油菜与荠菜族间杂种和甘蓝型油菜缺体的遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
远缘杂交是作物遗传改良的重要途径,可以把野生种的优良性状向栽培种转移。十字花科中有很多优良的野生种质资源,可提供许多有用的细胞核和细胞质基因,用于油菜育种。我国现在大面积栽培的甘蓝型油菜(Brassic napus,2n=38,AACC)于二十世纪30与40年代从国外引进,遗传变异较为匮乏,故通过多种途径创造新的种质资源对其遗传改良具有重要意义。十字花科独行菜族的荠菜(Capsellabursa-pastoris(L.)Medic,2n=4x=32)广布全球,在中国和其它一些国家作蔬菜和药用。荠菜种子内的芥酸(0.68%)和硫甙(15.68μmol/g)符合双低(芥酸<1%,硫甙<30μmol/g)标准,为油菜遗传改良的天然双低种质资源,且高抗菌核病。本研究合成了白菜型油菜(B.rapa,2n=20)、甘蓝型油菜与荠菜的族间杂种,并对杂种及其后代进行了形态学、细胞学、分子生物学、脂肪酸和抗菌核病的分析。另外,对以前从甘蓝型油菜与诸葛菜的属间杂交中获得的一个缺体植株(2n=36)及后代进行了细胞遗传学研究。主要结果如下:
     1.油菜×荠菜。以白菜型和甘蓝型油菜为母本、荠菜为父本的有性族间杂交中,经大量人工授粉产生的大多数F_1植株在形态上和母本相似,只有少数表现为中间型。F_1植株具有父本荠菜的一些特征,如叶片小、深绿色、叶裂深、植株矮小、基部分枝、白色花瓣。根据体细胞(子房细胞)染色体数目,F_1植株分为五类:第一类2n=27—29,第二类2n=20,这两类植株来自白菜型油菜与荠菜的杂交;第三类为甘蓝型油菜单倍体,2n=19,第四类2n=29,第五类2n=38,这三类植株来自甘蓝型油菜与荠菜的杂交。基因组原位杂交(GISH)分析表明,第一类杂种植株的花粉母细胞(pollenmother cells,PMCs)中有1—2条荠菜染色体,而另在一些植株的子房细胞和PMCs中检测到荠菜的染色体片段。AFLP(amplified fragment length polymorphism)分析显示,除3个F_1植株(Nos.13,24,32)无荠菜特异带外,所有植株中都出现了荠菜特异带、油菜母本的缺失带和双亲均无的新带,而且各单株间多态性带的数目与组成都不一样,表明外源遗传物质的渗入是在不同水平上的,同时引起了受体基因组结构的变化。通过脂肪酸分析和菌核病鉴定,发现一些母本型植株后代的芥酸和硫甙含量降低、菌核病抗性显著提高。
     2.雄性不育材料。来自甘蓝型油菜奥罗与荠菜杂交的一个母本型植株(No.30)的雄蕊小、雄性完全不育。与奥罗回交一代的植株全可育,自交结实好。359个BC_1F_1植株中,276株可育,83株不育,可育株与不育株的比例为3:1(χ_c~2=0.58<χ_(0.05)~2);在F_1×BC_1的109个植株中,58株可育,51株不育,可育株与不育株的比例为1:1(χ_c~2=0.33<χ_(0.05)~2),说明该雄性不育性为一对隐性基因控制的核不育。花药切片观察表明不育株花药在造孢细胞时期开始出现异常,绒毡层多层、肥大,但是其减数分离是正常的。四分体时期绒毡层进一步恶化,多层、肥大、液泡化,开始降解,并挤压四分体,导致四分体不能形成单核花粉粒,小孢子开始退化。大多数后代植株的硫甙含量明显降低,一些植株达到双低标准,并且菌核病抗性显著提高。
     3.甘蓝型油菜缺体。对甘蓝型油菜奥罗与诸葛菜的一个混倍体杂种进行小孢子培养,获得的一个缺体(2n=36)植株,其株高只有70—80cm,比甘蓝型油菜开花早两个月左右。缺体植株的PMCs在终变期具有18个二价体,后期Ⅰ表现18:18的正常分离,但在14个自交一代植株中,6个植株31.2%—43.8%的PMCs在后期Ⅰ为17:19分离,这导致了后代中缺体—四体(2n=38)的形成。白菜型油菜×缺体的PMCs在终变期具有10Ⅱ+8Ⅰ,说明缺体缺失了一对来自甘蓝C基因组的染色体。奥罗×缺体后代的植株株高和开花时间与甘蓝型油菜接近,但在自交后代中没有发现缺体植株。缺体—四体的株高比奥罗矮5cm,开花时间比甘蓝型油菜奥罗早一个月左右,59%的PMCs在终变期具有17Ⅱ+1Ⅳ,其余的为19Ⅱ,自交结实较好。
     最后,我们提出了油菜与荠菜的杂种形成机制。我们认为在合子形成后或杂种胚发育的早期即发生了染色体的消除、加倍和外源渗入。通过杂交产生母本型植株,可快速向油菜转移荠菜优良性状(双低、抗菌核病)。同时,我们对缺体和缺体—四体在油菜育种、基因定位和功能分析中的运用进行了讨论。
Wide hybridization plays an important role in crop improvement and has been used successfully to transfer desired traits from wild germplasm to large number of crop species. The Cruciferae family comprises a large number of wild species which provide rich germplasm with many useful nuclear and cytoplasmic genes for oilseed breeding. Brassica napus (2n=38, genomes AACC) was introduced into China for the first time from Korea in 1930s and subsequently from Europe in 1940s with limited genetic variability and thus the widening of its gene pool through suitable approaches including wide hybridizations is pivotal for further genetic improvement. The crucifer Capsella bursa-pastoris (L.) Medic (2n=4x=32) of tribe Lepidieae is a wild species distributed worldwide and has been used traditionally as vegetable and medicinal plants in China and some other countries for many centuries. It is a natural double-low (erucic acid <1%, glucosinolates <30μmol/g) germplasm and shows high degree of resistance to Sclerotinia sclerotiorum. Intertribal crosses were made between two Brassica species (B. rapa, 2n=20; B. napus, 2n=38) and C. bursa-pastoris with the latter as pollen parent, in order to introduce the desirable traits into the cultivated Brassica species. Progenies were investigated on morphology, cytology, molecular characteristics, fatty acid compositions and resistance to 5. sclerotiorum. On the other hand, one microspore-derived nullisomics (2n=36) without Orychophragmus violaceus (2n=24) chromosomes was obtained from the hybrid between B. napus and O.violaceus, and nulli-tetrasomics were obtained in the progenies of partial nullisomic plants. Cytogenetical analysis was applied to nullisomic and nulli-tetrasomics. The main results were as follows:
     1. Brassica species×C. bursa-pastoris. Majority of F_1 plants resembled female parents in morphology and only a few were morphologically intermediate between the parents. The F_1 plants expressed some characters of male parent, including small sized dark-green, deeply divided leaves, nanism, basal clustering branches and white petals. Based on cytological observation of somatic cells, the F_1 plants were classified into five types: two types from the cross with B. rapa, typeⅠhad 2n=27-29; typeⅡhad 2n=20; three types from the crosses with B. napus, typeⅢwas haploids with 2n=19; typeⅣhad 2n=29; typeⅤhad 2n=38. One to two chromosomes of C.bursa-pastoris were detected in pollen mother cells (PMCs) of type I plant by genomic in situ hybridization (GISH), together with chromosomal segments in ovary cells and PMCs of some F_1 plants. Amplified fragment length polymorphism (AFLP) bands specific for the male parent, novel for two parents and absent bands in Brassica parents were generated in F_1 plants except for three plants (Nos. 13, 24, 32) which had no specific bands, indicating the introgressions at various levels from C. bursa-pastoris and genomic alterations following hybridization. Some Brassica-type progeny plants had reduced contents of erucic acid and glucosinolates associated with improved resistance to S. sclerotiorum.
     2. Male sterile hybird. The F_1 plant No. 30 from the cross between B. napus cv. Oro and C. bursa-pastoris which resembled female parent in morphology was male sterile with rudimentary stamens. The BC_1 plants of the F_1 plant pollinated by 'Oro' had good seed-set after selfing. In the selfing population of BC_1 plants, the ratio of male fertile to sterile plants was 3:1 (276 fertile, 83 sterile among 359 plants) (x_c~2=0.58 < x_(0.05)~2). Of the 109 plants from sterile F_1 x BC_1, 58 ones were male fertile and 51 male sterile, displaying a 1:1 ratio (X_c~2=0.33 < x_(0.05)~2). The result indicated that the male sterility (MS) in the hybrid was controlled by a recessive gene. Cytological observations showed that the tapetum was abnormal with multiple layers and hypertrophy since the stage of sporogenic cell, however, the meiosis was normal with chromosome pairing (19 bivalents) and segregation (19:19). At the tetrad stage, the tapetum of male sterility was vacuolated and disaggregating with multiple layers and hypertrophy, and the tetrads were extruded by tapetum. So they could not produce normal uninucleate pollen grains, the microspores began to degenerating since the stage of tetrad. In most progenies, the content of glucosinolates was reduced obviously, some reached double-low standard, together with the significantly improved resistance to S. sclerotiorum.
     3. B. napus nullisomics. One microspore-derived nullisomics (2n=36) was obtained before from the hybrids between B. napus and Orychophragmus violaceus (2n=24), its plant height was only 70-80 cm and flowering time was about two months earlier than B. napus. PMCs of the nullisomics had 18 bivalents at diakinesis and 18:18 segregations at anaphase I (AI); however, of 14 nullisomic plants in its selfing progenies, six plants had 31.2-43.8% PMCs with 17:19 segregations at AI, which resulted in the production of nulli-tetrasomics (2n=38). PMCs of B. rapa×nullisomics at diakinesis had 10 bivalents and 8 univalents, which indicated that the nullisomics lost one pair chromosomes of C genome from B. oleracea. The progenies of B. napus×nullisomics had plant height and flowering time similar to B. napus, but produced no nullisomic plants. Nulli-tetrasomics were only 5 cm shorter than B. napus and flowered about one month earlier than B. napus. The nulli-tetrasomics produced 59% diakinesis PMCs with 17 bivalents and one quadrivalent and the remainings with 19 bivalents and 19:19 AI segregations, and had good seed-set after selfing.
     Finally, it was proposed that chromosome elimination / doubling, and introgression were involved in the formation of these hybrids between Brassica species and C. bursa-pastoris during mitotic divisions of the zygotes or hybrid embryos, the Brassica -type progenies provided an opportunity to rapidly and successfully introduce useful traits of C. bursa-pastoris into Brassica species and to produce lines with improved oil quality and resistance to S. sclerotiorum. The utilization of the nullisomics and nulli-tetrasomics in plant breeding, location and functional analysis of genes was discussed.
引文
1.陈纯贤,孙敬三,朱立煌.导入小麦加倍单倍体植株的玉米DNA在后代中的遗传及序列同源性分析.植物学报,2000,42(7):728-731
    2.陈纯贤,孙敬三,朱立煌.由小麦×玉米获得的普通小麦加倍单倍体后代的RFLP变异.植物学报,1999,41(1):55-59
    3.陈纯贤,朱立煌,孙敬三.玉米特异DNA通过有性杂交导入小麦DH后代的分子证据.中国科学(C),1997,27(5):432-437
    4.陈凤祥,胡宝成,李强生.甘蓝型油菜细胞核雄性不育材料9012A的发现与研究.北京农业大学学报,1993,19:62-65
    5.陈海梅.小麦EST-SSR标记的开发、定位和作图.[硕士学位论文].泰安:山东农业大学图书馆,2005
    6.陈迅奋.小麦抗病及其相关基因候选克隆的定位与SSR标记的定位及应用.[硕士学位论文].南京:南京农业大学图书馆,2002
    7.戴兴临,程春明,潘斌.油菜与蔊菜远缘杂交亲和性研究初报.江西农业科学,2001,13(1):60-61
    8.高明君.植物同工酶基因定位方法初探.青岛海洋大学学报,1994,2:196-204
    9.高学敏 主编.中药学.人民卫生出版社,2000
    10.侯国佐,王华,张瑞茂.甘蓝型油菜细胞核雄性不育材料117A的遗传研究.中国油料,1990,2:7-10
    11.胡琼,李云昌,梅德圣,方小平,Hansen L N,Andersen S B.属间体细胞杂交创建甘蓝型油菜细胞质雄性不育系及其鉴定.中国农业科学,2004,37(3):333-338
    12.胡琼,李云昌.体细胞杂交在油菜细胞质雄性不育创建和改良中的应用.作物学报,2006,1:138-143
    13.华玉伟.诸葛菜与芸苔属三个四倍体栽培种杂种的分子细胞遗传学研究.[博十学位论文].武汉:华中农业大学图书馆,2005
    14.李方球,官春云.油菜菌核病抗性鉴定、抗性机理及抗性遗传育种研究进展.作物研究,2001,3:85-92
    15.李浩兵.球茎大麦在大麦育种上的应用:大麦单倍体的诱导与加倍单倍体的产生.作物学报,1998,24(6).660-664
    16.李永强,何蓓如,陈小燕,张凯,周荣华.用微卫星标记辅助鉴定几种小麦缺体-四体.西北农业学报,2006,15(3):9-11
    17.李再云,Ceccareli M,Minelli S,Contento A,刘焰,Cionini P G.高频率产生芸苔属非整倍体和纯合植株及基因组原位杂交分析.中国科学(C辑),2002,32(3):218-224
    18.李振声.小麦远缘杂交.科学出版社,1985
    19.栗茂腾,张椿雨,李宗芸,孟金陵.埃塞俄比亚芥与白菜型油菜间六倍体杂种的获得及其生物学特性研究.作物学报,2005,31(12):1579-1585
    20.蔺兴武,吴建国,石春海.远缘杂交油菜核不育系的创建及其细胞学和形态学研究.遗传,2005,27(3):403-409
    21.刘后利.油菜遗传育种学.中国农业大学出版社,2000
    22.龙艳,牛应泽.我国油菜品质育种研究的进展与展望.四川农业大学学报,2002,20(4):372-376
    23.卢长明.Brassica juncea×Brassica barrefieri F_1 杂种的获得及其亲本染色体的同源性研究.作物学报,1998,24(5):544-549
    24.孟金陵,严准,甘莉.Moricandia arvensis与甘蓝型油菜属间杂种的获得及其生物特性研究.作物学报,1998,24(4):396-401
    25.潘涛,曾凡亚,吴书慧等.甘蓝型低芥酸油菜雄性不育两用系的选育与利用研究.中国油料,1988,3:5-8
    26.裴新梧,倪建福,仲乃琴,牛登科.用改良缺体回交法选育小麦-黑麦异代换系.甘肃农业科技,1995,6:3-4
    27.孙敬三,方仁.利用小麦×玉米获得小麦单倍体.植物学报,1992,34:817-821
    28.孙敬三,路铁刚,王景林.莜麦与玉米的远缘杂交.植物学通报,1995,37(4):255-258
    29.孙敬三,路铁刚,辛化伟.通过和玉米杂交诱导硬粒小麦单倍体.植物学通报,1995,37(6):452-457
    30.孙敬三,路铁刚.小麦×高梁的受精率和小麦单倍体的诱导(简报).实验生物学报,1996,29:191-194
    31.孙敬三,王景林.莜麦与玉米的远缘杂交.植物学报,1995,37:255-258
    32.孙善澄,袁文业,裴自友,张美荣,孙玉.小麦缺体转育及异代换系的筛选.山西农业业科学,1995,23(2):7-9
    33.王秀娥,Bilcram S Gill,刘大钧.小麦-大赖草易位系的RFLP分析.遗传学报,2001, 28(12):1142-1150
    34.王幼平,罗鹏,李旭锋.芥菜型油菜与海甘蓝属间杂种的获得与鉴定.植物学报,1997,39(4):296-301
    35.吴征镒,路安民,汤彦承.中国被子植物科属综论.科学出版社,2003
    36.伍晓明,许鲲.甘蓝型油菜与新疆野生油菜属间杂种的获得与分子鉴定.中国油料作物学报,2002,24(4):5-9
    37.徐勇,沈福成,王三根,金翠云.小麦缺体-四体SSR辅助鉴定.西南农业大学学报,2001,23(3):202-204
    38.徐勇.小麦缺体-四体的SSR鉴定与抗白粉病基因的分子作图.[硕士学位论文].重庆:西南农业大学图书馆,2001
    39.轩淑欣,李明,张成合,申书兴,柳霖坡,王东平.植物非整倍体及其在遗传研究上的应用.河北农业大学学报,2002,25:47-50
    40.薛秀庄,吉万伞,上秋英.小麦性的缺体分析.西北农业学报,1995,(4):1-5
    41.薛秀庄,吉万伞,上秋英.小麦染色体工程.河北科技出版,1993,76-122
    42.于卓,云锦凤.基因组原位杂交技术及其在植物远缘杂种染色体分析中的应用.内蒙古林学院学报,1998,20(2):32-37
    43.袁建华,陈佩度,刘大均.利用杀配子染色体创造普通小麦-大赖草异易位系.中国科学(C辑),2003,33(2):110-116
    44.张国宏,任根深.冬性自交结实缺体小麦选育及利用研究.甘肃科学学报,2000,12(2):78-84
    45.张天真.作物育种学总论.中国农业出版社,2003
    46.赵合句,黄永菊,王玉叶.油菜与菘蓝和荠菜属间杂交初探.湖北农业科学,1993,5:17-18
    47.赵合句,黄永菊,王玉叶.油菜与菘蓝和荠菜属间杂交新品系比较试验.湖北农业科学,1995,1:8-11
    48.郑殿升,盛锦山.主要作物远缘杂交概况.植物遗传资源科学,2002,3(1):55-60
    49.钟冠昌,穆素梅,张正斌.麦类远缘杂交.科学出版社,2002
    50.周光宇,龚蓁蓁,王自芬.远缘杂交的分子基础.遗传学报,1979,6:405-412
    51.周光宇.农业分子育种-授粉后外源DNA导入植物技术.中国农业科学,1988,21(3):1-6
    52.周太炎 编辑.中国植物志.科学出版社,1987,33卷:61-66
    53.庄丽芳,元增军,英加,陈佩度,刘大均.普通小麦-白萨偃麦草(Thinopvrum bessarabicum) 二体异附加系的选育与鉴定.遗传学报,2003,30(10):919—925
    
    54. Amante-Bordeos A, Sitch L A, Nelson R, Dalmacio R D, Oliva N P, Aswidinnoor H, Leung H. Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa. Theor Appl Genet, 1992, 84:345-354
    
    55. Anamthawat-Jonsson K. Molecular cytogenetics of introgression hybridization in plants. Methods Cell Sci, 2001,23:139-148
    
    56. Ananiev E V, Phillips R L, Rines H W. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci, 1998, 95(22):13073-13079
    
    57. Apel P, Bauwe H, Ohle H. Hybrids between Brassica alboglabra and Moricandia arvensis and their photosynthetic properties. Biochem Physiol Pflanz, 1984,179:793-797
    
    58. Arnold M. Natural hybridization and the evolution of domesticated pest and disease organisms. Molecular Ecology, 2004, 13:997-1007
    
    59. Arnold M. Natural hybridization as an evolutionary process. Annual Review of Ecology and Systematics, 1992, 23:237-261
    
    60. Auger D L, Birchler J A. Maize tertiary trisomic stocks derived from B-A translocations. The Journal of Heredity, 2002, 93(1):42-47
    
    61. Bannerot T L, Boulidard L, Cauderon Y, Tempe J. Transfer of cytoplasmic male sterility from Raphanus sativus to Brassica oleracea. Eucarpia Meeting on Cruciferae. Dundee. Scotland, 1974, 52-54
    
    62. Bassam B, Caetano-Anolles G, Gresshoff P M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem, 1991, 196:80-83
    
    63. Batra V, Prakask S, Shuvannam K R. Intergeneric hybridization between Diplotaxis siifoiam, a wild species and crop brassicas. Theor Appl Genet, 1990, 80: 537-541
    
    64. Benabdelmouna A, Gueritaine G, Abirached-Darmency M, Darmency H. Genome discrimination in progeny of interspecific hybrids between Brassica napus and Raphanus raphanistrum. Genome, 2003, 46: 469-472
    
    65. Bennett M D, Finch R A, and Barclay I R. The time rate and mechanism of chromosome elimination in Hordeum hybrids. Chromosoma, 1976, 54:175-200
    
    66. Bennett M D. Parental genome separation in F_1 hybrids between grass species. Kew Chromosome Conference Ⅲ, 1988, 195-208
    67. Bisht M S, Mukai Y. Genomic in situ hybridization identifies genome donor of finger millet (Eleusine coracana). Theor Appl Genet, 2001,102:825-832
    
    68. Blakeslee A F, Belling J, Farnham M E. Chromosomal duplication and mendelian phenomena in Datura mutants. Science, 1920,52:388-390
    
    69. Brar D S, Khush G S. Alien introgression in rice. Plant Mol Biol, 1997, 35: 35-47
    
    70. Brenner S, Miller J H (eds). Encyclopedia of genetics. San Diego: Academic Press, 2001, 2:663-666
    
    71. Brewer E P, Saunders J A, Scott Angle J, Chaney R L, McIntosh M S. Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theor Appl Genet, 1999, 99:761-771
    
    72. Callimassia M A, Murray B G, Hammett K R, Bennett M D. Parental genome separation and asynchronous centromere division in interspecific F_1 hybrids in Lathyrus. Chromosome Res, 1994, 2(5):383-97
    
    73. Chaudhary H K, Sethi G S, Singh S, Pratap A and Sharma S. Efficient haploid induction in wheat by using pollen of Imperata cylindrica. Plant Breeding, 2005, 124:96-98
    
    74. Chen Z J and Pikaard C S. Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Natl Acad Sci USA, 1997, 94:3442-3447
    
    75. Chen Z J, Philips R L, Rines H W. Maize DNA enrichment by representational difference analysis in a maize chromosome addition line of oat. Theor Appl Genet, 1997, 97:337-344
    
    76. Cheng B F, Seguin-Swartz G, Somers D J, Rakow G. Low glucosinolate Brassica juncea breeding line revealed to be nullisomic. Genome, 2001, 44(4):738-741
    
    77. Cheng B F, Seguin-Swartz G, Somers D J. Cytogenetic and molecular characterization of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Genome, 2002, 45(1):110-115.
    
    78. Chevre A M, Eber F, Darmency H, Fleury A, Picault H, Letanneur J C, Renard M. Assessment of interspecific hybridization between transgenic oilseed rape and wild radish under normal agronomic conditions. Theor Appl Genet, 2000, 100:1233-1239
    
    79. Conn K L. Tewari 1 P, and Dahiya J S. Resistance to Alternaria brassicae and phytoalexin-elicilation in rapeseed and other crucifers. Plant Sci, 1988, 55:21-25
    80. Davies D R. Chromosome elimination in inter-specific hybrids. Heredity, 1974, 32:267-270
    
    81. Davies J J, Wilson I M, Lam W L. Array CGH technologies and their applications to cancer genomes. Chromosome Research, 2005,13:237-248
    
    82. Dellaporta S L, Wood J, Hicks J B. A plant DNA mini preparation :version Ⅱ .Plant Mol Biol Rep, 1983,1:19-21
    
    83. van der Knaap E, Sanyal A, Jackson S A, Tanksley S D. High-Resolution Fine Mapping and Fluorescence in Situ Hybridization Analysis of sun, a Locus Controlling Tomato Fruit Shape, Reveals a Region of the Tomato Genome Prone to DNA Rearrangements. Genetics. 2004, 168(4):2127-2140
    
    84. Dunham I, Hunt A R, Collins J E, Bruskiewich R, Beare D M, Clamp M, Smink L J, Ainscough R, Almeida J P, Babbage A, Bagguley C, Bailey J, Barlow K, et al. The DNA sequence of human chromosome 22. Nature, 1999, 402:489-495
    
    85. Dvorak J. Homoeology between Agropyron elongatum chromosomes and Triticum aestivum chromosomes. Can. J. Genet. Cytol, 1980, 22: 237-259
    
    86. Fahleson J, Eriksson I and Glimelius K. Intertribal somatic hybrids between Brassica napus and Barbarea vulgaris-production of in vitro plantlets. Plant Cell Rep, 1994, 13:411-416
    
    87. Fahleson J, Rahlen L, Glimelius K. Analysis of plants regenerated from protoplast fusions between Brassica napus and Eruca sativa. Theor Appl Genet, 1988, 76: 507-512
    
    88. Fan Z, Wang X. Isolation and characterization of a novel dehydrin gene from Capsella bursa-pastoris. Mol Biol (Mosk), 2006, 40(1):52-60
    
    89. Faure N, Serieys H, Berville A, Cazaux E, Kaan F. Occurrence of partial hybrids in wide crosses between sunflower (Helianthus annuus) and perennial species H. mollis and H. orgyalis. Theor Appl Genet, 2002, 104:652-660
    
    90. Finch R A, Bennet M D. Mitotic and meiosis chromosome behavior in new hybrids of Hordeum with Triticale and Secale. Heredity, 1980, 44:201-209
    
    91. Finch R A. Tissue-specific elimination of alternative whole parental genomes in one barley hybrid. Chromosoma, 1983, 88:386-393
    
    92. Furusho M, Suenaga K, Nakajima K. Production of haploid barley plants from barley xmaize and barley xltalian rvegrass crosses. Jpn J Breed, 1991. 41: 175-179
    
    93. Gao D, Jung C. Monosomic addition lines of Beta corolliflora in sugar beet: plant morphology and leaf spot resistance. Plant Breed, 2002,121:81-90
    
    94. Garriga-Caldere F, Huigen D J, Jacobsen E. Prospects for intrigressing tomato chromosomes into the potato genome: an assessment through GISH analysis. Genome, 1999, 42:282-288
    
    95. Guttman B. Evolution. In: Brenner S, Miller J H, eds. Encyclopedia of genetics. San Diego: Academic Press, 2001, Vol.2, 663-666
    
    96. Hagimori M, Nagaoka M, Kato N, Yoshikawa H. Production and characterization of somatic hybrids between the Japanese radish and cauliflower. Theor Appl Genet, 1992, 82:819-824
    
    97. Hansen L N, Earle E D. Somatic hybridization between Brassica kleracea L. and Sinapis alba L. with resistance to Alternaria brassicae (Berk.) Sacc. Theor Appl Genet, 1997, 94:1078-1085
    
    98. Harlan J R, Dewet J M J. Pathways of genetic transfer from Tripsacum to Zea mays Maize. Proc Natl Acad Sci USA, 1977,74(8):3494-3497
    
    99. Heiskanen M, Peltonen L, Palotie A. Visual mapping by high resolution FISH. Trends in Genetics, 1996,10:379-382
    
    100. Heyn F W. Transfer of restorer genes from Raphanus to cytoplasmic male sterile Brassica napus.Cruciferae Newsl, 1976,1:15-16
    
    101. Hinata K, Konno N. Studies on a male sterile strain having the Brassica campesris nucleus and the Diploasis muralis cytoplasm. Jap J Breed, 1979,29:305-311
    
    102. Ho K M and Kasha K J. Genetic control of chromosome elimination during haploid formation in barley. Genetics, 1975, 81(2):263-275
    
    103. Ho K M and Kasha K J. Telotrisomic studies for locating genetic control of chromosome elimination. Barley Genetics News, 1974, 4:33-36
    
    104. Hu Q, Hansen L N, Laursen J, Dixelius C, Andersen S B. Intergeneric hybrids between Brassica napus and Orychophragmus violaceus containing traits of agronomic importance for oilseed rape breeding. Theor Appl Genet, 2002, 105: 834-840
    
    105. Hua Y W and Li Z Y. Genomic in situ hybridization analysis of Brassica napus x Orychophragmus violaceus hybrids and production of B. napus aneuploids. Plant Breed, 2006, 125:144-149
    
    106. Hua Y W, Liu M, Li Z Y. Parental genome separation and elimination of cells and chromosomes revealed by GISH and AFLP analyses in a Brassica carinata x Orychophragmus violaceus cross. Ann Bot. 2006. 97:993-998
    107. Huang K C. The Pharmacology of Chinese Herbs, 2nd ed. CRC Press, 1999, 354
    
    108. Humphreys M W, Thomas H M, Morgan W G, Meredith M R, Harper J A, Thomas H, Zwierzykowski Z, Ghesquiere A. Discriminating the ancestral progenitors of hexaploid Festuca arundinacea using genomic in situ hybridization. Heredity, 1995, 75:171-174
    
    
    109. Ishiki K. Cytogenetical studies on African rice, Oryza glaberrima Steud. 3. Primary trisomics produced by pollinating autotriploid with diploid. Euphytica, 1991,55(1):7-13
    
    110. Jackson S A. Wang M L. Goodman H M. Jiang J M. Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome, 1998,41(4):566-572
    
    111. Jiang J, Friebe B, Gill B S. Recent advances in alien gene transfer in wheat. Euphytica, 1994, 73:199-212
    
    112. Jin W W, Melo J R, Nagaki K, Talbert P B, Henikoff S, Dawe R K, and Jiang J M. Maize centromeres: Organization and functional adaptation in the genetic background of oat. Plant Cell, 2004,16:571-581
    
    113. Kallioniemi A, Kallioniemi O P, Sudar D, Rutovitz D, Gray J W, Waldman F, Pinkel D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumours. Science, 1992, 258:818-821
    
    114. Kasha K J, Kao K N. High frequency haploid production in barley (Hordeum vulgare L.). Nature, 1970, 225:874-876
    
    115. Kenton A, Parokonny A S, Gleba Y Y. Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet, 1993, 240:159-169
    
    116. Kirti P B, Mohapatra T, Baldev A. A stable cytoplasmic male sterile line of Brassica juncea carrying restructured organelle genomes from the somatic hybrid Trachystoma ballii + B. juncea. Plant Breed, 1995, 114:434-438
    
    117. Kirti P B, Mohapatra T, Khanna H, Prakash S and Chopra V L. Diplotaxis catholica + Brassica juncea somatic hybrids: molecular and cytogentic characterization. Plant Cell Rep, 1995b, 14:593-59
    
    118. Kirti P B, Narasimhulu S B, Prakash S, Chopra V L. Production and characterization of intergeneric somatic hybrids of Trachystoma ballii and Brassica juncea. Plant Cell Rep. 1992b, 11:90-92
    
    119. Kirti P B, Narasimhulu S B. Prakash S, Chopra V L. Somatic hybridization between Brassica juncea and Moricandia arvensis by protoplast fusion. Plant Cell Rep, 1992a, 11: 318-321
    
    120. Kirti P B, Prakash S, Gaikward K. Chloroplast sustitution overcomes leaf chlorosis in a Moricandia arvensis based cytoplasmic male sterile Brassica juncea. Theor Appl Genet, 1998, 97:1179-1182
    
    121. Kuroda K and Takagi K. Physiologically active substance in Capsella bursa-pastoris. Nature, 1968, 220(168):707-708
    
    122. Kuroda K and Takagi K. Studies on Capsella bursa pastoris. I. General pharmacology of ethanol extract of the herb. Arch Int Pharmacodyn Ther, 1969a, 178(2):382-391
    
    123. Kuroda K and Takagi K Studies on Capsella bursa pastoris. II. Diuretic, anti-inflammatory and anti-ulcer action of ethanol extracts of the herb. Arch Int Pharmacodyn Ther, 1969b, 178(2):392-399
    
    124. Kuroda K, Akao M, Kanisawa M, Miyaki K. Inhibitory effect of Capsella bursa-pastoris extract on growth of Ehrlich solid tumor in mice. Cancer Res, 1976, 36(6):1900-1903
    
    125. Kynast R G, Okagaki R J, Galatowitsch M W, Granath S R, Jacobs M S, Stec A 0, Rines H W, Phillips R L. Dissecting the maize genome by using chromosome addition and radiation hybrid lines. Proc Natl Acad Sci, 2004,101(26): 9921-9926
    
    126. Lange W. Crosses between Hordeum vulgare L. and H. bulbosum L. II. Elimination of chromosomes in hybrid tissues. Euphytica, 1971, 20:181-194
    
    127. Lashermes P, Andrzejewski S, Bertrand B, Combes M C, Dussert S, Graziosi G, Trouslot P, Anthony F.Molecular analysis of introgressive breeding in coffee (Coffea arabica L.).Theor Appl Genet, 2000,100:139-146
    
    128. Laurie D A, Bennett M D. Cytological evidence for fertilization in hexaploid wheat x sorghum crosses. Plant Breed, 1988b, 100:73-82
    
    129. Laurie D A, Bennett M D. Early post-pollination events in hexaploid wheat x maize crosses. Sex Plant Reprod, 1990a, 3:70-76
    
    130. Laurie D A, Bennett M D. The effect of the cross ability loci Kr1 and Kr2 on fertilization frequency in hexaploid wheat×maize crosses. Theor Appl Genet, 1988a,76:393-397
    
    131. Laurie D A, Bennett M D. The effect of the crossability loci Krl and Kr2 on fertilization frequency in hexaploid wheat ×maize crosses. Theor Appl Genet, 1987, 73:403-409
    
    132. Laurie D A, Bennett M D. The timing of chromosome elimination in hexaploid wheatxmaize crosses. Plant Breed, 1991,106:182-189
    
    133. Laurie D A, Bennett M D. The timing of chromosome elimination in hexaploid wheat x maize crosses. Genome, 1989, 32:953-961
    
    134. Laurie D A, Bennett M D. Wheat x maize hybridization. Can J Genet Cytol, 1986, 28:313-316
    
    135. Laurie D A, O'Donoughue L S, Bennett M D. Wheat x maize and other wide sexual hybrids: their potential for genetic manipulation and crop improvement. In: J. P. Gustafson, ed. Gene Manipulation in Plant Improvement. Plenum Press, New York, USA, 1990b, Vol 2, 95-126
    
    136. Laurie D A. The frequency of fertilization in wheat x pearl millet crosses. Genome, 1989, 32:1063-1067
    
    137. Lavania U C, Basu S, Srivastava S, Mukai Y, Lavania S. In Situ Chromosomal Localization of rDNA Sites in "Safed Musli" Chlorophytum Ker-Gawl and Their Physical Measurement by Fiber FISH. The Journal of Heredity, 2005, 96(2):155
    
    138. Le H, Armstrong K, Miki B. Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe . Plant Mol Rep, 1989, 7:150-158
    
    139. Leitch A R, Mosgoller W, Schwarzacher T, Bennett M D, Heslop-Harrison J S. Genomic in situ hybridization to sectioned nuclei shows chromosome domains in grass hybrids. J Cell Sci, 1990, 95:335-341
    
    140. Leitch A R, Schwarzacher T, Jackson D, Leitch I J. Microscopy Handbook No.27. In situ hybridization: a practical guide. Oxford: Bios Scientific, 1994
    
    141. Leitch A R, Schwarzacher T, Mosgoller W, Bennett M D, Heslop-Harrison J S. Parental genomes are separated throughout the cell cycle in a plant hybrid. Chromosoma, 1991, 101: 206-213
    
    142. Li H J. Studies on producing alien substitution lines of wheat by immature embryo culture of (4D nullisomic X rpe). 8th Inter. Wheat Genet Sympo. Beijing, 1993, 631-634
    
    143. Li R, Rimmer R, Buchwaldt L, Sharpe A G, Seguin-Swartz G, Coutu C, Hegedus D D. Interaction of Sclerotinia sclerotiorum with a resistant Brassica napus cultivar: expressed sequence tag analysis identifies genes associated with fungal pathogenesis. Funga) Genet Biol, 2004, 41:735-753
    
    144. Li Z S. The establishment and application of blue-rain monosomic in wheat chromosome engineering. Cereale Communication. 1986. 14:1.33- 135
    
    145. Li Z. Liu H L, Luo P. Production and cytogenetics of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Theor Appl Genet, 1995, 91:131-136
    
    146. Li Z, Wu J G, Liu Y, Liu H L, Heneen W K. Production and cytogenetics of intergeneric hybrids Brassica juncea ×Orychophragmus violaceus and B. carinata × O. violaceus. Theor Appl Genet, 1998, 96:251-265
    
    147. Linde-Laursen L and von Bothmer R. Aberrant Meiotic Divisions in a Hordeum lechleri x H. vulgare Hybrid. Hereditas, 1993,131(2):109-120
    
    148. Linde-Laursen L and von Bothmer R. Elimination and duplication of particular Hordeum vulgare chromosomes in aneuploid interspecific Hordeum hybrids. Theor Appl Genet, 1988,76:897-908
    
    149. Linde-Laursen L and von Bothmer R. Orderly arrangement of the chromosomes within barley genomes of chromosome-eliminating Hordeum lechleri x barley hybrids. Genome, 1999, 42:225-236
    
    150. Liu B and Wendel J F. Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome, 2000, 43:874-880
    
    151. Liu B, Piao H M, Zhao F S, Zhao J H, Zhao R. Production and molecular characterization of rice lines with introgressed traits from a wild species of Zizania latifolia Griseb. J Genet Breed, 1999, 53:279-284
    
    152. Liu B, Wendel J F. Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome, 2000,43(5):874-880
    
    153. Liu M, Li Z Y. Genome doubling and chromosome elimination with fragment recombination leading to the formation of Brassica rapa-type plants with genomic alterations in crosses with Orychophragmus violaceus. Genome, 2006 (in press)
    
    154. Liu S, Wang X, Fan Z, Pang Y, Sun X, Wang X, Tanga K. Molecular cloning and characterization of a novel cold-regulated gene from Capsella bursa-pastoris. DNA Seq, 2004, 15(4):262-268
    
    155. Liu S X, Wang X L, Yang J S, Fan Z Q, Sun X F, Wang X R, Tang K X. Molecular cloning of a novel LOS2 gene from Capsella bursa-pastoris. Yi Chuan Xue Bao, 2005, 32(6):600-607.
    
    156. Liu Z L, Wang Y M, Shen Y, Guo W L, Hao S, Liu B. Extensive Alterations in DNA Methylation and Transcription in Rice Caused by Introgression from Zizania Latifolia Plant. Molecular Biology, 2004, 54(4):571-582
    
    157. Luo P. Fu H L, Lan Z Q, Zhou S D, Zhou H F and Luo Q. Phytogenetics studies on intergeneric hybridization between Brassica napus and Matthiola incana. Acta Botanica Sinica. 2003, 45(4):432-436
    
    158. Lutz A M. Notes on the first generation hybrid of Oenothera lata-O. gigas. Science, 1909, 29:263-267
    
    159. Ma N and Li Z Y, Cartagena JA, Fukui K. GISH and AFLP analyses of novel Brassica napus lines derived from one hybrid between B. napus and Orychophragmus violaceus. Plant Cell Rep, 2006, 25(10):1089-1093
    
    160. Maiato H, Sampaio P, Lemos C L, Findlay J, Carmena M, Earnshaw W C, Sunkel C E. MAST/Orbit has a role in microtubule-kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity. J Cell Biol, 2002,157:749-760
    
    161. Malik M, Vyas P, Rangaswamy NS et al. Development of two new cytoplasmic malesterile lines in Brassica juncea through wide hybridization. Plant Breed, 1999,118(1):75-78
    
    162. Martin A, Cabrera A, Esteban E, Hernandez P, Ramirez M C, Rubiales D. A fertile amphiploid between diploid wheat (Triticum tauschii) and crested wheatgrass (Agropyron cristatum). Genome, 1999, 42:519-524
    
    163. Matsuzawa Y, Sarashima M. Intergenetic hybridizarion of Eruca, Brassica and Raphanu. Crusiferae News, 1986, 11-17
    
    164. Meng J, Yan Z, Tian Z, Huang R, Huang B. Somatic hybrids between moricandia nitens and three Brassica species. Proc. 10th Intl. Rapeseed Congr., Australia. Contribution, 1999, 6
    
    165. Mochida K, Tsujimoto H, Sasakuma T. Confocal analysis of chromosome behavior in wheat x maize zygotes. Genome, 2004, 47(1): 199-205
    
    166. Mukai Y, Friebe B, Hatchett J H, Yamamoto M, Gill B S. Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma, 1993, 102:88-95
    
    167. Nanda-Kumar P B A, Shivanna K R. Intergeneric hybridization between Diplotaxis siettiana and crop brassicas for the production of alloplasmic lines. Theor Appl Genet, 1993, 85:770-776
    
    168. Natali L, Giordani T, Polizzi E, Pugliesi C, Fambrini M and Cavallini A. Genomic alterations in the interspecific hybrid Helianthus annuus x Helianthus tuberosus. Theor Appl Genet, 1998, 97:1240-1247
    
    169. Newall C A. Anderson L A, PhiJlipson J D. Herbal Medicines: A Guide for Health-Care Professionals. London: The Pharmaceutical Press, 1996, 245-246
    170.O'Donoughue LS, Bennett MD. Durum wheat haploid production using maize wide-crossing.Theor Appl Genet, 1994b, 89:559-566
    
    171. Ogura H. Studes on the new male-sterility in the Japanese radish with special reference to the utilastion of this sterility towards the prastical raising of hybrid seeds. Mem Fac Agric Kagoshima. Univ, 1968, 6:39-78
    
    172. Park R J. The occurrence of mustard oil glucosides in Lepidium hyssopifolium, L. bonariense and Capsella bursa-pastoris. Aust J Chem, 1967,20:2799-2801
    
    173. Peil A, Korzum, Schubert V et al. The application of wheat microsatellites to identify disomic Triticum Aestivum-Aegilops markgrafii addition lines. Theor Appl Genet, 1998, 96:138-146
    
    174. Pellan-Delourme R, Renard M. Identification of maintaner genes in Brassica napus for the male sterility-inducing cytoplasm of Diplotaxis muralis. Plant Breed, 1987,99:89-97
    
    175. Pelletier G, Primard C, Vedel F, Chetrit P, Remy R, Rousselle, Renard M. Intergeneric cytoplasmic hybridization in cruciferae by protoplast fusion. Mol Gen Genet, 1983,191:244-250
    
    176. Pickering R A, Malyshev S, Kunzel G Locating introgressions of Hordeum bulbosum chromatin within the H. vulgare genome. Theor Appl Genet, 2000, 100: 27-31
    
    177. Prakash N S, Marques D V, Varzea V M, Silva M C, Combes M C, Lashermes P. Introgression molecular analysis of a leaf rust resistance gene from Coffea liberica into C. arabica L. Theor Appl Genet, 2004,109:1311-1317
    
    178. Prakash S, Kirti P B, Bhatt S R, et al. A Moricandia arvensis based cytoplasmic male sterility and fertility restoration system in B. juncea. Theor Appl Genet, 1998, 97:488-492
    
    179. Prakash S. Utilization of wild germplasm of Brassica allies in developing cytoplasmic male sterility -fertility restoration systems in Indian mustard Brassica juncea. In: Liu, Fu T (eds) Proc Int Symp Rapeseed Sci, Science Press, New York, 2001, pp63-67
    
    180. Pring J. Vertebrate evolution by interspecific hybridization: Are we polyploid? FEBS Lett, 1997, 400:2-8
    
    181. Rawsthorne S, Morgan CL, O'Neill C M, Hylton C M, Jones D A, Frean M L. Cellular expression pattern of the glycine decarboxylase P protein in leaves of an intergeneric hybrid between the C3—C4 intermediate species Moricandia nitens and the C3 species Brassica napus. Theor Appl Genet. 1998, 96: 922-927
    
    182. Riera-Lizarazu O, Rines H W, Phillips R L. Cytological and molecular characterization of oat x maize partial hybrids. Theor Appl Genet, 1996, 93:123-135
    
    183. Rieseberg L H, Sinervo B, Linder C R, Ungerer M C, Arias D M. Role of gene interactions in hybrid speciation: Evidence from ancient and experimental hybrids. Science, 1996, 272:741-745
    
    184. Rines H W, Dahleen L S. Haploid oat plants produced by application of maize pollen to emasculated oat florets. Crop Sci, 1990, 30:1073-1078
    
    185. Schroder-Pontoppidan M, Skarzhinskaya M, Dixelius C, Stymne S, Glimelius K. Very long chain and hydroxylated fatty acids in offspring of somatic hybrids between Brassica napus and Lesquerella fendler. Theor Appl Genet, 1999, 99:108-114
    
    186. Schwarzacher T, Anamthawat-Jonsson K, Harrison G E. Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor Appl Genet, 1992, 84:778-786
    
    187. Shaked H, Kashkush K, Ozkan H, Feldman M, Levy A A. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell, 2001,13:1749-1759
    
    188. Shan X H, Liu Z L, Dong Z Y, Wang Y M, Chen Y et al. Mobilization of the active mite transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol Biol Evol, 2005, 22:976-990
    
    189. Sharp D J, Rogers G C, Scholey J M. Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nat Cell Biol, 2000, 2(12):922-930
    
    190. Sigareva M A, Earle E D. Regeneration of plants from protoplasts of Capsella bursa-pastoris and somatic hybridization with rapid cycling Brassica oleracea. Plant Cell Rep, 1999, 18:412-417
    
    191. Skarzhinskaya M, Landgren M and Glimelius K. Production of intertribal somatic hybrids between Brassica napus L. and Lesquerella fendleri (Gray) Wats. Theor Appl Genet, 1996, 93:1242-1250
    
    192. Snowdon R J, Kohler W, Friedt W, Kehler A. Genome in situ hybridization in Brassica Amphidiploids and interspecific hybrids. Theor Appl Genet, 1997, 95: 1320-1324
    
    193. Snowdon RJ, Winter H, Diestel A Development and characterization of Brassica napus-Sinapis arvensis addition lines exhibiting resistance to Leptosphaeria maculans. Theor Appl Genet, 2000. 101:1008-1014
    
    194. Snowdon R .J. Cytogenetics and genome analysis in Brassica crops. Chromosome Res. 2007. 15:85-95
    195. Song K, Lu P, Tang K, Osbom T C. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploidy evolution. Proc Natl Acad Sci USA, 1995, 92:7719-7723
    
    196. Subrahmanyam N C and Kasha K J. Selective chromosomal elimination during haploid formation in barley following interspecific hybridization. Chromosoma, 1973, 42:111-125
    
    197. Sybenga J. Cytogeneticsin plant breeding. Springer-Verlag, Berlin, Heidelberg, New York, 1992
    
    198. Takahata Y, Takeda T. Intergeneric (intersuctribe) hybridizarion betweem Moricandia arvensis and Brassica A and B genome species by ovary culture. Theor Appl Genet, 1990, 80:38-42
    
    199. Tel-Zur N, Abbo S, Bar-Zvi D, Mizrahi Y. Chromosome doubling in vine cacti hybrids. J Hered, 2003, 94(4):329-333
    
    200. Toriyama K, Hinata K. and Kameya T. Production of somatic hybrid plants, 'Brassicomoricandia', through protoplast fusion between Moricandia arvensis and B. oleracea. Plant Sci, 1987,48:123-128
    
    201. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res, 1995, 23:4407-4414
    
    202. Wang X, Liu L, Liu S, Sun X, Deng Z, Pi Y, Sun X, Tang K. Isolation and Molecular Characterization of a New CRT Binding Factor Gene from Capsella bursa-pastoris. J Biochem Mol Biol, 2004, 37(5):538-545
    
    203. Wang X, Liu S, Liu X, Chen Z, Liu X, Pang Y, Sun X, Tang K. Molecular cloning and characterization of a CBF gene from Capsella bursa-pastoris. DNA Seq, 2004, 15(3):180-187
    
    204. Wang X, Sun X, Liu S, Liu L, Liu X, Sun X, Tang K. Molecular cloning and characterization of a novel ice gene from Capsella bursa-pastoris. Mol Biol (Mosk), 2005, 39(1):21-29
    
    205. Wang Y M, Dong Z Y, Zhang Z J, Lin X Y, Shen Y, Zhou D, Liu B. Extensive de Novo genomic variation in rice induced by introgression from wild rice (Zizania latifolia Griseb.). Genetics, 2005,170:1945-1956
    
    206. Wang Y P, Sonntag K, Rudloff E. Development of rapeseed with high erucic acid content by asymmetric somatic hybridization between Brassica napus and Crambe abyssinica. Theor Appl Genet, 2003, 106:1147-1155
    
    207. Wessendorf S, Fritz B, Wrobel G, Nessling M. Lampel S, Goettel D, Kuepper M, Joos S. Hopman T, Kokocinski F, Dohner H. Bentz M, Schwaenen C, Lichler P. Automated screening lor genomic imbalances using matrix-based comparative genomic hybridization. Lab Invest, 2002, 82:47-60
    
    208. Whitton J. The persistence of cultivar alleles in wild populations of sunflowers five generations afer hybridization. Theor Appl Genet, 1997, 95:33-40
    
    209. Wojcik E, Basto R, Serr M, Scaerou F, Karess R, Hays T. Kinetochore dynein: its dynamics and role in the transport of the Rough deal checkpoint protein. Nat Cell Biol, 2001, 3(11): 1001-1007
    
    210. Wolfe K H and Shields D C. Molecular evidence for an ancient duplication of the entire yeast genome. Nature, 1997, 387:708-713
    
    211. Xing Y, Lawrence J B. Preservation of specific RNA distribution within the chromatin-depleted nuclear substructure demonstrated by in situ hybridization coupled with biochemical fractionation. J. Cell Biol., 1991 112:1055-1063
    
    212. Yan G, Ferguson A R, McNeilage M A, Murray B GNumerically unreduced (2n) gametes and sexual polyploidization in Actinidia. Euphytica, 1997, 96: 267-272
    
    213. Zhong X B, Hans de Jong J, Zabel P. Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Research, 1996, 4:24-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700