高煤级煤储层条件下的气体运移机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于以往对不同煤级煤储层物性及煤层气运移机理的研究成果,结合不同煤级煤的孔裂隙形态观测和孔隙结构参数测试结果,研究了高煤级煤储层孔、裂隙性,吸附、解吸特征,研究发现:高煤级煤的微孔含量较高,孔比表面积较大,压汞测得的孔隙中值半径和孔隙度较小;相对于低煤级煤,高煤级煤内的孔隙具有显著的定向性,但孔隙连通性较差,多为半封闭孔。孔隙形态、结构参数的变化规律,反映了煤化程度增高的过程,也是煤体内微孔含量增大,大孔含量减少,孔隙定向性增大的过程。进一步研究发现,高煤级煤的裂隙系统发育不均衡,外生裂隙较发育,内生及显微裂隙发育稀少,中间缺失次级裂隙的过渡。高煤级煤吸附性总体上要大于中、低煤级煤,但相应地造成气体解吸的困难性。
     以沁水盆地为例,探讨了高煤级煤储层条件下,煤层气排采过程中气体的运移过程及扩散、渗流的动态演化规律,构建了适于研究区的煤层气开采过程中气体扩散、渗流模型。研究认为:高煤级煤气藏含气性好,但相对解吸速率低,解吸效率不高,开发难度较大;煤层气排采过程中,孔隙内气体的扩散模式是一个动态变化过程,随着压力的改变,同一孔径范围内会相应经历不同的扩散模式。而由于高煤级煤特有的孔隙属性,Knudsen型扩散非常微弱,过渡型扩散贯穿于排采的整个过程,Fick型扩散主要发生排采降压初期,且在小孔径范围内的扩散速率总体要高于低煤级煤,在大孔径范围内则与之相反;高煤级煤的渗流通道发育不协调,渗流速率有一个快速增大的过程,但总体上仍较低煤级煤低,排采阶段受控于有效应力及煤基质自调节效应,区内储层渗透率呈现规律性变化。
Based on the physical properties of coal reservoirs of different ranks and the gas migration mechanism of coal-bed research results, combine the test results of the pore fracture morphology observation and pore structure parameters of different ranks coal, this paper through research of reservoir pores and cranny property, adsorption and desorption characteristics of high-rank coal, the results show that: the micropore content increases gradually with the deepening of coalification degree, but the macropore content displayed contrary trend, the transitional and meso pore content changed slightly; High rank coal pore specific surface area is also greater than low rank coal, but the porosity and average pore radius are letter; The micropore distribute densely and directivity in high rank coal, however, the pore connectivity is worse and the semi-closed pore is in the majority. The change law of pore morphology and structure parameters show the increase process of coalification degree, that is the process of micropore content in coal increased, the macropore content decreased and the pore directionality increased. Further study found that the development is not balanced in the pore fracture system of high rank coal, which the exogenous pore fracture is more developed, endogenous and microstructure part is scarce, and the secondary pore fracture is lack. Adsorbability of high rank coal is greater than the middle and low rank coal as the whole, but increased the difficulty of gas desorption accordingly.
     This paper use Qinshui basin as an example to explore the evolution law of gas migration, diffusion and seepage in the discharge and mining process of coal bed gas with the conditions of high rank coal reservoirs, and form the gas diffusion and seepage model fit the research area. Study holds that: the gas-bearing property of gas reservoir is good in high rank coal, but relative desorption rate and desorption efficiency is low that difficult to develop; the gas diffusion model of inner pore is a dynamic changing process which changes diffusion model in the same pore size with the change of pressure. Due to the specific pore properties of high rank coal, Knudsen diffusion model is less, Transitional diffusion model throughout the entire discharge and mining process , Fick diffusion model mainly occurs in the beginning period of depressurization, and the diffusion rate in the small pore size is higher than the low rank coal, but the contrary in the large pore size. The development of seepage channels in high rank coal is out of line which seepage rate there is a rapidly growing process, but is still lower than low rank coal in general. In the mining stage it is controlled by the effective stress and self-regulating effect of coal matrix, the permeability of reservoir showed regular changes.
引文
[1]张新民,庄军,张遂安主编.中国煤层气地质与资源评价.北京:科学出版社,2002.
    [2]张新民,张遂安,钟玲文等.中国煤层甲烷.西安:陕西科学技术出版社,1991.
    [3]叶建平,秦勇,林大扬等.中国煤层气资源.徐州:中国矿业大学出版社,1999.
    [4] Ertekin T.. Coalbed methane recovery modeling: what we know and what we need to learn. Turkish Journal of Oil and Gas. 1995, 1(1): 7~18.
    [5] Karacan C ?, kandan E.. Fracture/cleat analysis of coals from Zonguldak Basin_northwestern Turkey/relative to the potential of coalbed methane production. International Journal of Coal Geology, 2000, 44:109~125.
    [6]李小彦,解光新.孔隙结构在煤层气运移过程中的作用—以沁水盆地为例[J].天然气地球科学,2004,15(4): 341~344.
    [7]吴世跃,郭勇义.煤层气运移特征的研究[J].煤炭学报,1999,24(1):66~68.
    [8]陈宗淇,王光信,徐桂英,编.胶体与界面化学[M].北京:高等教育出版社. 2001:42-84.
    [9]陈昌国.煤的物理化学结构和吸附(解吸)机理的研究[D].重庆:重庆大学,l995.
    [10]严继民,张启元,高敬琮等.吸附与凝聚[M].北京:科学出版社,1986.
    [11]刘志钧.关于煤的吸附甲烷容量的研究.煤矿安全,1988,10: 7~14.
    [12] Zhong, L.W., Zhang, X.M.. The relation of adsorption capability of coal and coal metamorphose degree and coal maceral.Coal Geology and Exploration, 1990, 18(4):29~35(in Chinese with English abstract).
    [13] Rightmire C T, Eddy G E, Kirr J N (eds). Coalbed Methane Resources of the United States AAPG, 1984. 1-14
    [14] Weishauptova Z, Medek J. Bound forms of methane in the porous system of coal. Fuel, 1998, 77:71~76.
    [15]蔡炳心.基础物理化学[M].北京:科学出版社. 2001,510~518.
    [16] Moffat, D.H., Weale, K.E.. Sorption by coal of methane at high pressures. Fuel, 1955, 34: 417~428.
    [17] Yang, R., T., Saunders, J., T.. Adsorption of gases on coals and heattreated coals at elevated temperature and pressure[J]. Fuel, 1985, 314~327.
    [18] Yee, D., Seidle, J., P., Hanson, W., B.. Gas sorption on coal and measurement of gas content [J]LAW B E, RICE D D. Eds. Hydrocarbons f rom Coal. AAPG Stud2ies in Geology, 1993, 38 (5) :203~218.
    [19]钟玲文,张新民.煤的吸附能力与其煤化程度和煤岩组成间的关系[J].煤田地质与勘探,1990,(4):29~34.
    [20]钟玲文.煤的吸附能力及影响因素[J].地球科学:中国地质大学学报,2004,29 (3) :327~332.
    [21]陈振宏,王一兵,宋岩等.不同煤阶煤层气吸附、解吸特征差异对比.天然气工业,2008,28 (3) :30~32.
    [22]秦勇,傅雪海,叶建平等.中国煤储层岩石物理学因素控气特征及机理[J].中国矿业大学学报,1999,28(1):14~19.
    [23]陈昌国,鲜晓红,张代均等.微孔填充理论研究无烟煤和炭对甲烷的吸附特性[J].重庆大学学报,1998,21(3):75~79.
    [24]秦勇.中国高煤级煤的显微岩石学特征及结构演化[M].徐州:中国矿业大学出版社,1994.
    [25]韩德馨.中国煤岩学[M].中国矿业大学出版社,1995.
    [26]赵志根,唐修义.对煤吸附甲烷的Langmuir方程的讨论[J].焦作工学院学报,2002,21(1):1~4.
    [27] Bustin R M, Clarkson C R. Geological controls on coalbed methane reservoir capacity and gas content [J]. International Journal of Coal Geology, 1998, 38(1~2):3~26.
    [28] Gayer R and Harris I. Coalbed Methane and Coal Geology. London:The Geological Society, 1996:1~338.
    [29] Karacan C O, Okandan E. Adsorption and gas transport in coal microstructure investigation and evaluation by quantitative X-ray imaging[J].Fuel, 2001, 80(4):509~520.
    [30] Marco Antonio, Chaer Naseinento. Computer simulations of the adsorption process of light alkanes in high-silica zeolites[J].Journal of Molecular Structure (Theochem)1999, 464:239~247.
    [31]傅雪海,秦勇,叶建平等.中国部分煤储层解吸特征及甲烷采收率[J].煤田地质与勘探,2000,28(2):19~21.
    [32]李景明,刘飞,王红岩等.煤储集层解吸特征及其影响因素[J].石油勘探与开发,2008,35 (1):25~31.
    [33]李小彦,司胜利.我国煤储层煤层气解吸特征[J].煤田地质与勘探,2004,32(3):27~29.
    [34]叶欣,刘洪林,王勃等.高低煤阶煤层气解吸机理差异性分析[J].天然气技术,2008,2(2):19~22.
    [35] GAYER R, HARRIS I. Coalbed methane and coal geology[C]. Lodon:Lodon Geological Society, 1996: 1~338.
    [36] RICE D D, FLORES R M. Controls of bacterial gas accumulations in thick Tertiary coal beds and adjacentchannel sandstones, Powder River Basin, Wyoming and Montana [J]. AAPG Bulletin, 1991, 75 :661.
    [37] Close J C. Natural Fracture in Coal. In: Law B E and Rice D D, eds. Hydrocarbons from Coal. AAPG Studies in Geology #38, 1993, 119~132.
    [38]管俊芳,侯瑞云.煤储层基质孔隙和割理孔隙的特征及孔隙度的测定方法[J].华北水利水电学院学报,1999,20(1):23~27.
    [39] Gamson P, Beamish B, Johnson David. Effect of coal microstructure and secondary mineralization on methane recovery. Geological Special Publication. 1998:165~179.
    [40]傅雪海,秦勇.现代构造应力场中煤储层孔隙应力分析与渗透率研究[J].地球学报,1999,20(增刊):623~627.
    [41] Meyers R A. Coal structure. New York:Academic Press, 1982.78~83.
    [42] Gan H, Nandi S P, Walker P L Nature of Porosity in American coals Fuel. 1972, 51:272~277.
    [43]郝琦.煤的显微孔隙形态特征及基成因探讨[J].煤炭学报,1987(4):51~57.
    [44]张建博,王红岩,赵庆波等.中国煤层气地质[M].北京:中国地质出版社,2000.
    [45]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40~44.
    [46]Хоцо? B B.煤与瓦斯突出(宋世钊等译).北京:煤炭工业出版社, 1976
    [47]秦勇,徐志伟.高煤级煤孔径结构的自然分类及其应用[J].煤炭学报,1995,20(3):266~271.
    [48]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552~556.
    [49]方爱民,侯泉林,琚宜文等.不同层次构造活动对煤层气成藏的控制作用[J].中国煤田地质,2005,17(4):15~20.
    [50]樊生利.沁水盆地南部煤层气勘探成果与地质分析[J].天然气工业,2001,21(4):35~38.
    [51]李小彦,杜新锋,陈鸿春.新集矿区煤的孔渗性实验室测定研究[J].煤田地质与勘探,2001,29(6):23~25.
    [52]傅雪海,秦勇,韦重韬,桑树勋.煤层气地质学[M].徐州:中国矿业大学出版社,2007.
    [53] Appleyard, I. R. and Cheshire, I. M. Nested factorization. Paper SPE 12264, presented at 7th SPE Symposium on Reservoir Simulation San Francisco, CA, 1983, Nov.16~18.
    [54] Ertekin, T. and King, G. R. Development of coal gas production simulators and mathematical models for well test strategies. Topical report under GRI contract number 5081-321-0457,July,1983
    [55] Boyer, C. M., Morrsion, H. L., Pavone, A. M. and Schwerer, F. Methane modeling-predicting the inflow of methane gas into coal mines. Final Report under DOE Contract Number DE-AC22-80PC30123, Feb.16, 1982.
    [56] Daines, M.E.. Apparatus for the determination of methane sorption on coal at high pressures by a weighing method. Journal of rock Mechanics and Mining Science, Vol.5, 1986.
    [57] Arri, L.E., Yee, D., Morgan, W.D., and Jeansonne, M. W.. Modeling coalbed methane priduc-tion with binary gas sorption. SPE Paper 24363 , SPE Rocky Mountain Regional Meeting , Casper, Wyoming , 1992.
    [58]陈昌国,鲜晓红,张代均等.微孔填充理论研究无烟煤和炭对甲烷的吸附特性[J].重庆大学学报. 1998,21(3):75~79.
    [59] Edward, D.T., Fred, N.K. Diffusion of methane through coal. Fuel, Oct. 1973, 52:274~280.
    [60] Smith, D.M., Williams, F.L. Diffusion effects in the recovery of methane from coalbeds. Society of Petroleum Engineers Journal, Oct. 1984:529~535.
    [61]聂百胜.煤粒瓦斯解吸扩散动力过程的实验研究.太原理工大学采矿系,1998.
    [62]闫宝珍,王延斌,倪小明.地层条件下基于纳米级孔隙的煤层气扩散特征[J].煤炭学报,2008,33(6):657~660.
    [63] Ancell, K.L., Lambert, S. Analysis of the coalbed degasification on process at a seventeen well pattern in the Warrior basin of Alabama. SPE/DOE8971, presented at the 1980 SPE/DOE Symposium on Unconventional Gas Recovery, Pittsburgh, May18-21, 1980:355~363.
    [64]周世宁,孙辑正.煤层瓦斯流动的理论及其应用.煤炭学报,1965,2(1):24~37.
    [65]周世宁.瓦斯在煤层中流动的机理.煤炭学报,1990,15(1):15~24.
    [66]吴世跃.煤层瓦斯扩散与渗流规律的初步探讨[J].山西矿业学院学报,1994,12(3):259~263.
    [67]刘焕杰,秦勇,桑树勋.山西南部煤层气地质[M].徐州:中国矿业大学出版社,1998.
    [68]张井,于冰,唐家祥.煤孔隙结构的测试研究[J].矿业世界,1996,2:25~27.
    [69]桑树勋,朱炎铭,张时音等.煤吸附气体的固气作用机理(Ⅰ) [J].天然气工业,2005,25(1):13~15.
    [70]秦勇.中国高煤级煤的显微岩石学特征及结构演化[M].徐州:中国矿业大学出版社,1994.
    [71]樊明珠,王树华.煤层气勘探开发中的割理研究.煤田地质与勘探,1997,25(1):29~32.
    [72]何学秋,聂百胜.孔隙气体在煤层中扩散的机理[J].中国矿业大学学报,2001,30(1):1~4.
    [73]聂百胜,张力,马文芳.煤层甲烷在煤孔隙中扩散的微观机理[J].煤田地质与勘探,2000,28(6):20~22.
    [74]聂百胜,何学秋,王恩元.瓦斯气体在煤孔隙中的扩散模式[J].矿业安全与环保,2000,27(5):13~16.
    [75]傅雪海,秦勇,李贵中.煤储层渗透率研究的新进展[J].辽宁工程技术大学学报,2001,20(6):739~743.
    [76] Levine J R. Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoir. In:Gayer R, Iharris I. (eds.), Coalbed Methane and Coal Geology. Geological Society Special Publication No. 109, 1996:197~212.
    [77]沈巧珍,杜建明.冶金传输原理[M].北京:冶金工业出版社. 2006.
    [78]张先敏,同登科.考虑基质收缩影响的煤层气流动模型及应用[J].中国科学. 2008,38(5):790~796.
    [79]崔永君,杨锡禄,张庆铃.煤对超临界甲烷的吸附特征[J].天然气工业,2003,23(3): 131~133.
    [80]傅雪海,秦勇,薛秀廉.分形理论在煤储层物性研究中的应用[J].煤,2000,9(4): 1~3.
    [81]陈春琳,林大杨.等温吸附曲线方法在煤层气可采资源量估算中的应用[J].中国矿业大学学报,2005,34(65): 679~681.
    [82]降文萍,崔永君,张群等.煤表面与CH4 ,CO2相互作用的量子化学研究[J].煤炭学报,2006,31 (2) : 237~240.
    [83]李明潮,梁生正,赵克镜.煤层气及其勘探开发[M].北京:地质出版社,1996.
    [84]贺天才,秦勇.煤层气勘探与开发利用技术[M].徐州:中国矿业大学出版社,2008.
    [85]孔祥言.高等渗流力学[M].合肥:中国科学技术大学,1999.
    [86] Mckee C R, Bumb A C, Koening R A. Stress-dependent permeability and porosity of coal. Rocky Mountain Association of Geologists, 1988:143~153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700