novel tools for production and purification of recombinant adenoassociated virus vectors.Hum Gene Ther.1998; 9:2745-2760.
    [91]Scallan CD, Jiang H, Liu T, et al. Human immunoglobulin inhibits liver transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood.2006; 107:1810-1817.
    [92]Urabe M, Ding C, Kotin RM. Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther.2002; 13:1935-43.
    [93]Rabinowitz JE, Rolling F, Li C, et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol.2002; 76:791-801.
    [94]Bowles DE, Rabinowitz JE, Samulski RJ. Marker rescue of adeno-associated virus (AAV) capsidmutants:a novel approach for chimeric AAV production. J Virol.2003; 77:423-432.
    [95]Girod A, Ried M, Wobus C, et al. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2.Nat Med.1999; 5:1052-1056.
    [96]Hauck B, Chen L, Xiao W. Generation and characterization of chimeric recombinant AAV vectors. Mol Ther.2003; 7:419-425.
    [97]Gene therapy clinical trialsworldwide [DB/OL]. [2009-05-20]. http://www. wiley. co. uk/genetherapy/clinical
    [98]Rabinowitz JE, Bowles DE, Faust SM, et al. Cross-dressing the virion:the transcapsidation of adeno-associated virus serotypes functionally defines subgroups. J Virol.2004; 78:4421-4432.
    [99]Hauck B, Xu RR, Xie J, et al. Efficient AAV1-AAV2 hybrid vector for gene therapy of hemophilia. Hum Gene Ther.2006; 17:46-54
    [100]Bartlett JS, Kleinschmidt J, Boucher RC, et al. Targeted adenoassociated virus vector transduction of nonpermissive cells mediated by a bispecific F (ab'gamma)2 antibody. Nat Biotechnol.1999; 17:181-186.
    [101]Ponnazhagan S, Mahendra G, Kumar S, et al. Conjugate-based targeting of recombinant adeno-associated virus type 2 vectors by using avidin-linked ligands. J Virol.2002; 76:12900-12907.
    [102]Yang Q, Mamounas M, Yu G, et al. Development of novel cell surface CD34-targeted recombinant adenoassociated virus vectors for gene therapy. Hum Gene Ther.1998; 9:1929-37.
    [103]Wu P, Xiao W, Conlon T, et al. Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J Virol.2000; 74:8635-8647.
    [104]Warrington KH, Jr., Gorbatyuk OS, Harrison JK,et al. Adenoassociated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus. J Virol.2004; 78:6595-6609.
    [105]Loiler SA, Conlon TJ, Song S, et al. Targeting recombinant adeno-associated virus vectors to enhance gene transfer to pancreatic islets and liver. Gene Ther.2003; 10: 1551-1558.
    [106]Shi W, Arnold GS, Bartlett JS. Insertional mutagenesis of the adeno-associated virus type 2 (AAV2) capsid gene and generation of AAV2 vectors targeted to alternative cell-surface receptors. Hum Gene Ther.2001; 12:1697-1711.
    [107]Shi W, Bartlett JS. RGD inclusion in VP3 provides adenoassociated virus type 2 (AAV2)-based vectors with a heparin sulfate-independent cell entry mechanism. Mol Ther.2003; 7:515-525.
    [108]Nicklin SA, Buening H, Dishart KL, et al. Efficient and selective AAV2-mediated gene transfer directed to human vascular endothelial cells. Mol Ther.2001; 4: 174-181.
    [109]Grifman M, Trepel M, Speece P, et al. Incorporation of tumortargeting peptides into recombinant adeno-associated virus capsids. Mol Ther.2001; 3:964-975.
    [110]Perabo L, Buning H, Kofler DM, et al. In vitro selection of viral vectors with modified tropism:the adeno-associated virus display. Mol Ther.2003; 8:151-157.
    [111]M"uller OJ, Kaul F, Weitzman MD, et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol.2003; 21:1040-1046.
    [112]Work LM, Nicklin SA, Brain NJ, et al. Development of efficient viral vectors selective for vascular smooth muscle cells. Mol Ther.2004; 9:198-208.
    [113]Work LM, Buning H, Hunt E, et al. Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses. Mol Ther.2006; 13:683-693.
    [114]Waterkamp DA, Muller OJ, Ying Y, et al. Isolation of targeted AAV2 vectors from novel virus display libraries. J Gene Med.2006; 8:1307-1319.
    [115]White SJ, Nicklin SA, Buning H, et al. Targeted gene delivery to vascular tissue in vivo by tropism-modified adeno-associated virus vectors. Circulation.2004; 109: 513-519.
    [116]Shi X, Fang G, Shi W. Insertional mutagenesis at positions 520 and 584 of adeno-associated virus type 2 (AAV2) capsid gene and generation of AAV2 vectors with eliminated heparinbinding ability and introduced novel tropism. Hum Gene Ther.2006; 17:353-361.
    [117]Kern A, Schmidt K, Leder C, et al. Identification of a heparinbinding motif on adeno-associated virus type 2 capsids. J Virol.2003; 77:11072-11081.
    [118]Opie SR, Warrington KH Jr, Agbandje-McKenna M, et al.Identification of amino acid residues in the capsid proteinsof adeno-associated virus type 2 that contribute to heparin sulfate proteoglycan binding. J Virol.2003; 77:6995-7006.
    [119]Ried MU, Girod A, Leike K, et al. Adeno-associated virus capsids displaying immunoglobulin-binding domains permit antibody-mediated vector retargeting to specific cell surface receptors. J Virol.2002; 76:4559-4566.
    [120]Perabo L, Goldnau D, White K, et al. Heparan sulfate proteoglycan binding properties of adeno-associated virus retargeting mutants and consequences for their in vivo tropism.J Virol.2006; 80:7265-7269.
    [121]Stachler MD, Bartlett JS. Mosaic vectors comprised of modified AAV1 capsid proteins for efficient vector purification and targeting to vascular endothelial cells. Gene Ther.2006; 13:926-931.
    [122]Arnold GS, Sasser AK, Stachler MD, et al. Metabolic biotinylation provides a unique platform for the purification and targeting of multiple AAV vector serotypes. Mol Ther.2006; 14:97-106.
    [123]Starovasnik MA, Braisted AC,Wells JA. Structural mimicry of a native protein by a minimized binding domain. Proc Natl Acad Sci USA.1997; 94:10080-10085.
    [124]M"uller OJ, Leuchs B, Pleger ST, et al. Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardiovasc Res.2006; 70:70-78.
    [125]Davidoff AM, Gray JT, Ng CY, et al. Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2,5, and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Mol Ther.2005; 11:875-888.
    [126]Thomas CE, Storm TA, Huang Z, et al. Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. J Virol.2004; 78:3110-3122
    [127]Nakai H, Yant SR, Storm TA, et al. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. JVirol.2001; 75:6969-6976.
    [128]Miller DG, Rutledge EA, Russell DW. Chromosomal effects of adeno-associated virus vector integration. Nat Genet.2002; 30:147-148.
    [129]Nakai H, Montini E, Fuess S, et al. AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet.2003; 34:297-302.
    [130][130] Donsante A, Vogler C, Muzyczka N, et al. Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors.Gene Ther.2001; 8: 1343-1346.
    [131]Donsante A, Miller DG, Li Y, et al. AAV vector integration sites in mouse hepatocellular carcinoma. Science.2007; 317:477.
    [132]Bell P, Moscioni AD, McCarter RJ, et al. Analysis of tumors arising in male B6C3F1 mice with and without AAV vector delivery to liver. Mol Ther.2006; 14: 34-44.
    [133]Nathwani AC, Davidoff AM, Hanawa H, et al. Sustained high level expression of human factor IX (hFIX) after liver-targeted delivery of recombinant adeno-associated virus encoding the hFIX gene in rhesus macaques. Blood.2002; 100:1662-1669.
    [134]Snyder RO, Miao C, Meuse L, et al. Correction of hemophilia B in canine and murine models using recombinant adenoassociated viral vectors. Nat Med.1999; 5: 64-70.
    [135]Schuettrumpf J, Baila S, Khazi F, et al. AAV vectors do not increase the risk of tumor formation in p53 deficient models. Mol Ther.2007; 15:S1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700