东北六种温带森林碳密度和固碳能力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林生态系统吸收大气中CO2并固定在植被和土壤中,因而在减少日益增长的温室效应和维持气候系统的稳定中起到至关重要的作用。精确估算森林碳储量和碳通量是评价森林生态系统对全球碳收支贡献的首要条件,而探索森林碳分配格局及其影响因子对于构建陆地生态系统模型和评价预测森林碳循环对全球变化的响应也非常重要。本研究以处于同一气候区内林龄相近的六种温带森林(即杨桦林、硬阔叶林、红松林、兴安落叶松林、杂木林和蒙古栎林)为研究对象,旨在量化六种林型十种主要组成树种的碳浓度变异以及采用不同碳浓度估算生物量碳的误差,同时采用样地清查和异速生长方程法量化六种林型的碳密度和净初级生产力(NPP)的分配格局及其控制因子,并评价其固碳能力。主要研究结果如下:
     十种主要树种生物量器官的平均碳浓度波动在47.1%(细根)至51.4%(叶)之间,其中树干总平均碳浓度为49.9±1.3%(平均值±标准误)。质量加权平均碳浓度(weighted mean carbon concentration,WMCC)的大小顺序为:黄菠萝(Phellodendron amurense Rupr.)(55.1%)>紫椴(Tilia amurensis Rupr.)(53.9%)>红松(Pinus koraiensis Sieb.et Zucc.)(53.2%)>水曲柳(Fraxinus mandshurica Rupr.)(52.9%)>胡桃楸(Juglans mandshurica Maxim.)(52.4%)>蒙古栎(Quercus mongolica Fisch.)(47.6%)>兴安落叶松(Larix gmelinii Rupr.)(46.9%)>五角槭(Acer mono Maxim.)(46.4%)>白桦(Betula platyphylla Suk.)(46.1%)>山杨(Populous davidians Dode)(43.7%)。忽略上述碳浓度的种内和种间变异将引起的生物碳储量估算误差波动在-6.7%至+7.2%之间,其中约93%的误差是因碳浓度在种内不同生物量器官间的变异引起的。WMCC与优势木的平均年增长量呈显著负相关关系,表明在固碳林营造时选择速生树种的同时,应该折中考虑其较低碳浓度而引起的固碳量损失。
     林龄相近的六种林型,虽然所处的立地条件和林分组成不同,但林型间的生态系统碳密度及其组分(除碎屑碳库外)差异不显著,而利用胸高断面积标准化之后却发现其差异显著。六种林型的总碳密度波动在186.9-349.1 tC hm-2之间;其中,植被碳密度、碎屑碳密度、土壤碳密度分别波动在86.3-122.7、6.5-10.5、93.7-220.1 tC hm-2之间,分别占总碳密度的39.7%±7.1%(均值±标准差)、3.3%±1.1%、57.0%±7.9%。在植被碳库中,乔木层占99%以上。叶生物量、中细根(直径<5mm)生物量、根冠比、中细根与叶量之比分别波动在2.08-4.72 tC hm-2、0.95-3.24 tC hm-2、22.0-28.3%、34.5-122.2%之间。六种林型中,以红松林的叶生产效率(总生物量与叶量之比)最低(22.6 g g-1)、兴安落叶松林的中细根生产效率(总生物量与中细根生物量之比)最高(124.7 g g-1)。除蒙古栎林之外,所有林型的中细根碳密度均随土壤层次加深而下降;而蒙古栎林的中细根碳密度的垂直分布却有下移趋势。两种人工林(红松林和落叶松林)的粗木质残体碳密度显著地低于天然林。这些结果表明,特定森林的碳分配格局分异主要受控于植被功能型、经营历史、局域土壤的水分和养分有效性等的共同作用。
     六种林型的总NPP波动在615.9-860.4 gC m-2a-1之间,平均值为763.2 gC m-2a-1。由于立地条件和组成植被功能型的不同,总NPP的林型间差异显著,其中NPP林型间的分异主要来源于地下NPP,而地上NPP差异不显著。另外,短期存活组织(即资源获取组织)NPP也存在显著的差异。除兴安落叶松林外,其余五种林型在地上和地下NPP、长期存活组织和短期存活组织NPP的分配格局基本一致,均以地上NPP(占总NPP的1/2以上)和短期存活组织NPP(占总NPP的2/3以上)为主。六种林型净生态系统生产力(NEP)波动在301.9-729.2 gC m-2a-1,均表现出较强的碳汇功能。
     本论文对我国东北典型温带森林碳密度和碳汇功能进行了系统的研究,为区域森林碳循环模型的构建和校验提供了重要的实测数据,也为东北地区碳汇林业提供了科学依据。
Forest ecosystem plays a key role in reducing the ongoing enhanced greenhouse effect and stabilizing the climatic system by sequestering the atmospheric CO2 into vegetation and soils. Quantifying forest carbon (C) storage and flux accurately is prerequisite to assess the contribution of forest ecosystem to the global carbon budget. Exploring forest C distribution and its influencing factors is also enssential to developing terrestrial ecosystem models and predicting responses of forest C cycling to global changes. In this study, we investigated six representative temperate forests with similar stand age (42-59 years old) and under same climate conditions in northeastern China. The forests were aspen-birch forest, hardwood forest, Korean pine plantation, Dahurian larch plantation, mixed deciduous forest, and Mongolian oak forest. The aims of this study were to:(1) examine inter-and intra-specific variations of C concentration ([C]) in biomass tissues for 10 co-occurring temperate tree species in the forests; and (2) measure C density, net primary production (NPP) and their distribution patterns so as to assess C sequestration capacity of the forests with forest inventory and allometry approaches. The main results were as follows:
     The mean biomass tissue [C] across the ten species varied from 47.1% in fine root to 51.4% in foliage. The mean stem [C] of the species was 49.9±1.3%(mean±SE). The weighted mean C concentration (WMCC) for the species ranked as:Amur cork-tree (Phellodendron amurense Rupr.) (55.1%)> Amur linden (Tilia amurensis Rupr.) (53.9%)> Korean pine (Pinus koraiensis Sieb. et Zucc.) (53.2%)> Manchurian ash (Fraxinus mandshurica Rupr.) (52.9%)> Manchurian walnut (Juglans mandshurica Maxim.) (52.4%)> Mongolian oak (Quercus mongolica Fisch.) (47.6%)> Dahurian larch (Larix gmelinii Rupr.) (46.9%)> Mono maple (Acer mono Maxim.) (46.4%)> white birch (Betula platyphylla Suk.) (46.1%)> aspen (Populous davidiana Dode)(43.7%) (43.7%). Failing to account for the inter-and intra-specific variations in [C] will introduce a relative error of-6.7% to+7.2% in estimates of biomass C stock from inventory data, of which 93% is attributed to ignoring the inter-specific variation in [C]. The WMCC of the dominant trees was negatively correlated to mean annual increment of biomass (MAI), suggesting that planting fast-growing tree species for C sequestration in afforestation and reforestation practices sacrifice some C gain from increasing MAI due to decreasing [C].
     There were no significant differences in the C densities of ecosystem components (except for detritus) although the six forests had various vegetation compositions under divergent site conditions. The differences, however, were significant when the C pools were normalized with stand basal area. The total ecosystem C density varied from 186.9 tC hm-2to 349.1 tC hm-2 across the forests. The C densities of vegetation, detritus, and soil ranged 86.3-122.7 tC hm-2, 6.5-10.5 tC hm-2, and 93.7-220.1 tC hm-2, respectively, which accounted for 39.7%±7.1% (mean±SD),3.3%±1.1%, and 57.0%±7.9% of the total C density, respectively. The overstory C pool accounted for>99% of the vegetation C pool. The foliage biomass, small root (diameter<5mm) biomass, root-shoot ratio, and small root to foliage biomass ratio varied from 2.08-4.72 tC hm-2,0.95-3.24 tC hm-2,22.0-28.3%, and 34.5-122.2%, respectively. The Korean pine plantation had the lowest foliage productive efficiency (total biomass/foliage biomass:22.6 g g-1) among the six forests, while the Dahurian larch plantation had the highest small root production efficiency (total biomass/small root biomass:124.7 g g-1). The small root C density decreased with soil depths for all forests except for the Mongolian oak forest, in which the small roots tended to be vertically distributed downwards. The C density of coarse woody debris was significantly less in the two plantations than in the four naturally regenerated forests. This study illustrates that the variability of C allocation patterns in a specified forest is jointly influenced by vegetation type, management history, local water and nutrient availability; it also provides important data for developing and validating carbon cycling models for temperate forests.
     The total NPP (TNPP) of the six forests varied from 615.9 to 860.4 gC m-2a-1, averaging 763.2 gC m-2a-1.There were no significant differences in the aboveground NPP (ANPP) among the six forests, although the forests had various vegetation compositions under divergent site conditions. However, the TNPP differed significantly among the forests, mainly attributed to the difference in the belowground NPP (BNPP). Additionally, the NPP of short-living tissues (NPPSL) (i.e., the tissues that assimilated resource) differed significantly. The allocation patterns of TNPP to BNPP or NPPSL were similar across the six forests except for the Dahurian larch plantation. More than one half and two thirds of TNPP was allocated to ANPP and NPPSL, respectively. The six forests had strongly carbon sequestration potential, The net ecosystem production (NEP) varied from 301.9 to 729.2 gC m-2a-1 across the six forests, suggesting the forests as strong C sinks.
     This comprehensive investigation on forest C density and sink strength provides important data for developing and validating C cycling models for the temperate forests, and scientific basis for forest C sequestration management in this region.
引文
[1]IPCC. Climate Change 2007:The Physical Science Basis. Cambridge University Press.Cambridge, United Kingdom and New York, NY, USA.2007.
    [2]FAO. Global forest resource assessment:progress towards sustainable forest management. FAO Forestry Paper.Rome.2005.147
    [3]方精云,朴世龙,赵淑清.C02失汇与北半球中高纬度陆地生态系统的碳汇.植物生态学报.2001,25(5):594-602
    [4]Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu S. Forest carbon sinks in the Northern Hemisphere. Ecological Applications.2002,12(3):891-899
    [5]Myneni RB, Dong J, Tucker CJ, Kaufinann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK. A large carbon sink in the woody biomass of Northern forests. PNAS. 2001,98(26):14784-14789
    [6]White A, Cannell MGR, Friend AD. The high-latitude terrestrial carbon sink:a model analysis. Global Change Biology.2000,6 (2):227-245
    [7]Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL. Global climate change and terrestrial net primary production. Nature.1993, 363(6426):234-240
    [8]Cao M, Woodward FI. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature.1998,393(21):249-252
    [9]Jastrow JD, R. Michael Miller, Matamala R, Norby RJ, Boutton TW, Rice CW, Owensby CE. Elevated atmospheric carbon dioxide increases soil carbon. Global Change Biology.2005, 11(12):2057-2064
    [10]Phillips OL, Malhi Y, Higuchi N, Laurance WF, Nunez PV, Martinez RV, Laurance SG, Ferreira LV, Stern M, Brown S, Grace J. Changes in the carbon balance of tropical forests:evidence from long-term plots. Science.1998,282(5388):439-442
    [11]Schimel DS, House JI, Hibbard KA. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature.2001,414(6860):169-172
    [12]Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J. Carbon pools and flux of global forest ecosystems. Science.1994,263(5144):185-190
    [13]Malhi Y, Baldocchi DD, Jarvis PG The carbon balance of tropical,temperate and boreal forests. Plant,Cell and Environment.1999,22(6):715-740.
    [14]Wang C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management.2006,222(1-3):9-16
    [15]杨金艳,王传宽.东北东部森林生态系统土壤碳贮量和碳通量.生态学报.2005,25(11):2875-2882
    [16]Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T. The carbon balance of terrestrial ecosystems in China. Nature.2009,458(7241):1009-1013
    [17]Peng C, Zhou X, Zhao S, Wang X, Zhu B, Piao S, Fang J. Quantifying the response of forest carbon balance to future climate change in Northeastern China:Model validation and prediction. Global and Planetary Change.2009,66(3-4):179-194
    [18]Gower ST, Kucharik CJ, Norman JM. Direct and indirect estimation of leaf area index, f(APar), and net primary production of terrestrial ecosystems. Remote Sens Environ. 1999,70(1):29-51
    [19]Gower ST, Krankina O, Olson RJ, Apps M, Linder S, Chuankuan W. Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecological Applications.2001,11 (5):1395-1411
    [20]Houghton RA. Converting terrestrial ecosystems from sources to sinks of carbon. Ambio,1996:267-272.
    [21]Lamlom SH, Savidge RA. A reassessment of carbon content in wood:variation within and between 41 North American species. Biomass and Bioenergy.2003,25(4):381-388
    [22]Thomas SC, Malczewski G Wood carbon content of tree species in Eastern China: Interspecific variability and the importance of the volatile fraction. J Environ Manage. 2007,85(3):659-662
    [23]Laiho R, Laine J. Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland. Forest Ecology and Management.1997,93(1-2):161-169
    [24]Wang C, Bond-lamberty B, Gower ST. Carbon distribution of a well- and poorly-drained black spruce fire chronosequence. Global Change Biology.2003,9(7):1066-1079
    [25]Bert D, Danjon F. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). Forest Ecology and Management.2006,222(1-3):279-295
    [26]Lamlom SH, Savidge RA. Carbon content variation in boles of mature sugar maple and giant sequoia. Tree Physiology.2006,26(4):459-468
    [27]Elias M, Potvin C. Assessing inter- and intra-specific variation in trunk carbon concentration for 32 neotropical tree species. Can J For Res-Rev Can Rech For.2003, 33(6):1039-1045
    [28]程堂仁,冯菁,马钦彦,王玉涛,康峰峰,冯仲科,张彦林,邓向瑞.甘肃小陇山森林植被碳库及其分配特征.生态学报.2008,28(1):33-44
    [29]Fukatsu E, Fukuda Y, Takahashi M, Nakada R. Clonal variation of carbon content in wood of Larix kaempferi (Japanese larch). J Wood Sci.2008,54(3):247-251
    [30]Kozlowski TT. Carbohydrate sources and sinks in woody-plants. Bot Rev.1992, 58(2):107-222
    [31]Litton CM, Raich JW, Ryan MG Carbon allocation in forest ecosystems. Global Change Biology.2007,13(10):2089-2109
    [32]Brown S, Lugo A. The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica.1982,14(3):161-187
    [33]Woodwell GM, Whittaker RH, Reiners WA. The biota and the world carbon budget. Science.1978,199(4325):141-146
    [34]Brown S, Lugo A. Biomass of tropical forests:a new estimate based on forest volumes. Science.1984,223(4642):1290
    [35]Turner DP, Koepper GJ, Harmon ME, Lee JJ. A carbon budget for forests of the conterminous UnitedStates. Ecological Applications.1995,5(2):421-436
    [36]Birdsey R, Plantinga A, Heath L. Past and prospective carbon storage in United States forests. Forest Ecology and Management.1993,58(1-2):33-40
    [37]Fang J, Liu G, Xu S. Forest biomass of China:an estimation based on the biomass-volume relationship. Ecological Applications.1998,8(4):1084-1091
    [38]周玉荣,于振良,赵士洞.我国主要森林生态系统碳储量和碳平衡.植物生态学报.2000,24(5):518-522
    [39]王效科,冯宗炜,欧阳志云.中国森林生态系统植物碳储量和碳密度研究.应用生态学报.2001,12(1):13-16
    [40]Wang C, Gower ST, Wang Y, Zhao H, Ping Y, Bond-Lamberty B. The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north-eastern China. Global Change Biology.2001,7(5):719-730
    [41]Zhu B, Wang X, Fang J, Piao S, Shen H, Zhao S, Peng C. Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. Journal of Plant Research.2010, In press
    [42]Fang JY, Liu GH, Zhu B, Wang XK, Liu SH. Carbon budgets of three temperate forest ecosystems in Dongling Mt., Beijing, China. Science in China Series D-Earth Sciences. 2007,50(1):92-101
    [43]Wang Q, Wang S, Zhang J. Assessing the effects of vegetation types on carbon storage fifteen years after reforestation on a Chinese fir site. Forest Ecology and Management. 2009,258(7):1437-1441
    [44]Zheng H, Ouyang Z, Xu W, Wang X, Miao H, Li X, Tian Y. Variation of carbon storage by different reforestation types in the hilly red soil region of southern China. Forest Ecology and Management.2008,255(3-4):1113-1121
    [45]Vande Walle I, Mussche S, Samson R, Lust N, Lemeur R. The above- and belowground carbon pools of two mixed deciduous forest stands located in East-Flanders (Belgium). Annals of Forest Science.2001,58(5):507-517
    [46]Xiao CW, Yuste JC, Janssens IA, Roskams P, Nachtergale L, Carrara A, Sanchez BY, Ceulemans R. Above- and belowground biomass and net primary production in a 73-year-old Scots pine forest. Tree Physiology.2003,23(8):505-516
    [47]Peichl M, Arain AA. Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agricultural and Forest Meteorology.2006,140(1-4):51-63
    [48]Martin JL, Gower ST, Plaut J, Holmes B. Carbon pools in a boreal mixedwood logging chronosequence. Global Change Biology.2005,11(11):1883-1894
    [49]Law BE, Thornton PE, Irvine J, Anthoni PM, Van Tuyl S. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biology.2001, 7(7):755-777
    [50]Vargas R, Allen MF, Allen EB. Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical forest. Global Change Biology.2008, 14(1):109-124
    [51]Pregitzer KS, Euskirchen ES. Carbon cycling and storage in world forests:biome patterns related to forest age. Global Change Biology.2004,10(12):2052-2077
    [52]Litton C, Ryan M, Knight D. Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine. Ecological Applications.2004,14(2):460-475
    [53]Litton CM, Ryan MG, Tinker DB, Knight DH. Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density. Canadian Journal of Forest Research.2003,33(2):351-363
    [54]Gower ST, Vogel JG, Norman JM, Kucharik CJ, Steele SJ, Stow TK. Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. Journal of Geophysical Research.1997,102(D24):29029-29042
    [55]Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papale D, Piao SL, Schulze ED, L.Wingate, Matteucci G, Aragao L, Aubinet M, Beer C, Bernhofer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grunwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolari P, Kruijt B, Kutsch W, Lagergren F, Laurila T. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology.2007,13(12):2509-2537
    [56]方精云,郭兆迪,朴世龙,陈安平.1981-2000年中国陆地植被碳汇的估算.中国科学D辑:地球科学.2007,37(6):804-812
    [57]Del Grosso S, Parton W, Stohlgren T, Zheng D, Bachelet D, Prince S, Hibbard K, Olson R. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology.2008,89(8):2117-2126
    [58]Cao MK, Woodward FI. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biology. 1998,4(2):185-198
    [59]Gower ST, McMurtrieb RE, Murtyb D. Aboveground net primary production decline with stand age:potential causes. Tree.1996, 11(9):378-382
    [60]Knapp AK, Smith MD. Variation among biomes in temporal dynamics of aboveground primary production. Science.2001,291(5503):481-484
    [61]Reich P, Bolstad P. Productivity of evergreen and deciduous temperate forests. San Diego, Calif:Academic Press,2001.245-277
    [62]Newman GS, Arthur MA, Muller RN. Above- and Belowground Net Primary Production in a Temperate Mixed Deciduous Forest. Ecosystems,2006,9(3):317-329
    [63]Bond-Lamberty B, Wang C, Gower ST. Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Global Change Biology. 2004,10(4):473-487
    [64]孙睿,朱启疆.中国陆地植被净第一性生产力及季节变化研究.地理学报.2000,55(1):36-45
    [65]肖向明,Melillo JM,潘瑜德,Kicklighter DW, McGuire AD, Helfrich J. CO2浓度变化对中国陆地生态系统净初级生产力及其平衡的影响.植物生态学报.1998,22(2):97-118
    [66]Cao M, Tao B, Li K. Interannual Variation in Terrestrial Ecosystem Carbon Fluxes in China from 1981 to 1998. Acta Botanica Sinica.2003,45(5):522-560
    [67]朴世龙,方精云,郭庆华.1982-1999年我国植被净第一性生产力及其时空变化.北京大学学报(自然科学版).2001,37(4):563-569
    [68]Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze ED. Reconciling Carbon-cycle Concepts,Terminology, and Methods. Ecosystems.2006,9(7)1041-1050
    [69]Wang X, Wang C, Yu G. Spatio-temporal patterns of forest carbon dioxide exchange based on global eddy covariance measurements. Sci China Ser D-Earth Sci.2008, 51(8):1129-1143
    [70]Roxburgh S, Wood S, Mackey B, Woldendorp G, Gibbons P. Assessing the carbon sequestration potential of managed forests:a case study from temperate Australia. Ecology.2006,43:1149-1159
    [71]Chapin FS, McFarland J, McGuire AD, Euskirchen ES, Ruess RW, Kielland K. The changing global carbon cycle:linking plant-soil carbon dynamics to global consequences. Journal of Ecology.2009,97(5):840-850
    [72]De Deyn GB, Cornelissen JH, Bardgett RD. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters.2008,11(5):516-531
    [73]Zhou G, Liu S, Li Z, Zhang D, Tang X, Zhou C, Yan J, Mo J. Old-Growth Forests Can Accumulate Carbon in Soils. Science.2006 314(5804):1417
    [74]Fang J, Guo Z, Piao S, Chen A. Terrestrial vegetation carbon sinks in China, 1981-2000. Science in China Series D:Earth Sciences.2007,50(9):1341-1350
    [75]Wang CK, Yang JY, Zhang QZ. Soil respiration in six temperate forests in China. Global Change Biology.2006,12(11):2103-2114
    [76]Quan X, Wang C, Zhang Q, Wang X, Luo Y, Bond-lamberty B. Dynamics of fine roots in five Chinese temperate forests. Journal of Plant Research.2010,123(4)497-507
    [77]Zhang Q, Wang C, Wang X, Quan X. Carbon concentration variability of 10 Chinese temperate tree species. Forest Ecology and Management.2009,258(5):722-727
    [78]Vogt KA, Vogt DJ, Bloomfield J. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant and Soil. 1998,200(1):71-89
    [79]Wang XP, Fang JY, Zhu B. Forest biomass and root-shoot allocation in northeast China. Forest Ecology and Management.2008,255(12):4007-4020
    [80]Jackson R, Mooney H, Schulze E. A global budget for fine root biomass, surface area, and nutrient contents. PNAS.1997,94(14):7362
    [81]Chiba Y. Architectural analysis of relationship between biomass and basal area based on pipe model theory. Ecological Modelling.1998,108(1-3):219-225
    [82]Baker T, Phillips O, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Killeen T, Laurance S, Laurance W. Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology.2004,10(5):545-562
    [83]Helmisaari H, Derome J, Nojd P, Kukkola M. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiology.2007, 27(10):1493
    [84]Makela A, Valentine HT, Helmisaari HS. Optimal co-allocation of carbon and nitrogen in a forest stand at steady state. New Phytologist.2008,180(1):114-123
    [85]Litton CM, Giardina CP. Below-ground carbon flux and partitioning:global patterns and response to temperature. Functional Ecology.2008,22(6):941-954
    [86]Aber J, Melillo J, Nadelhoffer K, McClaugherty C, Pastor J. Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability:a comparison of two methods. Oecologia.1985,66(3):317-321
    [87]Pastor J, Post W. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry.1986,2(1):3-27
    [88]Canadell J, Jackson R, Ehleringer J, Mooney H, Sala O, Schulze E. Maximum rooting depth of vegetation types at the global scale. Oecologia.1996,108(4):583-595
    [89]Brassard BW, Chen HYH, Bergeron Y. Influence of Environmental Variability on Root Dynamics in Northern Forests. Crit Rev Plant Sci.2009,28(3):179-197
    [90]Jobbagy E, Jackson R. The distribution of soil nutrients with depth:global patterns and the imprint of plants. Biogeochemistry.2001,53(1):51-77
    [91]Kozlowski TT, Pallardy SG. Physiology of Woody Plants San Diego Academic Press, 1996.
    [92]Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED. A global analysis of root distributions for terrestrial biomes. Oecologia.1996,108(3):389-411
    [93]Gower ST, Richards JH. Larches:deciduous conifers in an evergreen world. Bioscience. 1990,40(11):818-826
    [94]Gough C, Vogel C, Kazanski C, Nagel L, Flower C, Curtis P. Coarse woody debris and the carbon balance of a north temperate forest. Forest Ecology and Management.2007, 244(1-3):60-67
    [95]Sturtevant B, Bissonette J, Long J, Roberts D. Coarse woody debris as a function of age, stand structure, and disturbance in boreal Newfoundland. Ecological Applications.1997, 7(2):702-712
    [96]Yanai R, Arthur M, Siccama T, Federer C. Challenges of measuring forest floor organic matter dynamics:repeated measures from a chronosequence. Forest Ecology and Management.2000,138(1-3):273-283
    [97]Cornelissen J, Grime J, Marzano B, Cabido M, Vendramini F, Cerabolini B. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytologist.1999,143(1):191-200
    [98]Liu S, Li X, Niu L. The degradation of soil fertility in pure larch plantations in the northeastern part of China. Ecological Engineering.1998,10(1):75-86
    [99]Chapin Ⅲ FS, Matson PA, Mooney HA. Principles of Terrestrial Ecosystem Ecology. New York, USA:Springer-Verlag, New York, Inc.,2002.
    [100]Jobbagy E, Jackson R. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications.2000,10(2):423-436
    [101]Binkley D. The influence of tree species on forest soils:processes and patterns. Agronomy Society Of New Zealand Special Publication.1995.1-34
    [102]Fairley R, Alexander I. Methods of calculating fine root production in forests. Oxford: The British Ecological Society,1985.37-42
    [103]Davidson EA, Savage K, Bolstad P, Clark DA, Curtis PS, Ellsworth DS, Hanson PJ, Law BE, Luo Y, Pregitzer KS, Randolph JC, Zak D. Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology.2002,113(1-4):39-51
    [104]Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, Schwinning S, Small EE, Williams DG. Convergence across biomes to a common rain-use efficiency. Nature.2004,429(6992):651-654
    [105]Malhi Y, Aragao L, Metcalfe DB, Paiva R, Quesada CA, Almeida S, Anderson L, Brando P, Chambers JQ, da Costa ACL, Hutyra LR, Oliveira P, Patino S, Pyle EH, Robertson AL, Teixeira LM. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biology.2009, 15(5):1255-1274
    [106]Waring R, Schlesinger W. Forest ecosystems:concepts and management. New York: Academic Press,1985.
    [107]Hashimoto S, Nose M, Obara T, Moriguchi Y. Wood products:potential carbon sequestration and impact on net carbon emissions of industrialized countries. Environmental Science & Policy.2002,5(2):183-193
    [108]Wang Xingchang, Wang Chuankuan, Zhang Quanzhi, Quan Xiankui. Heartwood and sapwood allometry of seven Chinese temperate tree species. Annals of Forest Science. 2010,67(4):722-727

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700