山东荷斯坦奶牛群体改良的方案和技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以现代动物遗传繁育学理论为指导,以山东荷斯坦奶牛群体改良为目标,在系统调查登记济南郊区代表性荷斯坦牛群体、分析制约荷斯坦奶牛群体改良因素基础上,综合运用现代计算机技术、分子生物技术和胚胎工程技术,开展了多项奶牛群体改良和育种技术研究,完成主要工作如下:
     1、本研究针对我国奶牛育种和现代奶牛场管理的需要,结合我国当前推行的乳用性能测定(DHI)和9分制体型线性鉴定体系,以Visual Foxpro8.0软件包为工具,开发了可在Windows操作平台运行上的现代奶牛登记与群体管理软件系统。该系统包括奶牛信息登记、信息查询、精液管理与选配、报表浏览、用户管理等模块,可对奶牛基本信息、系谱、奶牛图像、DHI测定、体型外貌评定、生产管理、繁殖、疾病治疗、精液等信息进行规范有效的采集和管理,从而方便地实现奶牛良种登记、奶牛评定、牛群繁殖和生产管理等功能。目前已在山东多家奶牛场和奶业小区投入生产运行。完成对济南市近郊主要牛场荷斯坦奶牛的品种登记、生产性能测定和体型线性评定,为奶牛群体改良提供了高效的技术平台;
     2、应用AFLP标记技术检测分析了中国荷斯坦奶牛的遗传结构,发现牛(群)的遗传杂合性与生产性能、功能寿命、体细胞数存在相关,杂合度高的个体通常具有较高的产奶量、较长的在群时间、较低的体细胞数和较短的产犊间隔。保持奶牛群体的遗传杂合性,有助于奶牛整体性能水平的提高。
     本研究利用双亲平均育种值和遗传距离对子代305天产奶量(Ymilk)、体细胞数(Yscc)和在群时间(YFHL)进行了预测,筛选出的最佳回归方程如下:
     研究结果表明,在实践中利用AFLP揭示的不同家系公牛与母牛群体间的遗传差异,可望用来预测后代的群内杂种优势和生产性能,在此基础上建立基于AFLP-DNA指纹的奶牛分子辅助选配技术是可行的。
     3、山东地区的荷斯坦母牛中,DGAT1基因K232A位点KK型表现为高的乳脂率、乳蛋白率和低的305天产奶量,AA型与之相反,KA型介于二者之间。对于305天产奶量、乳脂率和乳蛋白率, A基因的加性替代效应值分别为499.6kg(P<0.01)、-0.18% (P<0.01)和-0.07% (P<0.05),对产奶量的显性效应为270.5kg(P<0.01)。Leptin基因R4C位点对乳成分有显著影响,RR基因型比RC型牛乳脂量高34kg、乳蛋白量高8.8kg,比CC基因型乳脂量高30.4kg、乳蛋白量高20.8kg,R为有利等位基因,其基因加性效应为提高乳脂率0.25%和提高乳蛋白率0.1%。
     4、研究提出了充分利用国内外优异奶牛遗传材料的山东荷斯坦奶牛群体遗传改良技术策略,包括:建立以DHI、体型鉴定为核心的荷斯坦奶牛品种登记和科学管理体系;充分利用引进国外遗传材料和现代繁殖生物技术建立高产核心示范群;充分利用进口精液快速提高牛群质量,分享世界荷斯坦奶牛育种成果;广泛使用后裔测定验证公牛,按平衡育种原理科学选种选配;合理利用黄牛分阶段级进杂交繁育奶牛;应用繁殖生物技术建立奶牛、肉牛协同繁育的一体化生产改良新模式;健全奶牛育种和种质管理制度,自主培育或合作培育优秀种公牛等。
Several studies on improvement project and technologies of Holstein dairy cattle in Shandong were accomplished, which based on investigation of representative holstein herd in the suburb of Jinan City and factors analysis that affecting herd genetic improvement, applied modern computer technology, molecular biology and embryo biotechnology integratively. The results are as following:
     In order to meet the requirement of dairy cattle husbandry and genetic improvement in China rural area, the Cattle Breeding Management Information System by Visual FoxPro8.0 was designed. The system could accomplish herd management, cow evaluation and elite breed registration, intelligentized select mating and suggested ways of improving farm management, based on data collection and analysis of basic herd information and individual information on milk production, reproductive performance, body type score, health status, feeding and progeny performance. The application in several different scale farms shows it can improve the efficiency of farms management and cattle breeding remarkably.
     The genetic construction of Chinese Holstein cattle herd base on AFLP was analysed, the result showed relationships between genetic heterizygosity and production performance, functional herd life(FDL) and somatic cell count(SCC). The individuals with higher heterizygosity usually associated with higher milk yield and lower SCC and shorter FDL. To keep the genetic heterizygosity can help improve total performance of cattle herd.
     The best regress equations for predict performance of offspring based on the average breeding value of parents and their genetic distance are as fallows:
     The result showed the genetic difference between bulls and cow herds revealed by AFLP can use for predict the heterosis and performance of offspring. The new molecule marker assisted mating technology base on AFLP-DNA fingerprinting is practicable.
     In Shandong Holstein herd, the KK genotype in DGAT1 gene K232A associated with higher milk fat, milk protein content and lower milk yield in 305 days, on the contrary AA genotype is in opposition, and KA genotype is in the middle. The substitute additive effect of A gene for milk yield in 305 days, milk fat and milk protein was 499.6kg(P<0.01)、-0.18% (P<0.01)和- 0.07% (P<0.05) respectively. The Leptin R4C locus affect milk content remarkably which RR genotype with 34kg or 30.4kg milk fat yield, 8.8kg or 20.8kg milk protein yield higher than RC or CC genotype. A is the valuable gene which substitute additive effect is increase milk fat percentage 0.25% and milk protein percentage 0.1% respectively.
     The strategy for Shandong Holstein herd improvement with the genetic resource abroad was gave which include: establish the Holstein dairy cattle registration and management system base on the DHI and body type score system, establish the high yield leader nuclear population by modern reproduction technology and imported genetic resource, genetic improve herd rapidly by imported elite bull semen to share the world Holstein breeding fruit, popularize progeny test bulls and select mating accord to balance breeding principle, breeding dairy cattle from scalper by two-step grading cross, set up the innovative dairy cattle and meat cattle cooperating breeding system, breeding elite bull by ourselves or cooperation, consummate national dairy breeding and breeding material management system.
引文
[1]史济民、汤观全编著,Visual FoxPro及其应用系统开发[M],北京:清华大学出版社
    [2]常明华主编,数据库技术及开发教程[M],北京:电子工业出版社,2000
    [3]王根林,韩照玉等.“牛场技术管理软件系统”的设计[J].畜牧与兽医,2003,35(9):15~16
    [4]李友.奶牛场微机管理系统的开发[J].中国奶牛,1999,(4):14
    [5] Buenger A, DucrocqV, Swalve HH, Analysis of survival in dairy cows with supplementary data on type scores and housing systems from a region of northwest Germany[J]. J. Dairy Sci,2001,84(6):1531-41
    [6] Pryce JE, Coffey Mp, Brotherstone S, The genetic relationship between calving interval,body condition score and linear type and management traints in registerd Holsteins[J].J. Dairy Sci.2000,83:2664-71
    [7] Pryce, J.E. Coffey, M.P. and Brotherstone. S. 2000. The genetic relationship between calving interval, body condition score and linear type and management traits in registered Holsteins[J]. J. Dairy Science 83: 2664-2671
    [1]曹新,王强等.牛催乳素基因组及其cDNA全长序列的分子克隆和分析[J],遗传学报. 2002.29(9): 768-773
    [2]陈大霞,司马杨虎等.温度对AFLP银染检测的影响[J].蚕学通讯. 2003, 23(1): 1-4
    [3]陈洪,朱立煌,李冬梅.致病性念珠菌DNA的AFLP指纹图谱[J].科学通报, 1996(10): 935-938.
    [4]程宁辉,杨金水,高燕萍等.玉米杂种一代与亲本基因表达差异的初步研究[J].科学通报, 1996, 41(5): 451~454.
    [5]单雪松,张沅,李宁.奶牛微卫星基因座与产奶性能关系的研究[J].遗传学报. 2002. 29(5): 430-433.
    [6]单雪松.奶牛weaver基因及其连锁微卫星位点结构、特性和应用的研究[D] .中国农业大学博士学位论文, 2000.
    [7]额尔和花.与鸡抱性相关的催乳素基因SNP研究[M].华中农业大学硕士学位论文. 2003.
    [8]国家统计局,《山东省国民经济和社会发展统计公报》, 2000-2007
    [9]苟本富,叶华虎等. AFLP标记在小香羊遗传多态性检测中的应用[J].动物学杂志. 2003, 38(5): 45-49.
    [10]韩双艳,郭勇. AFLP在分子生物学研究中的运用[J].生物技术通报, 2000, (2): 22-24.
    [11]黄志,猪IRS-I基因的克隆、染色体精细定位与SNP检测[M].华中农业大学硕士学位论文. 2003.
    [12]李传友,等. AFLP分析中多态性扩增产物的回收、克隆及鉴定[J].遗传, 1998, 20(4): 1-4.
    [13]李吉涛.中国荷斯坦奶牛催乳素基因5‘调控区多态性及其与产奶性状关系的研究[D].山东农业大学硕士学位论文. 2004.
    [14]林福玉等.中国荷斯坦牛K一酪蛋白基因多态性与产乳量的相关分析.中国畜牧杂志.1999. Vol 35,No.1:8-9.
    [15]林红,夏德全.遗传连锁图谱及其在鱼类遗传育种中的应用[J].中国水产科学, 2000. 7(1): 95-98.
    [16]刘荣宗,施启顺.不同杂交组合猪的RAPD研究[J].中国动物遗传育种研究.1997, 28~32.
    [17]孟安明.京北鸡及其杂交后代的DNA指纹分析.中国动物遗传育种研究[J] .1995,110~116.
    [18]牟玉莲等.催乳素受体基因的研究进展[J].遗传.2002.24(3):363-366.
    [19]任军,黄路生. AFLP标记与动物基因组遗传分析[J].动物生物技术通报, 2000, 7(1): 27-31.
    [20]任军,黄路生等. 24个中外猪种(群)的AFLP多态性及其群体遗传关系[J].遗传学报, 2002, 29(9): 774-781.
    [21]任军,黄路生等.猪基因组AFLP指纹图谱的构建[J].农业生物技术学报[J]. 2003, 11(2): 179-182.
    [22]舒建洪.奶牛BLG基因调控区的克隆及乳腺通用表达载体的构建[D].硕士西北农林科技大学硕士学位论文. 2004
    [23]沈丽琴,李昌吉,陈希宁,LEPTIN的功能及作用机制研究进展[J].中国预防医学杂志,2003,4(4):309-311.
    [24]孙少华等.肉牛群体遗传变异的微卫星多态性分析[J].中国农业大学学报, 1999,1(增刊): 83-87.
    [25]孙易等.用RAPD和AFLP方法对中国卤虫种及亲缘关系的研究[J].遗传学报, 2000, 27(3): 210-218.
    [26]万春玲,谭远德. AFLP标记在研究家蚕遗传多态性方面德应用[J].生物技术, 1999, 9(5): 4-9.
    [27]王斌,翁曼丽. AFLP的原理及其应用[J].杂交水稻, 1996(5): 27-30.
    [28]王采虹,王傅,戴洪秋,贺建航等.苹果基因组AFLP分析的DNA模板的制备及技术体系的建立[J].山东农大学报, 2001, 32(2): 197-200.
    [29]王超.北京荷斯坦牛乳成分的微卫星标记分析[D].四川农业大学硕士学位论文. 2004.
    [30]王立铭等主编,山东家畜[M],山东科学技术出版社,2001,3,p280
    [31]魏学蕊,孙少华.奶牛重要经济性状的分子遗传标记研究进展[J].辽宁畜牧兽医. 2002. 2: 34-36.
    [32]翁曼丽,谢纬武,伏健民,王斌.新一代分子标记技术-AFLP[J].应用与环境生物学报上. 1996.2(4): 424-429.
    [33]吴丰春,巍泓,王爱德. AFLP技术用于巴马小型猪遗传多样性的研究[J].中国试验动物学杂志. 2002 Aug: 12(4).
    [34]吴丰春,魏泓,甘世权等.贵州香猪基因组DNA的AFLP检测研究[J].遗传, 2001, 3(5): 423-426.
    [35]吴敏生,戴景瑞.扩增片段长度多态性(AFLP)—一种新的分子标记技术[J].植物学通报. 1998, 15(4): 68-74.
    [36]向钊等.牛泌乳性状QTL的研究进展[J].黄牛杂志.2002.vol28.4.p39-41
    [37]肖正中,赖松家.奶牛分子育种的研究进展[J].家禽业. 2003. 2: 13-15.
    [38]谢传晓等.玉米对生性状两个显性基因SCAR分子标记[J].高技术通讯.2002.8.
    [39]徐迎宁,傅衍等.德系黑白花奶牛数量性状基因定位研究初报.[J].浙江农业大学学报.1999,25(1): 107-110.
    [40]徐迎宁等.利用微卫星进行奶牛数量性状基因位点定位的研究[J].遗传学报,2000, 27(9): 772-776.
    [41]薛庆中等.应用分子标记辅助选择培育抗白叶枯病水稻恢复系[J].浙江大学学报, 1998, 24(6): 631-638.
    [42]张春庆. DNA指纹技术—AFLP的优化.山东农业大学学报(自然科学版) [J]. 2002, 33(1): 89-93.
    [43]张勤,张沅等.中国奶牛育种的现状及发展趋势[J].中国乳业.1998.1,p4-8.
    [44]张胜利,石万海,郑维滔,曹福存.2000.动物模型在北京奶牛遗传评定中的应用[J].北京国际奶业大会暨展览会论文集
    [45]张松.北京地区中国荷斯坦牛及新疆褐牛UMPS基因的分子遗传学研究[D].中国农业大学硕士学位论文. 1999
    [46]张文灿.国外畜禽生产新技术[M].中国农大出版社. 2000
    [47]张细权.动物遗传标记[M].中国农业大学出版社. 1997. p134.
    [48]张沅.家畜育种学[M].中国农业出版社. 2002
    [49]赵静,单雪松.扩增片段长度多态性(AFLP)在动物遗传育种中的应用进展[J].家畜生态2004, 25(4): 177-178.
    [50]钟金城,陈智华.杂种优势理论研究的回顾与展望[J].黄牛杂志,1996,22(4):4~6.
    [51]朱正歌,贾继增等.水稻AFLP指纹银染法显带研究[J].中国水稻科学[J]. 2002, 16(1): 71-73.
    [52] A. A. Swan,B. P. Kinghorn,1992,Evaluation and Exploitation of Crossbreeding in Dairy Cattle[J],J Dairy Sci, 75(2):624-639
    [53] Ajmone-Marsan P, Valentini A, et al. AFLPTMMarkers for DNA fingerprinting in cattle. [J],Animal Genetics, 1997, 28: 418-426.
    [54] Ashwell MS, Heyen DW, Sonstegard TS, et al. Detection of quantitative trait loci affecting milk production , health, and reproductive trait in Holstein cattle[J]. Dairy Sci., 2004, 87: 468-475.
    [55] Ayoub M. &Mather D. E. (2002) Effectiveness of selective geno-typing for detection of quantitiative trait loci: an analysis of grain and malt quality trait in three barley populations. [J]Genome , 45, 1116-24.
    [56] Bachem C W B, Oomen R J F J, Visser R G F. Transcript imaging with cDNA-AFLP: A step-by-step protocol. [J] Plant Mol. Biol.Rep., 1998, 16: 157-173.
    [57] Barendse W, Vaiman D, Kemp SJ, et al. A medium-density genetic linkage map of the bovine genome[J]. Mamm.Genome, 1997, 8: 21-28.
    [58] Becker J, Vos P, Kuiper M, Salamini F, Heun M, Combined mapping of AFLP and RFLPmarkers in barley[J]. Mol. Gen. Genet. 1995, 249: 65-73.
    [59]Bennewitz J; Reinsch N; Paul S; Looft C; Kaupe B; Weimann C; Erhardt G; Thaller G; Kühn Ch; Schwerin M; Thomsen H; Reinhardt F; Reents R; Kalm E. 2004. The DGAT1 K232A mutation is notsolely responsible for the milk production quantitative trait locus on the bovine chromosome 14[J]. Journal of dairy science Feb; 87 (2), pp. 431-42.
    [60] Bostein D, White R, Skolnick M and Davis R. American Journal of Human Genetics 1980, 32: 314-331.
    [61]BotsteinD, WhiteR, SkolnickM, etal. Construction of genetic linkage map in man using restriction fragement lenth polymorphism[J].American Journal of Human Genetics, 1980, 32: 314~331.
    [62]Buchanan F.C,Fitzsimmons C.J,Van Kessel A.G,Thue T.D,Winkelman-Sim D.C,Schmutz S.M Association of a missense mutation in the bovine LEPTIN gene with carcass fat content and LEPTIN mRNA levels [J].Genet.Sel.Evol,2002,34:105-116.
    [63]Buchanan F.C,Van Kessel A,Waldner C,Christensen D.A,Laarveld B,Schmutz S. M. Hot topic: An association between a LEPTIN single nucleotide polymorphism and milk and protein yield[J].J.Dairy Sci,2003,86:3164-3166.
    [64] C Knorr et al, Application of AFLP markers to genome mapping in poultry[J]. Animal Genetics, 1999, 30: 28-35.
    [65] Caetano-Anolles G, Bassam BJ and Gresshoff PM. DNA amplication fingerprinting using very shot arbitrary oligo nucleotide primers[J]. Biotechnology. 1991, 9: 553-557.
    [66] Casas E, Shackelford SD. Keele JW, et al. Detection of quantitative trait loci for growth and carcass composition in cattle[J] Anim.sci., 2003, 81: 2976-2983.
    [67] Chalhoub B A, Thibault S, Laucou V, Rameau C, Hofte H, Cousin R.Silver staining and recovery of AFLPTM amplication products on large denaturig polyacrylamide gels[J]. Biotechniques. 1999, 22: 216-220.
    [68] Clawson ML, Heaton MP, Chitko-McKown CG, et al. Beta-2-microglobulin haplotypes in U.S. beef cattle and association with failure of passive transfer in newborn calves[J]. Mamm Genome, 2004, 15: 227-236.
    [69] Conversi Meksem K, Ruben E, Hyten D, et al. on of AFLP bands into high-throughput DNA markers. form[J]. Mol. Genet. Genomics, 2001, 265: 207-214.
    [70] Cushwa W T, Medrano J F. Applications of the random amplified polymorphic DNA (RAPD) assay for genetic analysis of livestock species[J]. Animal Biotechnology. 1996, 7(1): 11-31.
    [71] Estelle L, Christope P, Bengt A. AFLPmapping and detection of quantitative trait loci (QTLs) for economically important traints in pinus sylvestris:a preliminary study[J] .Molecular Breeding. 2000, 6: 451-458.
    [72] Everts-van der Wind A, Kata SR, Band MR, et al. A 1463 gene cattle-human comparative map with anchor points defined by human genome sequence coordinates[J]. Genome Res. 2004, 14: 1424-1437.
    [73]Gregory GC; Snell RG . Characterization of the DGAT1 gene in the New Zealand dairy population. Journal of dairy science[J]. 2002. Dec; 85 (12), pp. 3514-7.
    [74] Giannasi N, Thorpe R and Malhotra A. The use of amplified fragment length polymorphism in determining species trees at fine taxonomic levels: analysis of a medically important snake, Trimeresurus albolabris[J]. Mol. Ecol., 2001, 10: 419-26
    [75]Grisart B; Coppieters W; Farnir F; Karim L; Ford C; Berzi P; Cambisano N; Mni M; Reid S; Simon P; Spelman R; Georges M; Snell R . Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition[J]. Genome research. 2002 Feb; 12 (2), pp. 222-31.
    [76]Grisart, Bernard Farnir, Frédéric Karim, Latifa Cambisano, Nadine Kim, Jong-joo Kvasz, Alex Mni, Myriam Simon, Patricia Frére, Jean-marie. Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition[J]. Proceedings of the National Academy of Sciences of the United States of America; 2/24/2004, Vol. 101 Issue 8, p2398, 6p
    [77]Gzyl, A., Augustynowicz, E., Mosiej, E., Zawadka, M., Gniadek, G., Nowaczek, A., Slusarczyk, J. (2005). Amplified fragment length polymorphism (AFLP) versus randomly amplified polymorphic DNA (RAPD) as new tools for inter- and intra-species differentiation within Bordetella[J]. J Med Microbiol 54: 333-346
    [78]Kyung Seok Kim, Ho Won Jeong, Chan Kyu Park, Ji Hong Ha,2001,Suitability of AFLP markers for the study of Genetic relationships among Korean native dogs[J],Genes Genet. Syst. 76, 243–250
    [79]Kaupe B; Winter A; Fries R; Erhardt G. 2004. DGAT1 polymorphism in Bos indicus and Bos taurus cattle breeds[J]. Journal of dairy research. 2004 May; 71 (2), pp. 182-7.
    [80]Kühn C; Thaller G; Winter A; Bininda-Emonds OR; Kaupe B; Erhardt G; Bennewitz J; Schwerin M; Fries R. 2004. Evidence for Multiple Alleles at the DGAT1 Locus Better Explains a Quantitative Trait Locus With Major Effect on Milk Fat Content in Cattle[J]. Genetics. 2004 Aug; 167 (4), pp. 1873-81.
    [81] Hongtrakul V, Huestis G and Knapp S. Amplified fragment length polymorphisms as a tool for DNA fingerprinting sunflower germlasm: genetic diversity among oilseed inbred lines. [J] Theor. Appl .Genet, 1997, 95: 400-407.
    [82] Isse N.,Ogawa Y.,Tamura N.,Masuzaki H.,Mori K.,Okazaki T.,Satoh N.,Shigemoto M.,Yoshinasa Y.,Nishi S.,Hosoda K.,Inazawa J.,Nakao K.,Structural organization and chromosomal assignment of the human obese gene[J] . J.Biol.Chem, 1995, 270: 27728-27733.
    [83]Jones C, Edwards K, Castaglione S, et al. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories[J]. Mol. Breed., 1997, 3: 381-390.
    [84] Jones J T, Harrower B E. A comparison of the efficiency of influential display and cDNA-AFLPs as tools for the isolation of differentially expressed parasite gene[J]. Fundam Appl. Nematol, 1998, 21: 81-88.
    [85] Kappes SM, Keele JW, Stone RT, et al. A second–generation linkage map of the bovine genome[J] . Genome , Res., 1997, 7: 235-249.
    [86] Kerbergs J, Siwek M, Crooijmans R P M A, et al. Multicolour fluorescent detection and mapping of AFLPmarkers in chiken (Gallu domesticus) [J] Animal Genet., 1999, 30: 274-285.
    [68] Knorr C, Cheng H H, Dodgson J B, et al. Application of AFLP markers to genome mapping in poultry[J]. Animal Genet, 1999, 30: 28~35.
    [69] Konieczny A and Ausubel F M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers[J]. Plant J., 1993, 4: 40-410.
    [87]Lagonigro R, Wiener P, Pilla F, Woolliams J. A, Williams J. L. A new mutation in the coding region of the bovine LEPTIN gene associated with feed intake[J] . Anim.Genet, 2003,34:371-374.
    [88] Lionneton E, Ravera S, Sanchez L, Aubert G, Delourme R and Ochatt S . Development of an AFLP-based linkage map and localization of QTLs for seed fatty acid content in condiment mustard(Brassica juncea) [J] . Genome 2002, 45: 1203-15.
    [89] Liu Z, Nichols A, Li P, Dunham R A. Interitance and usefulness of AFLP markers in channel catfish (Lctalurus punctatu), blue catfish (L.furcatus) and their F1, F2 and backcross hybrids[J]. Genetics, 1998, 258: 260-268.
    [90]Liefers S.C, te Pas M.F.W, Veerkamp R.F, Chilliard Y, Delavaud C, Gerritsen R, van der Lende T. Association of LEPTIN gene polymorphisms with serum LEPTIN concentration in dairy cows[J]. Mamm.Genome,2003,14(9):657-663.
    [91]Ludwig EH; Mahley RW; Palaoglu E; Ozbayrak?i S; Balestra ME; Borecki IB; Innerarity TL; Farese RV Jr . DGAT1 promoter polymorphism associated with alterations in body mass index, high density lipoprotein levels and blood pressure in Turkish women[J]. Clinical genetics. 2002 Jul; 62 (1), pp. 68-73
    [92] Majer D, Mithen R, Lewis B, et al. The use of AFLP fingerprinting for the genetic variation in fugi[J]. Mycol .Res., 1996, 100: 1107-1111.
    [93]McAllister A. J., Is Crossbreeding the Answer to Questions of Dairy Breed Utilization? [J], J Dairy Sci, September 1, 2002; 85(9): 2352– 2357
    [94] Meksem k, Leister, D, Peleman J, et al. A high resolution map of the vicinity of the R1 locus on chromosomeⅤof potato based on RFLP and AFLP markers[J].Mol .Gen Genet, 1995, 249: 74-81.
    [95] Mosig MO, Lipkin E, Khutoreskaya G, et al. A whole genome scan for quantitative trait loci affecting milk protein percentage in Israeli-Holstein cattle by means of selective milk DNApooling in a daughter Design using an adjusted false discovery rate criterion [J]. Genetics , 2001, 157: 1683-1689.
    [96] Motesen M, Den Bieman Mtr, Kuiper. Proc24thInternational Society For Animal Genetics [M], 1994.
    [97] Mueller UG and Wolfenbarger LL. AFLP genotyping and fingerprinting[J]. Trends In Ecology Evolution . 1999, 14: 389-394.
    [98] Murray V, Chutima M, et al. The determination of the sequences present in the shadow bands of a dinucleitide repeat. PCR[J], Nucleic Acids Res. 1993, 21: 654-670.
    [99] Nadesalingam J, Plante Y, Gibson J P. Detection of QTL for milk production on chromosomes 1 and 6 of Holstein cattle [J]. Mammalian Genome, 2001, 12: 27-31.
    [100] Nakamura Y, Leppert M, O’Connell P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M and Kumlin E, Variable number of tandem repeat (VNTR)markers for human gene mapping[J]. Science, 1987, 235: 1616-1622.
    [101] Nandi S, Subudhi P, Senadhira D, et al. Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol .Gen.Genet., 1997, 255: 1-8.
    [102] Negi M S, Devic M, Delseny M, Lakshmikumaran M.Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection[J] . Theor.Appl .Genet., 2000, 101: 146-152.
    [103]N. A. Antonishyn, R. R. McDonald, E. L. Chan, G. Horsman, C. E. Woodmansee, P. S. Falk, and C. G. Mayhall,2000,Evaluation of Fluorescence-Based Amplified Fragment Length Polymorphism Analysis for Molecular Typing in Hospital Epidemiology: Comparison with Pulsed-Field Gel Electrophoresis for Typing Strains of Vancomycin-Resistant Enterococcus faecium[J], . Clin. Microbiol. 38(11): 4058 - 4065.
    [104] Olsen H G, Gomez-Raya L, Vage D I, et al. A genome scan for quantitative trait loci affecting milk production in Norwegian dairy cattle [J]. J Dairy Sci, 2002, 85: 3124-3130.
    [105] Otsen M, den Bieman M, Kaiper M T, et al. Use of AFLP markers for gene mapping and QTL detection in the rat[J]. Genetics. 1996, 37: 289-294.
    [106] Ovilo C, Cervera M, Castellanos C and Martinez Zapater J. Characterisation of Iberian pig genotypes using AFLP markers[J]. Anim.Genet, 2000, 31: 117-122.
    [107] Oyama K., Katsuta T., Anada k., &Mukai F. Genetic parameters for reproductive performances of breeding cows and carcass traits of fattening animals in Japanese Black(Wagyu)cattle[J]. Animal Science 48, 456-62.
    [108]Otsen, M., M. den Bieman, M. T. Kuiper, M. Pravenec, V. Kren, T. W. Kurtz, H. J. Jacob, A. Lankhorst, and B. F. van Zutphen. 1996. Use of AFLP markers for gene mapping and QTL detection in the rat[J]. Genomics 37:289-294
    [109]P. H. M. Savelkoul, H. J. M. Aarts, J. de Haas, L. Dijkshoorn, B. Duim, M. Otsen, J. L. W. Rademaker, L. Schouls, and J. A. Lenstra, 1999, Amplified-Fragment Length Polymorphism Analysis: the State of an Art[J],. Clin. Microbiol., 37(10): 3083 - 3091. Journal of Clinical Microbiology
    [110] Panaud O, Chen X, Mc Couch S D. Development of microsatellite markers and characterization of sequence lengthen polymorphism (SSLP) in rice (Oryza sativa L.) [J] .Mol Gen.Genet, 1996. 252: 597-607.
    [111] Paran I and Michelmore R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce[J]. Theor. Appl. Genet., 1993, 85: 985-993.
    [112] Picardeau M, Prod H G, Raskine L, et al. Genotypic characterization of five subspecies of Mycobacterium kansasii[J]. J Clin Microbiol, 1997, 35(1): 25-32.
    [113] Plante Y, Gibson J P, Nadesalingam J, et al, Detection of quantitative trait loci affecting milk production traits on 10 chromosomes in Holstein cattle [J]. J Dairy Sci, 2001, 84: 1516~1524.
    [114]Pomp D,Zou T,Clutter A.C,Barendse W. Rapid Communication:Mapping of LEPTIN to Bovine Chromosome 4 by Linkage Analysis of a PCR-Based Polymorphism[J] . J. Anim. Sci, 1997, 75: 1427.
    [115] Ransom D and Zon L.Mapping zabrafish mutations by AFLP[J]. Methods Cell Biol, 1999, 60: 195-211.
    [116] Rodriguez-Zas S L, Southey B R, Heyen D W, Lewin H A. Interval and composite interval mapping of somatic cell score, yield, and components of milk in dairy cattle [J]. J Dairy Sci, 2002, 85: 3081~3091.
    [117] Ron M, Feldmesser E, Golik M, Tager-Cohen I. A complete genome scan of the Israeli Holstein population for quantitative trait loci by a daughter design[J]. J。Dairy Sci., 2004, 87: 476~90.
    [118] Ron M, Heyen D W, Band M, et al. Detection of individual loci affecting economic traits in the US Holstein population with the aid of DNA microsatellites [J]. Animal Genetics, 1996, 27: 105(Abstr.).
    [119] Ruiting L , Peter R R. Unique adaptor design for AFLP fingerprinting[J]. Biotechniques. 2000, 29: 745-750.
    [120] Ruiz I R, Dendaww J, Bockstaele E V, et al. AFLP markers reveal high polymorphic rates in ryegrasses (Lotium SPP.) [J]. Molecular Breeding. 2000, 6: 125-134.
    [121]Schenkel F.S, Miller S.P, Ye X, Moore S.S, Nkrumah J.D, Li C, Yu J, Mandell I.B, Wilton J.W, Williams J.L. Association of single nucleotide polymorphisms in the LEPTIN gene with carcass and meat quality traits of beef cattle[J]. J Anim Sci, 2005, 83(9):2009-20.
    [122]Schuler GD. Sequence mapping by electronic PCR[J]. Genome Res., 1997, 7: 541-550.
    [123] Soller M, Genetic mapping of the bovine genome using deoxyribonucleic acid-level markers to identify loci affecting quantitative traits of economic importance [J]. J Dairy Sci., 1990,73:2628~2646.
    [124]Spelman RJ; Ford CA; McElhinney [62] Hill M, Witsenboer H, Zabeau M, et al. PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp[J]. Theor. Appl Genet., 1996, 93: 1202-1210.
    [125] S.Tsuji, k.ltoh, et al. An association study using AFLP markers and application to a beef cattle breeding population[J]. Animal Genetics, 2004, 35: 40-43.
    [126] [98] Spelman R J, C oppieters W, Karim L, et al. Quantitative trait loci analysis for five milk production traits on chromosome 6 in the Dutch Holstein-Friesian populations [J]. Genetics, 1996,144: 1799~1808.
    [127] Steinger T, Haldimann P, Leiss K A and Muller-Scharer H, Does natural selection promote population divergence? A comparative analysis of population structure using amplified fragment length polymorphism markers and quantitative traits[J]. Mol Col, 002,Ⅱ: 2583-90.
    [128] Tautz, D. Hypervariability of simple sequences as a general source for polymorphic DNA markers[J]. Nucleic Acids Res, 1989, 17: 6463~6471.
    [129] Thue TD, Buchanan FC. Linkage mapping of NPY to bovine chromosome 4[J].Anim Genet. 2004, 35: 265-269.
    [130]Thaller G; Kr?mer W; Winter A; Kaupe B; Erhardt G; Fries R. Effects of DGAT1 variants on milk production traits in German cattle breeds[J]. Journal of animal science. 2003 Aug; 81 (8), pp. 1911-8.
    [131]Thaller G; Kühn C; Winter A; Ewald G; Bellmann O; Wegner J; Zühlke H; Fries R. DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle[J]. Animal genetics. 2003 Oct; 34 (5), pp. 354-7.
    [132]Tsuji S, Itoh K, Sasazaki S, Mannen H, Oyama K, Shojo M, Mukai F. 2004, An association study using AFLP markers and application to a beef cattle breeding population[J]. Animal Genetics, Feb;35(1):40-3
    [133]Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Res. 23:4407-4414
    [134] Van der Wurff AWG, Chan YL, van Straaln NM et al. TE-AFLP: combining rapidity and robustness in DNA fingerprinting. [J] Nucleic Acids Res, 2000, 28(24): 5005~5009(el05).
    [135] Van Eck H, Rouppe van der Voort J, et al. The inheritance and chromosomal localization of AFLP markers in a non-inbred potato offspring[J]. Mol. Breed, 1995, 1: 397-410.
    [136]VanRaden P. M. and Sanders A. H.,Economic Merit of Crossbred and Purebred US Dairy Cattle[J]., J Dairy Sci, March 1, 2003; 86(3): 1036 - 1044.
    [137] Van Tassell CP, Sonstegard TS. Ashwell MS. Mapping quantitative trait loci affecting dairy conformation to chromosom 27 in two Holstein grandsire families[J]. J Dairy Sci., 2004, 87: 450~457.
    [138] Velmala R J, Vilki H J, Elo K T, et al.A search for quantitative trait loci for milk production traits on chromosome 6 in Finnish Ayrshire cattle [J]. Animal Genetics. 1999,30: 136~143.
    [139] Venables W. N.&Ripley B. D. (1999) Modern Applied Statistics with S-plus, Springer-Verlag, New York.
    [140] Vikki H J, De Koning D J, Elo K, et al. Multiple marker mapping of quantitative trait loci of Finnish dairy cattle by regression [J]. Dairy Sci., 1997, 80: 198~204.
    [141] Vos P. AFLP: A new tehniquefor DNA fingerprinting [J]. Nucleic Acids Research. 1995(23): 4407-4414.
    [142] Wall, S. Brotherstone, J. F. Kearney, J. A. Woolliams, and M. P. Coffey, Impact of Nonadditive Genetic Effects in the Estimation of Breeding Values for Fertility and Correlated Traits[J],J Dairy Sci, January 1, 2005; 88(1): 376– 385
    [143]WeberJ,May P. A bundant class of human DNA polymorphisms which can be type dusing the polymerase chain reaction[J] .Am J Hum,Genet,1989,44:388~396.
    [144]Weigel K. A. and Barlass K. A., Results of a Producer Survey Regarding Crossbreeding on US Dairy Farms[J], J Dairy Sci, December 1, 2003; 86(12): 4148 - 4154.
    [145]Weller J I, Golik M, Seroussi E, Ezra E, Ron M. Population–wide analysis of a QTL affecting milk-fat production in the Israeli Holstein population[J]. J Dairy Sci. 2003, 86: 2219~27.
    [146]Weller JI; Golik M; Seroussi E; Ezra E; Ron M . Population-wide analysis of a QTL affecting milk-fat production in the Israeli Holstein population[J]. Journal of dairy science. 2003 Jun; 86 (6), pp. 2219-27.
    [147]WelshJ,Mmclel l and M. Fingerprinting genomes using PCR with arbitary Primers[J]. Nucleic Acid Research,1990, 18:7213~7218.
    [148]Winter A; Kr?mer W; Werner FA; Kollers S; Kata S; Durstewitz G; Buitkamp J; Womack JE; Thaller G; Fries R . Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content[J]. Proceedings of the National Academy of Sciences of the United States of America. 2002 Jul 9; 99 (14), pp. 9300-5.
    [149] Welsh J and McClelland M. Fingerprinting genomes using PCR with arbitary primers[J] . Nucleic A cids Res 1990, 17: 7213-7218.
    [150] Wimmers k., Murani E., Ponsuksili S., Yerle M., &Schellander K. (2002)Detection of quantitative trait loci for carcass traits in the pig by using AFLP.
    [151]WilliamsJ,Kubelik AR, LivakJ ,etal .DNA polymorphism samplified by arbitary primers are use ful as genetic markers[J].NucleicAcidResearch,1990,18:6531~6535.
    [152] X C Liu, X L Wu, R Z Liu, et al. Predicting heterosis through biochemical and RAPD markers in animal species[J]. Animal Biotechnology bulletin, 1998, 6(1): 4965-4970.
    [153] Xiao XG, Zhang LS, Li SH, et al. First step in the search for AFLP markers linked to sex in Actinidia[J] Acta Hort, 1999, 498: 99~104.
    [154]XH Wu, X Li,QS Sh. Relationship of hybrid performance with parent a ldifference and hybrid heterozygosity in non-inbred populations[J].Animal Biotechnolog Bulletin, 1998, 6(1): 127~133.
    [155]XC Liu, XL Wu, RZ Liu, etal. Predicting heterosis through biochememical and RAPD markers in animal species[J].Animal Biotechnology Bulletin,1998,6(1):77~83.
    [156] Y. Kassama, P. J. Rooney, and R. Goodacre,2002,Fluorescent Amplified Fragment Length Polymorphism Probabilistic Database for Identification of Bacterial Isolates from Urinary Tract Infections[J],J. Clin. Microbiol., 40(8): 2795 - 2800.
    [157]Yong G C, Blair M, Panaud O, et al. AFLP mapping of variety-specific rice genomic DNA sequences amplified fragment lengh polymorphisms (AFLP) from silver stained polyacrylamide gel[J]. Genome, 1996, 39: 373~378.
    [158]Y. Tamada, Y. Nakaoka, K. Nishimori, A. Doi, T. Kumaki, N. Uemura, K. Tanaka, S.-I. Makino, T. Sameshima, M. Akiba, M. Nakazawa, and I. Uchida,2001,Molecular Typing and Epidemiological Study of Salmonella enterica Serotype Typhimurium Isolates from Cattle by Fluorescent Amplified-Fragment Length Polymorphism Fingerprinting and Pulsed-Field Gel Electrophoresis[J] J. Clin. Microbiol., 39(3): 1057 - 1066.
    [159]Zabeau, M., and P. Vos. 1993. Selective restriction fragment amplification: a general method for DNA fingerprinting. Publication 0 534 858 A1, bulletin 93/13. European Patent Office, Munich, Germany.
    [160]Zhang Y.,Proenca R.,Maffei M.,Barone M.,Leoplod L.,Friedman J.,Positional cloning of the mouse obese gene and its human homologue[J].Nature,1994,372:425-431.
    [161] Zabeau M, Vos P. Selective restriction fragment amplification:A general method for DNA fingerprinting. European Patent Application Number: 94202629. 7(Publication No. 0534858a 1). Paris:European Patent Office [M]. 1993.
    [162] Zhang Q, Boichard D, Hoeschele I, et al. Mapping quantitative trait loci for milk production and health of dairy cattle in a large outbred pedigree [J]. Genetics,1998, 149: 1959~1973.
    [163]Zhang, Wencan (1999). New developments in animal breeding and dairy breeding strategies in China[J]. Proceedings of Overseas Chinese Symposium, Beijing.
    [164] Ziegle J, Weller J, Kuiper M, et al. AFLP map of the dog genome[J]. Animal Genet, 1996, (Suppl12): 71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700