FCC汽油非临氢降烯烃催化剂的制备与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环保法规的日益严格,清洁燃料的生产已成为世界炼油工业面临的迫切任务。催化裂化是以生产汽油和柴油为主、兼顾化工原料的炼油技术,尤其在我国,80%的汽油来自催化裂化,而催化裂化汽油中烯烃的含量高达40%~60%,而国内实施了汽油新标准,要求汽油中烯烃体积分数不大于35%。因此,提高催化裂化汽油质量对我国的清洁汽油生产具有重大的现实意义。
     本文分别研究了以γ-Al_2O_3、β-沸石和SiO_2,γ-Al_2O_3为载体的FCC(Fluidcatalytic cracking)汽油非临氢降烯烃催化剂的制备及应用。将酸改性、载体水蒸气处理、载体氯化技术及微波合成技术引入催化剂的制备中,提高了催化剂的降烯烃性能。同时微波诱导合成的引入大大加快了催化剂的合成速度。采用日本理学D/max-RBX射线衍射仪、FR-560型红外光谱仪、Digisorb 2400物理吸附仪对催化剂的物相、酸度、比表面积、孔径和孔容进行了测定,利用荧光指示剂法和PONA色谱法对降烯烃后汽油族组成进行测定。
     以γ-Al_2O_3为载体制备了降烯烃催化剂。通过活性组分的试验,发现利用A和B金属盐作为活性组分对烯烃降低有较理想的效果,烯烃降低二十几个百分点,并且反应条件比较缓和,反应容易控制。试验结果表明,催化剂中加入C或D酸后催化剂的活性明显提高,烯烃含量降低到35%以下,并且产品的其他性能指标都能达到要求范围:A、B双金属共浸时制得的催化剂活性高于两种金属分浸时制得的催化剂的活性,烯烃含量降到33.25%。催化剂的BET、孔容和平均孔径分别为208m~2/g,0.64ml/g,9.27nm。利用催化裂化全馏分汽油,反应在自制的小型固定床反应器上进行。最佳反应条件为:反应温度100℃,反应压力0.4MPa,体积空速3.0h~(-1)。在最佳反应条件下,FCC原料汽油烯烃由原来60.89%降到33.25%,芳烃由原来的15.04%上升到34.89%,其他性能也达到国标要求。
     对以β-沸石为载体的催化剂,600℃水蒸气处理β-沸石6h、以A、B金属作为活性组分,A、B原子比为8.0、负载量为10%,浸渍时间为70℃4h时,制备降烯烃催化剂,烯烃由原来的60%下降到38.13%,并且反应条件也比较缓和,反应容易控制。催化剂中加入C酸后,催化剂的活性明显提高,烯烃含量降低到32%。水蒸气处理过程对催化剂起到增加孔径孔容的作用,水蒸气处理前后的催化剂的
With the rigidly enforcing day by day of regulation of environmental protection, the production of the clean fuel has already become the urgent task that world oil refining industry has faced. The fluid catalytic cracking is in order to the oil refining device that produced mainly petrol and diesel oil, gave consideration to the industrial chemical raw materials. Especially in our country, 80% of the petrol comes from the catalytic cracking, and the content of the olefin is up to 40%-60% in the catalytic cracking petrol. The new standard of petrol has been implemented in our country, which has required that the volume fraction of olefin is not more than 35% in the petrol. Improving catalytic cracking petrol quality is of great realistic meanings to produce clean petrol in our country.
    In this paper, preparation and application of non-hydrogen reducing olefin catalysts have been studied separately in the FCC gasoline. These catalysts are prepared with y-Al_2O_3, β- zeolite and SiO_2, γ- Al_2O_3 as carrier, respectively. Acidic modification, carrier steam treating, carrier chlorine technology and microwave synthetic technology introduce preparation of catalyst, and improved reducing olefin performance of catalyst. At the same time, synthesis velocity of catalyst is accelerated greatly under microwave irradiation. By Japan's Neo-Confucianism D/max-RBX ray diffraction apparatus, FR-560 infrared spectroscopy, Digisorb 2400 physical absorption apparatus, phase, acidity, BET surface area, pore size and pore capacity is determined separately for catalyst. Utilize fluorescence indicator method and PONA chromatogram method to determined group content of product gasoline.
    A series of y- Al_2O_3 supported A-B bimetallic catalysts are prepared by conventional
引文
1.黄凤林.提高车用汽油质量的途径[J].西安石油学院学报(自然科学版),2001,16(2):25~30.
    2.王立新.降低催化裂化汽油烯烃助剂的工业试验[J].精细石油化工,2001,4:71~75.
    3.闫宏.LAP降烯烃助剂的工业应用[J].天然气与石油,2001,19(2):14~17.
    4.周惠娟,梅建国.FCC汽油降烯烃技术进展[J].当代石油化工,2002,10(5):33~37.
    5.吴秀章,刘冀一.新标准车用汽油的生[J]产.石油炼制与化工,2001,32(09):123~126.
    6.俞文豹,齐旭东,李伟东,刘志刚.降低FCC汽油中烯烃含量的LGO-A助剂工业应用[J].石油炼制与化工,2002,33(1):12~18.
    7.张文慧,刘会娥,陈兴銮,齐选良.催化裂化汽油醚化的试验研究[J].石油大学学报,1999,23(6):73~75.
    8.郝代军.降低FCC汽油烯烃的措施.炼油设计,2001,31(1):49~51.
    9.甘俊,张正义,邓阳,罗一斌.降低烯烃含量催化裂化催化剂GOR的开发与工业应用[J].工业催化,2001,32(6):50~54.
    10.孙书红,庞新梅,郑淑琴,张忠东.稀土超稳Y型分子筛催化裂化催化剂的研究[J].石油炼制与化工,2001,32(6):25~28.
    11.刘欣梅,钱铃,阎子峰.Y型分子筛改性方法评价[J].石油化工高等学校学报,1997,10(4):26~30.
    12.吴治华,王清遐,徐龙伢,谢素鹃,张戈.C_(5+)烯烃骨架异构和FCC汽油改质[J].石油炼制与化工,2000,31(11):25~29.
    13. Zarchy A S, et al. Effects of Sulfur on the Performance of Zeolite Isomerization Catalysts[J]. Catalysis, 1987, 355~365.
    14.王伟,魏强,徐占武,等.催化裂化汽油回炼技术应用[J].炼油设计,2002,32(3):24~28.
    15. KatohS, NakamuraM, SkocpolB. Reduction of olefins in FCC gasoline[J]. American Chemistry Society(ACS)Petroleum Chemistry Division Preprints, 1999, 44(4):483-486.16. Mott R W, Roberie T, ZhaoX-J. Suppressing FCC gasoline olefinicity while managing light olefins production[C] .National Petrochemical&Refiners Association(NPRA), AM-98-11.
    17.刘存柱,齐建勋.几种降低催化裂化汽油烯烃措施的比较[J].炼油设计,2001,31(12):19-22.
    18.徐占武,高亮,南云山,等.GOR-C降烯烃催化剂的工业应用[J].工业催化,2002,10(4):1~4.
    19.许明德,徐志成,达志坚,等.用于重油FCC的汽油降烯烃催化剂GOR-DQ的研究开发[J].石油炼制与化工,2003,34(1):19~23.
    20.刘从华,张忠东,邓友全,等.降低汽油烯烃含量裂化催化剂LBO-12的研制与开发[J].石油炼制与化工,2003,34(1):24~28.
    21.张振江.LBO-16降烯烃催化剂的工业应用[J].石化技术与应用,2003,21(4):267~269.
    22.张剑秋,田辉平,达志坚,等.改性Y型分子筛的氢转移性能考察[J].石油学报(石油加工),2002,18(3):70~74.
    23.杜军,李峥,达志坚,等.提高高硅Y型沸石稀土含量的研究[J].石油炼制与化工,2002,33(2):24~27.
    24.杜军,李峥,钱婉华,等.气相法制备FCC催化剂活性组元的探索[J].石油炼制与化工,2003,34(2):42~45.
    25.王龙延,王国良,刘金龙.降低催化裂化汽油烯烃助剂的工业试验[J].炼油设计,2000,30(7):47-51
    26.俞文豹,齐旭东,李伟东,等.降低FCC汽油中烯烃含量的LGO-A助剂工业应用[J].石油炼制与化工,2002,33(1):14~18.
    27.NPRA AM-98-17.
    28. Harding R. H, PetersA. W., NeeJ. R. D. New Developments in FCC Catalyst Technology [J]. Applied Catalysis, 2001, 221:389~396.
    29.刘存柱,齐建勋.[J]炼油设计,2001,31(12):19~22.
    30.王海彦,陈文艺,马骏,张少华.催化裂化C_5轻汽油组分醚化新型催化剂的性能研究[J].炼油设计,2001,31(2):26~29.
    31.张志华.C_5烯烃的醚化及烷基化[J]。石油炼制炼制与化工,1996,27(5):20-25.
    32.王海彦,陈文艺,马骏,张少华.催化裂化C_5轻汽油组分醚化新型催化剂的性能研究[J].炼油设计,2001,31(2):26~29.33.刘相伟.合成MTBE的分子筛催化剂研究进展[J].河南化工,1998,(3):8.
    34.NPRA AM-96-69
    35.杜桐林.催化裂化汽油醚化改质的工程开发[J].石油炼制,1993,24(11):26~29.
    36.王海彦,杜桐林,袁履冰.催化裂化轻汽油临氢醚化的研究[J].石油炼制与化工,1994,25(4):16~19.
    37.王海彦.催化裂化轻汽油醚化新工艺研究[J].石油炼制与化工,1997,28(2):24~27.
    38.杜桐林,张永兴,王海彦等.含烯烃汽油的临氢醚化工艺方法[P].中国,CN89105126.0.1991
    39.Chen N Y.择形催化在工业中的应用[M].北京:中石化出版社,1992,159~163.
    40.刘丹禾,石油炼制与化工,1999,30(4):21~24.
    41. NPRA, AM-97-95。
    42. NPRA, AM-01-30。
    43. Vladimir M. Shuveror, et al. Oil Gas J, 1997, 95(47):49-52.
    44. Garland B, Brignac, et al. US5985136, 1999
    45. Mingos D M P, Baghurst D R. [J]. Chem Soc Rev., 1991, 21:1~47.
    46.杨玲,路军.化学世界,2003,44(3):165~167.
    47. WCSun, PMGuy, JHJahngenetal. J. Org. Chem., 1988, 53:4414~4416.
    48. DALewis, JSSummers, TCWardetal. J. Polym. Sci., PartA, Polym. Chem., 1992, 30:1647~1654.
    49.蔡汉成,方云,夏咏梅等,有机化学,2003,23(3):298~304.
    50.樊兴君,尤进茂,谭干祖,俞贤达.微波促进有机化学反应进展[J].化学进展,1998,10(3):285-295.
    51.刘晔,刘蒲,高润雄,刘省明,殷元骐.微波条件下V_2O_5/TiO_2低温选择氧化甲苯制苯甲酸[J].催化学报,1998,19(3):224~228.
    52. Ying Wang, Jian Hua Zhu, Jie Ming Cao, Oin Hua Xu. Basic catalytic behavior of MgO directly dispersed on zeolites by microwave irradiation[J]. Microporous and Mesoporous Materials, 1998, 26:175~184.
    53.金钦汉.微波化学[M].北京:科学出版社.1999,86.
    54. M. Y. Tse, M. C. Depew and J. K. S. Wan, Res. Chem. Interm, 1990, 13, 221.55. N. Lingaiah, P. S. Sai Prasad, P. Kanta Rao, Lesley E. Smart, Frank J. Berry. Studies on magnesia supported mono-and bimetallic Pd-Fe catalysts prepared by microwave irradiation method [J]. APPLIED CATALYSIS, 213(2001):189—196.
    56. N. Lingaiah, P. S. Sai Prasad, P. Kanta Rao, F.J. Berry, L.E. Smart. Structure and activity of microwave irradiated silica supported Pd-Fe bimetallic catalysts in the hydrodechlorination of chlorobenzene [J]. CATALYSIS, 3 (2002): 391-397.
    57.赵杉林,张扬建,孙桂大,翟玉春.钛硅沸石分子筛TiMCM-41的微波合成与表征[J].催化学报,1999,20(1):93~95.
    58. Chu P, Dwyer F G, Vartuli J C..Crystallization Method Employing Microwave[P], U S:4778666, 1988, 10~18.
    59.宋天佑,徐家宁,徐文国,等.微波辐射法合成NaX分子筛[J].高等石油化学学报,1992,13(10):1209~1210.
    60. Wu C G, Bein T. [J]. Chem Commum, 1996, 8:925~926.
    61. Park S E, Kim D S, Chang J S, et al. [J]. Catal Today, 1998, 44:301-308.
    62. Lohse U, Bertram R, Janckek, et al. [J]. Chem Soc Faraday Trans, 1995, 91(7):1163-1172.
    63. Girnus I, Janckek K, Vetter R, et al. [J]. Zeolite, 1995, 15:33~39.
    64.许磊,王公慰,魏迎旭,齐越.MCM-41介孔分子筛合成研究[J].催化学报,1999,20(3):251~255.
    65. Sang-Eon Park, Dae Sung Kim, Jong-San Chang, Woo Young Kim. Synthesis of MCM-41 using microwave heating with ethylene glycol[J]CATALYSIS TODAY, 44(1998):301-308.
    66. P. M. Slangen, J. C. Jansen, H. van Bekkum. The effect of ageing on the microwave synthesis of zeolite NaA[J]. MICROPOROUS MATERIALS, 9(1997):259-265.
    67. McMahon K C, Suib S L, Johnson B G, et al. [J]. J Catalyst, 1997, 106:47-53.
    68.张东,田一光,罗根祥,赵杉林.Mn—MCM—41的微波合成及氧化还原行为研究[J].温州师范学院学报(自然科学版),2002,23(2):13~15.
    69.马波,孙万付,陈平.硅铝材料的微波合成[J].石油化工,1998,27(9):645~648.70.孙德坤,朱键华,时吉.等.微波法制备Al_2O_3/NaY新型复合多孔催化材料[J].催化学报,1998,19(1):81~84.
    71.解革,朱建华,淳运,刘琳,韩小伟.微波法研制CaO/NaY强碱性沸石催化新材料[J].催化学报,2001,22(5):445~448.
    72.朱建华,王英,淳远,吴振,须沁华.微波辐射法研制表面镀饰型沸石复合新材料[J].高技术通讯 2000 7:104~107.
    73. Suib S L, Zerger R P. [J]. J Catal, 1993, 139:383~391.
    74.毕先钧,谢小光,洪品杰,戴树珊.微波辐照引发甲烷部分氢化制合成气[J].催化学报,1999,20(1):70~72.
    75.孙兆林,张金生,丁洪生,程志林,高昌录.轻烃劳构化的系统研究[J].石油化工高等学校学报,1999,12(3):6~10.
    76.程志林,刘赞,晁自胜,万惠霖,孙兆林.微波诱导催化轻质烃芳构化[J].厦门大学学报(自然科学版),2002,41(3):315~321.
    77.候芙生.采取有效措施迎接挑战,进一步提高催化裂化生产技术水平[J].催化裂化协作组第七届年会报告论文集,2000:42~45.
    78.李永经.提高汽油辛烷值实现汽油升级换代[J].兰化科技,1997,15(4):211~2141.黄开辉,万惠霖编著.催化原理[M],北京.科学出版社1993:511-557
    2.朱洪法 编著.石油化工催化剂基础知识[M],北京.中国石化出版社1995:85~95.
    3.邵波,谢怀中,余学芬,金孝纯.荧光指示剂吸附法测定测定汽油烃类的影响因数[J].石油化工,2000,29(11):863~865.
    4.许友好.氢转移反应在烯烃转化中的作用探讨[J].石油炼制与化工,2002,33(1):38~41.
    5.蔡天锡,齐爱华,曹殿学.NiSO_4/γ-Al_2O_3对丙烯齐聚反应的催化行为[J].应用化学,1993,10(6):23~26.
    6.王国良,刘金龙,王文柯.降低催化裂化汽油烯烃含量的中型试验研究[J].炼油设计,2000,30(9):1~4.
    7.孙书红,庞新梅,郑淑琴,张忠东.稀土超稳Y型分子筛催化裂化催化剂的研究[J].石油炼制与化工,2001,32(6):25~28.
    8.樊宏飞,张先华,贺民,刘颐静,蔡天锡.硫酸铁—硫酸镍复合系列烯烃叠合催化剂的研究Ⅱ.Fe_((2/3)x)Ni_(1-x)SO_4-P_2O_5/γ-Al_2O_3催化剂的制备方法[J].石油学报,2000,16(2):46~51.
    9.樊宏飞,曹殿学,贺民,董辉,蔡天锡.硫酸铁—硫酸镍复合系列烯烃叠合催化剂的研究Ⅰ.Fe_((2/3)x_Ni_(1-x)SO_4-P_2O_5/γ-Al_2O_3催化剂的制备方法[J].石油学报,1999,15(3):52~57.
    10.唐晓东,严志宇,贺民,曹殿学,蔡天锡.负载型硫酸铁对烯烃齐聚催化作用的研究Ⅲ.Fe_2(SO_4)_3/γ-Al_2O_3的表征[J].石油学报,1997,13(1):18~22.
    11.孙兆林,程志林,李宏祥,桂建舟,张晓彤,金俏.液化石油气在ZnNi/HZSM—5催化剂上的芳构化[J].石油化工,2000,29(9):650~653.
    12.曹殿学,曲景平,刘松,贺民,张有家,蔡天锡.氯化γ—Al_2O_3催化剂上异丁烯选择聚合的研究[J].石油化工,1995,24(1):19~22.
    13.韩松,王瑞英,李承烈,林峰.CJC6烷烃低温异构化催化剂及工艺研究[J].石油炼制与化工,1998,29(9):19~22.
    14.叶晓东.降烯烃裂化催化剂的工业应用分析[J].炼油设计,2000,30(10):45~50.
    15.胡友良.烯烃聚合催化剂和聚合反应[J].高分子通报,1999,3:121~127.16.张志华.C_5烯烃的醚化及烷基化[J].石油炼制与化工,1996,27(5):20~25.
    17.卫恒德,张士瑞.满足更苛刻汽油规格的炼油技术[J].炼油设计,2001,31(1):20~23.
    18.何奕,李工奋,王蓬,闵恩泽.异构烷烃与烯烃烷基化催化剂的进展[J].石油学报,1997,13(2):111~117.
    19.林世雄.石油炼制工程[M].北京:石油工业出版社,1990.11
    20.蔡目荣,丁福臣,李术元.FCC汽油烯烃的生成机理和影响因素.石油天然气与化工,2003,32(2):92~95.
    21.易丁峰,丁福辰,李术元.轻质烃异构化进展述评[J].北京石油化工学院学报.2003,11(1):44~49.1. Wadlinger R L, Keer G T, Rosinski E J. Catalytic Composition of a Crystalline Zeolite[P]. US patent. 3308069, 1967
    2. Scherzer J. Catalytic Materials: Relation between Structure and Reactivity[C]. In ACS Symp Ser 248. Am Chem. Soc, Washington D C, 1984, 57
    3.祁晓岚,刘希尧.β-沸石合成与表征的研究进展[J].分子催化,1999,13(6):471~479.
    4.蔡天锡,齐爱华,曹殿学.NiSO_4/γ-Al_2O_3对丙烯齐聚反应的催化行为[J].应用化学,1993,10(6):23~26.
    5.孙书红,庞新梅,郑淑琴,张忠东.稀土超稳Y型分子筛催化裂化催化剂的研究[J].石油炼制与化工,2001,32(6):25~28.
    6.樊宏飞,张先华,贺民,董辉,蔡天锡.硫酸铁~硫酸镍复合系列烯烃叠合催化剂的研究Ⅰ.Fe_((2/3)x)Ni_(1~x)SO_4—P_2O_5/γ-Al_2O_3催化剂的制备方法[J].石油学报,1999,15(3):52~57.
    7.唐晓东,严志宇,贺民,曹殿学,蔡天锡.负载硫酸铁对烯烃齐聚催化作用的研究Ⅲ.Fe_2(SO_4)_3/γ—Al_2O_3的表征[J].石油学报,1997,13(1):18~22.
    8.王莅,余少兵,李永红,陈洪妨.水蒸气处理条件对β沸石合成MTBE催化性能的影响[J].化学反应工程与工艺,2001,17(1):35~38.
    9.王辉,张汉军,孔德金,陈庆龄,高滋.ZSM—5催化剂水蒸汽处理对甲苯选择性歧化性能的影响[J].石油化工,2000,29(6):401~404.
    10.刘艳红,罗国华,靳海波,杨春育,鲍晓军.水蒸汽处理丝光沸石上萘择形异丙基化反应[J].石油化工高等学校学报,2003,16(1):5~9.
    11.程谟杰,杨亚书.高温水蒸气处理对ZnHZSM—5活性中心的影响[J].物理化学学报,1996,12(8):721~726.
    12.黄开辉,万惠霖.催化原理[M],科学出版社1993:511~557.
    13. RHODESA K. Survey shows over refining catlyst [J]. Oil & gas journal. 1991, 89(41): 43
    14. Galema, S. A., Chem. Soc. Rev., 1997, 26:233.
    15.夏加荣,朱建华,淳远,王英,贾瑞康.微波法研制催化降解亚硝胺的ZrO_2/NaY沸石新材料[J].化学学报,2001,59(8):1196~1200.
    16.张扬健,赵杉林,鞠林青,孙桂大.Mo—MCM—48中孔分子筛微波辐射合成的研究[J].化学学报,2001,59(6):820~825.17.李志伟,李英春.微波在催化中的应用研究进展[J].河南化工,2003,(2):6-8
    18.吕仁庆,王秋英,项寿鹤.碱性水蒸气处理对ZSM-5沸石酸性质及孔结构影响[J],催化学报,2002,23(5):421~424.
    19. Gayer F H. Ind. Eng. Chem. [J], 1933, 25: 1122
    20. Rukenstein E and Hu X D. The effect of Steam on Supported Metal Catalysts[J]. J Catal, 1986, 100:1
    21. Jansen, J. C., Arafat, A., Barakat, A. K., Van Bekkum. Synthesis of micro porous Materials. New York: Van Nostrand Reinhold Press, 1992, 1:507
    22.徐占武.GOR-Q降烯烃催化剂的工业应用[J].工业催化.2002,7(4):4~9.
    23.李秋颖,白英芝,王海彦,魏民.Zn-P/HZSM-5催化剂上催化裂化汽油馏分的芳构化)[J].石油炼制与化工,2003,34(12):5~8.
    24.甘俊,张正义,邓阳,罗一斌.降低汽油烯烃含量催化裂化催化剂GOR的开发与工业应用.工业催化,2001,9(1):50~54.
    25.刘欣梅,钱岭,阎子峰.Y型分子筛化学改性方法评价.石油化工高等学校学报,1997,10(4):26~30.
    26.易丁峰,丁福辰,李术元.轻质烃异构化进展述评[J].北京石油化工学院学报.2003,11(1):44~49.1.宋海涛,蒋文斌,达志坚.FCC催化剂基质的直链烃反应性能[J].石油学报,2003,19(3):14~19.
    2.何奕,李工奋,王蓬,闵恩泽.异构烷烃与烯烃烷基化催化剂的进展[J].石油学报,1997.13(2):111~117.
    3.任杰.催化裂化催化剂水热失活动力学模型[J],石油学报(石油加工),2002,18(5):40~46.
    4. McCaulay D A. Polymerization Process[P], US 4288649, 1981-09-08.
    5. Abernathy MW. Process for Production of Polyisobutenes[P]. US 4306105, 1981-12-15.
    6. De Clippeleir G E M J, Cohen R M. Halogen-Containing Alumina Catalysts Prepared From Alumina of at Least Purity[P]. US 4582818, 1986-04-15.
    7. Myers J W, Isomerization Catalyst and Their Use [P]. US 3449264, 1969-06-10.
    8. Xu T, N Kob, RS Drago, JB Nicholas, JF Haw. NMR, Calorimetry and DFT Studies of Silica-supported Aluminum Chloride[J]. J Am Chem Soc, 1997, 119:12231~12239.
    9. P. M. Slangen, J. C. Jansen, H. van Bekkum. The effect of ageing on the microwave synthesis of zeolite NaA[J]. MICROPOROUS MATERIALS, 9(1997):259~265.
    10.田勇,高金森,徐春明.优化工艺条件降低催化裂化汽油烯烃含量[J].石油炼制与化工,2001,32(10):26~29.
    11.吕仁庆,王秋英,项寿鹤.碱性水蒸气处理对ZSM-5沸石酸性质及孔结构的影响[J],催化学报,2002,23(5):421~424.
    12.沈志虹,付玉梅,蒋明,李淑云.改性对催化裂化催化剂氢转移性能的影响[J].催化学报,2004,25(3):227~230.
    13.刘春岩,车延超,曹祖宾,高鹏,王延平.在改性H-B沸石催化剂上FCC汽油的加氢改质[J].燃料化学学报,2004,32(3):367~371.
    14.沈志虹,潘惠芳,徐春生等.磷对烃类催化裂化催化剂表面酸性及抗炭性能的影响[J].石油大学学报(自然科学版),1994,18(2):86~89.
    15. B. Scheffer, P. Molhoek, Temperature-programmed reduction of NiO-WO_3/Al_2O_3 hydrodesulphurization catalysts[J]. A. Moulijn, Appl. Catal. 46(1989): 11.
    16. R. Zhang, J. Jagiello, J. F. Hu, J. A. Schwartz and A. K. Datye, "The effect of WO_3??loading on the surface acidity of WO3/AI203 composite oxides" Appl Catal. A: General. 1992, 84:123
    17. Y. Yoshimura, T. Sato, H. Shimada, N. Matsubayashi, M Imarnura, A. Nishijima, M. Higo, S. Yoshitomi, Preparation of nickel-tungstate catalysts by a novel impregnation method[J]. Catalysis Today, 1996, 29(1-4): 221~228.
    18. Ch. Kordulis, A. A. Lappas, Ch. Fountzoula. Ni, W/γ-Al_2O_3 Catalysts Prepared by Modified Equilibrium Deposition Filtration (MEDF) and Non-Dry Impregnation (NDI): Characterization and Catalytic Activity Evaluation for the Production of Low Sulfur Gasoline in a HDS Pilot Plant[J]. Applied Catalysis A:General 209(2001):85~95.
    19.樊宏飞,张先华,蔡天锡.硫酸铁~硫酸镍复合系列烯烃叠合催化剂的研究Ⅰ.Fe_((2/3)x)Ni_(1~x)SO_4—P_2O_5/γ—Al_2O_3催化剂的制备方法[J].石油学报,1999,15(3):52~57.
    20.李金树,张春启.微波辐射法合成4A沸石及表征[J].光谱实验室.2001.18(3):413~420.
    21.李志伟,李英春.微波在催化巾的应用研究进展[J].河南化工.2003,2:6~8.
    22. Martinez-Ortiz, M. J., Fetter, G.. Catalytic hydrotreating of heavy vacuum gas oil on Al- and Ti-pillared clays prepared by conventional and microwave irradiation methods [J]. Microporous and Mesoporous Materials. March 4, 2003, 58(2) pp. 73~80.
    23. Jansen, J. C., Arafat, A., Barakat, A. K., van Bekkum. Synthesis of micro porous materials[J]. New York: van Nostrand Reinhold Press, 1992, 1:507
    24.李秋颖,白英芝,王海彦等.Zn-P/HZSM-5催化剂上催化裂化汽油馏分的芳构化[J].石油炼制与化工.2003,34(12):5~8.
    25.邓致礼.车用汽油[M].第一版.北京:烃加工出版社,1985.54~61.
    26.卫恒德,张士瑞.满足更苛刻汽油规格的炼油技术[J].炼油设计,2001,31(1):20~23.
    27.林世雄.石油炼制工程[M].北京:石油工业出版社,1990.11
    28.蔡目荣,丁福臣,李术元.FCC汽油烯烃的生成机理和影响因素.石油天然气与化工,2003,32(2):92~95.
    29.易丁峰,丁福辰,李术元.轻质烃异构化进展述评[J].北京石油化工学院学报.2003,11(1):44~49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700