复合功能基因投递系统的构建和体内外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌磁小体(BMPs)是趋磁性细菌体内依靠生物矿化法合成的磁性纳米颗粒,主要由磁核和包被磁核的脂质膜两部分组成。磁小体本身所具有的独特性质,使其在许多领域得到了广泛的应用,但作为基因载体的应用研究还很少。本文通过对磁小体的修饰和改性,将其构建成具有磁靶向和跨膜复合功能的基因投递系统,并在此基础上使用该基因投递系统对人脑胶质瘤进行体内外基因治疗实验,并探讨治疗效果。
     本文通过FTIR、XPS、TEM和HRTEM对磁小体脂质膜的组分、官能团和微观形貌进行观察和分析,发现磁小体具有独特的微观排列形貌和粒径分布,平均粒径为45nm,饱和磁化强度为74.33emu/g,并采用荧光胺的方法对磁小体脂质膜上氨基含量进行了定量分析,发现每毫克磁小体的脂质膜上含有58.58 nmol的氨基基团;通过XRD、SQUID和紫外-可见分光光度计对磁小体磁核的组分和磁性能进行分析,发现磁小体的磁核由四氧化三铁晶体组成,具有较强的磁响应性和分散稳定性,并通过ICP-MS分析了磁小体中铁元素的含量为每毫克磁小体含有0.605mg的铁元素,含有约3.3549×1012个磁小体颗粒;细胞毒性实验的结果证实了磁小体具有很好的生物相容性。
     通过碳二亚胺(EDC·HCl)偶合法,制备出具有磁靶向的基因投递系统(BMPs-PAMAM),并优化了制备条件,在此基础上将跨膜多肽(Tat)借助偶联剂(Sulfo-LC-SPDP)连接到BMPs-PAMAM磁性粒子表面,制备出具有磁靶向和跨膜复合功能的基因投递系统(Tat-BMPs-PAMAM)。通过FTIR、XPS、Zeta Potential Analyzer、TEM、SQUID和紫外-可见分光光度计对复合功能基因投递系统的结构、组成、微观形貌和磁性能进行了分析表征。定量了每毫克BMPs表面接枝有0.056mg的PAMAM大分子和0.027mg的Tat多肽,大约每个BMPs上接枝了1472个PAMAM大分子和3190个Tat多肽分子。该投递系统粒径均匀,约为50nm;具有较强的磁响应性和分散稳定性,其饱和磁化强度为62.46emu/g。
     凝胶电泳阻滞实验证明了两种基因投递系统(BMPs-PAMAM和Tat-BMPs- PAMAM)均能够与报告质粒(pEGFP与pGL-3)形成非常稳定的复合物,并且对报告质粒具有很好的酶切保护作用;细胞毒性实验证实了两种投递系统具有较好的生物相容性。使用两种基因投递系统将两种报告质粒转染U251细胞,结果显示,当BMPs-PAMAM与报告质粒的质量比为20:1、Tat-BMPs-PAMAM与报告质粒的质量比为12.5:1时,均具有最高的转染效率,分别为16.65%和20.56%,并且外加磁场的靶向性作用能够使两种基因投递系统的转染效率提高25%。体外磁靶向跨膜定位实验证明所制备的两种复合功能基因投递系统(BMPs-PAMAM和Tat-BMPs- PAMAM)具有较好的磁靶向和跨膜复合功能,其转染效率分别为为11.56%,13.28%,高于商用转染试剂Lipofectamine 2000的转染效率9.86%。
     对两种基因投递系统进行放射性元素99mTc标记,用SPECT考察了两种投递系统荷载pGL-3质粒的复合物在正常SD大鼠体内分布情况,并详细考察了注射方式、Tat多肽和外加磁场对复合物在各脏器中分布和跨血脑屏障能力的影响,显示其磁靶向和跨膜的复合功能。
     使用U251胶质瘤细胞模型研究了两种基因投递系统的体外基因转染对肿瘤的抑制效果,并与Lipofectamine 2000进行了对比。通过细胞免疫荧光、细胞免疫组化和Western blot检测相关靶蛋白的表达,证明了Tat-BMPs-PAMAM与Lipofectamine 2000对靶蛋白具有相似的治疗效果。体外细胞生物学特性实验证明,经两种基因投递系统基因治疗后的U251细胞的增殖活性和侵袭能力均显著降低,凋亡细胞数显著上升,并且Tat-BMPs-PAMAM/psiRNA比BMPs-PAMAM /psiRNA具有更好的体外抑制效果,与Lipofectamine 2000/psiRNA组相比没有显著性的差异。
     以荷U251胶质瘤裸鼠为动物模型研究了两种基因投递系统的体内基因转染对肿瘤的抑制效果。裸鼠体内肿瘤生长速率曲线、肿瘤组织标本的免疫组化和原位凋亡检测(TUNEL法)的结果与体外实验结果相一致:经体内基因治疗后,Tat-BMPs-PAMAM/psiRNA比BMPs-PAMAM/psiRNA具有更好的体内治疗效果,与Lipofectamine 2000/psiRNA组相比没有显著性的差异。
     综上所述,本文将纳米生物技术与肿瘤分子生物学技术相结合,将制备的BMPs-PAMAM和Tat-BMPs-PAMAM作为非病毒基因投递系统进行基因治疗的研究,充分利用磁小体的磁靶向性和Tat多肽的跨膜功能构建出具有复合功能的非病毒基因投递系统,为疾病的基因治疗尤其是中枢神经系统疾病的基因治疗奠定了基础。
Magnetotactic bacteria synthesized intracellular magnetic nanoparticles by biomineralization, also called magnetosomes or bacterial magnetic particles (BMPs), which were consisted of magnetic core enveloped by stable lipid membrane which contained some lipids and proteins. Magnetosomes with the special characteristics possessed the broad applicable prospects in many fields. After being modified, the BMPs were constructed to a novel gene delivery system with the composite function of magnetic targeting and translocational capability which were used to delivery gene to glioma and investigated inhibition effect in vitro and in vivo in this article.
     In this article, the crystalline, morphology, crystal-size distributions, iron element content and magnetic properties of the magnetosomes were researched by XRD, TEM, HRTEM, ICP-MS and SQUID. Furthermore, in order to connect magnetosomes with small biomolecule to serve as a new magnetic delivery system, we characterized the functional groups on its surface by FTIR and XPS analysis and quantified the primary amino groups on its surface by fluorescamine assay for the first time, the primary amino groups in the membrane of magnetosomes is 58.58 nmol/mg and its saturation magnetization was 74.33 emu/g. Iron element content in the magnetosomes was 0.605mg/mg, which meaned one milligram of magnetosomes contained 3.3549×1012 magnetosomes nanoparticles. Finally, the cytotoxicity of magnetosome tested with MTT method showed that lipid biomembrane on magnetosome surface endowed them with better biocompatibility.
     BMPs-PAMAM gene delivery system was synthesized by linking PAMAM to the surface of BMPs using EDC·HCl. On this basis, Tat-BMPs-PAMAM was constructed by connecting tat peptide to the surface of BMPs-PAMAM using Sulfo-LC-SPDP. The configuration, components, magnetic properties and morphology of BMPs-PAMAM and Tat- BMPs-PAMAM were characterized and reaesrched by FTIR、XPS、Zeta Potential Analyzer、TEM、SQUID. The mean size of Tat-BMPs-PAMAM nanoparticle was 50nm and its saturation magnetization was 62.46 emu/g. One milligram of magnetosomes contained 0.056mg PAMAM and 0.027 mg Tat peptides that meaned every magnetosome contained 1472 PAMAM and 3190 Tat peptides.
     The stable complexes of vectors (BMPs-PAMAM or Tat-BMPs-PAMAM) and plasmid (pEGFP-N1 and pGL-3) at different mass ratios were investigated via agarose gel electrophoresis. The complexes could protect plasmid from digested by DNase-I, and the MTT assay showed that vectors had better biocompatibility which suggested their advantages for gene delivery in vitro. Maximal transfection efficiency of the vectors was obtained at BMPs-PAMAM to plasmid mass ratio of 20:1 and at Tat-BMPs-PAMAM to plasmid mass ratio of 12.5:1. Maximal transfection efficiency of BMPs-PAMAM and Tat-BMPs-PAMAM were 16.65% and 20.56% respectively. In addition, orientation experiment in vitro with the magnetic field, transfection efficiency of BMPs-PAMAM and Tat-BMPs-PAMAM, which were 11.56% and 13.28% respectively would be higher than that of Lipofectamine 2000 which was 9.86%.
     The biodistribution of 99mTc-labeled complexes of BMPs-PAMAM/pGL-3 and Tat-BMPs-PAMAM/pGL-3 in SD rat was investigated using SPECT. The effections of injection approaches, tat peptide and magnetic field on the biodistribution had also been further investigated in detail.
     The gene transfection and tumor inhibition assay in vitro were investigated using U251 glioma cell line as cell model. Cell immunofluorescence, cell immuno- histochemistry and western blot were used to analyze the expression of target proteins.
     And the cell experiments in vitro showed the lowered cell proliferation activity, attenuated cell invasive ability and induced apoptosis of glioma cell after the psiRNA delivery to the U251 cell by BMPs-PAMAM, Tat-BMPs-PAMAM and Lipofectamine 2000. However, Tat-BMPs-PAMAM showed more significant tumor inhibition effect than BMPs-PAMAM and with no difference with that of Lipofectamine 2000.
     The gene transfection and tumor inhibition assay in vivo were investigated using subcutaneous U251 glioma model established in nude mice. The tumor growth was measured every other day and cell apoptosis and expression of target proteins after gene therapy were detected by TUNEL method and tissue immunochemistry. The results of research in vivo showed Tat-BMPs-PAMAM owned more significant tumor inhibition effect than BMPs-PAMAM and with no difference with that of Lipofectamine 2000, which were in accordance with those in vitro.
     In this study, the newly nanotechnology and molecular biology were combined to develop a novel kind of non-viral gene delivery system, BMPs-PAMAM and Tat-BMPs-PAMAM. This novel non-viral gene delivery system with high transfection efficiency, safety, magnetic targeting and translocational capability was developed to provide foundation for gene therapy, especially for gene therapy of CNS disease.
引文
[1] Weber W., Fussenegger M., Pharmacologic transgene control systems for gene therapy[J], J Gene Med., 2006, 8(5): 533~534.
    [2] Liu F,Huang L. Targeted non-viral gene delibery for cancer gene therapy J Control Rel[J], 2002 17(78):259~266.
    [3] Song Y K,Liu D. nanoparticles for controlled drug deliveryⅡDrug incorporation and physicochemical characterization, Biochem Viophys Acta[J], 1998,1372 (1):141~150.
    [4] Smelt S C De,Demeester J,Hennink W E. Biodegradable microspheres in drug delivery, Crit. Rev. Therap. Drug Carrier Sys Pharm Res[J], 2000,17:113~126.
    [5] Garnett M C Crit Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity.Rev The Drug Carrier syst[J], 1999,16:147~207.
    [6] Anderson WF, Humam gene therapy, Science[J], 1992, 256: 808~813.
    [7] Lee JO, Yang H, Georgescu MM, et al. Crystal structure of the PTEN tumor suppressor:implications for its phosphoinositide phosphatase activity and membrane association.Cell[J], 1999, 99: 323-334.
    [8] Cheng JQ, Godwin AK, Bellacosa A,et al. AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas.Proc Natl Acad Sci USA[J], 1992,89:9267-9271.
    [9] Bellacosa A,Franke TF,Gonzale-Portal ME,et al.Structure,expression and chorosomal mapping of c-akt:relationship to v-akt and its implications. Oncogene[J], 1993,8:745-754.
    [10] Myers N P, Stolarov J P, Eng C, et al. PTEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc. Natl. Acad. Sci. USA[J], 1997, 94:9052-9057.
    [11] Maehama T, Dixon JE The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate.J Biol Chem[J], 1998,29;273:13375-13378.
    [12] Engelhard HH. Gene therapy for brain tumors: the fundamentals. Surg Neurol[J]. 2000; 54:3-9.
    [13]刁勇等.基因治疗研究进展.药学进展[J], 2001, 25(1): 12~16.
    [14]董伦,RNA干扰技术在肿瘤基因治疗研究中的应用,国外医学肿瘤学分册[J],2004,31(3):172-176.
    [15] Wells A . EGF receptor.. Review. Int J Biochem Cell[J], 1999; 31: 637-643.
    [16] Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene[J], 2000;19:6550-6665.
    [17] Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev.[J], 1999;13:2905-2927.
    [18] Libermann TA, Nusbaum HR, Razon N, et al.Amplification,enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumors of glial origin, Nature[J], 1985;313:144-147.
    [19] McLendon RE, Wikstrand CJ, Matthews MR, et al. Glioma-associated antigen expression in oligodendroglial neoplasms. Tenascin and epidermal growth factor receptor. J Histochem Cytochem[J], 2000;48:1103-1110.
    [20] Eley GD, Reiter JL, Pandita A,et al. A chromosomal region 7p11.2 transcript map: its development and application to the study of EGFR amplicons in glioblastoma. Neuro-oncol[J], 2002;4:86-94.
    [21] Agosti RM, Leuthold M, Gullick WJ,et al. Expression of the epidermal growth factor receptor in astrocytic tumours is specifically associated with glioblastoma multiforme. Virchows Arch A Pathol Anat Histopathol[J], 1992; 420: 321-325.
    [22] Liu XW, Pu PY, Gao ZX. Study of gene expression of Epidermal Growth Factor Receptor in human gliomas. Chin J Neurosurg[J], 1998,14:71-74.
    [23] Lee JO, Yang H, Georgescu MM, et al. Crystal structure of the PTEN tumor suppressor:implications for its phosphoinositide phosphatase activity and membrane association.Cell[J],1999, 99: 323-334.
    [24] Myers N P, Stolarov J P, Eng C, et al. PTEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc. Natl. Acad. Sci. USA[J], 1997, 94:9052-9057.
    [25] Maehama T, Dixon JE The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate.J Biol Chem[J], 1998,29;273:13375-13378.
    [26] Hemmings BA.Update: Ptd Ins(3,4,5)P3 gets its message across. Science[J], 1997, 277: 534-538.
    [27] Li DM, Sun H. PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells.Proc Natl Acad Sci USA[J], 1998, 95:15406-15411
    [28] Ali IU, Schriml LM, Dean M.Mutational spectra od PTEN/MMAC1 gene: a tumor supressor with lipid phosphatase activity. J Natl Cancer Inst[J], 1999,91:1922-1932.
    [29] Tohma Y, Gratas C, Biernat W,et al.PTEN (MMAC1) mutations are frequent in primary glioblastomas (de novo) but not in secondary glioblastomas.J Neuropathol Exp Neurol[J], 1998,57:684-689.
    [30] Hulsebos TJ, Oskam NT, Troost D,et al.Dynamics of genetic alterations associated with glioma recurrence.Gene Chrom Cancer[J],1998,23:153-158.
    [31] Ishii N,Maier D,Merlo A,et al.Frequent Co-Alterations of TP53, p16/CDKN2A, p14ARF, PTEN Tumor Suppressor Genes in HumanGlioma Cell Lines.Brain Path[J], 1999,9: 469-479.
    [32] Haas-Kogan D, Shalev N, Wong M, et al.Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC, Curr Biol[J], 1998,22:1195-1198.
    [33] Buchschacher GL, Introduction to retroviruses and retroviral vectors[J], Somat Cell Mol Genet, 2001, 26(1): 1~11.
    [34] Stolz J F. Magnetosomes. Journal of General Microbiology[J], 1993,139:1663- 1670.
    [35] Mulligan RC, The basic science of gene therapy, Science[J], 1993, 260: 926~931.
    [36] Smith LC, Gottschalk S, Hauer J,et al, Nonviral gene delivery using DNA: synthetic petide complexes, In Gott Am,et al.(Eds.) Drugs Affecting Lipid Metabolism. Kluwer Academic Pubisher, The Netherlands[J], 1996c: 337~345.
    [37] M.N ishikawa, S .Takemura, Y. Takakura, et al .,Targeted delivery of plasmid DNA to hepatocytes in vivo: optimization of the pharmacokinetics of plasmid DNA/galactosylated poly(L-lysine) complexes by controlling their physicochemical properties. J. Pharmacol. Exp.Ther.[J], 1998,287 (1):408-415.
    [38]钟森,温守明,张定凤等.乳糖化多聚赖氨酸导向反义寡核苷酸抗乙型肝炎病毒的作用.中华实验和临床病毒学杂志[J], 2001, 15(2): 150-153.
    [39] Toncheva V, Wolfert MA , Uibrich K, et al . Novel vectors for gene delivery formed by self-assembly of DNA with poly (L-lysine) grafted with hydrophilic polymers. Biochim Biophys Acta[J], 1998 , 1380 : 354-368.
    [40] Y.H. Choi, F. Liu, J.S. Kim, et al., Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier, J. Control Release[J], 1998,54 (1):39-48.
    [41] E.Wagner, C. Plank, K. Zatloukal, et al., Influenza virus hemagglutinin HA- N-terminal fusogenic peptides augment gene transfer by transferring-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle, Proc. Natl. Acad. Sci. U.S.A[J], 1992,89 (17):7934-7938.
    [42] C. Plank, B. Oberhauser, K. Mechtler, et al., The influence of endosome -disruptive peptides on gene transfer using synthetic virus-like gene transfer systems, J. Biol. Chem[J], 1994,269(17): 12918-12924.
    [43] Tomalia DA. A new class of polymers: starburst-denfritic macromolecules, Polym J[J], 1985,17:117-132.
    [44] N. Malik, R. Wiwatanapatapee, R. Klopsch, et al., Dendrimers: relationship between structure and biocompatibility invitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo, J. Con Rel [J], 2000,65(1-2 )133-148.
    [45] J. Haensler F.C. Szoka, Jr., Polyamidoamine cascade polymers mediate efficient transfection of cells in culture, Bioconjug. Chem[J], 1993,4 (5):372-379.
    [46] S.W Huang, L.Z. Fu, X.Q. Zhang, et al., Syntheses of polyamidoamine dendrimers starting from a hexadimensional core and application in gene transfer, Science in China Series B-Chemistry[J], 2003,46(3):271-279.
    [47]M.X. Tang, C.T. Redemann, F.C. Szoka, Jr., In vitro gene delivery by degraded polyamidoamine dendrimers, Bioconjug. Chem[J], 1996,7 (6):703-714.
    [48] C. Rudolph, J. Lausier, S. Naundorf, et al., In vivo gene delivery to the lung using polyethylenimine and fractured polyamidoamine dendrimers, J. Gene Med [J],2000,2 (4):269-278.
    [49] S.C. De Smedt, J. Demeester, W.E. Hennink, Cationic polymer based gene delivery systems, Pharm. Res[J],2000,17(2):113-126.
    [50] T.Merdan, J. Kopecek, T. Kissel, Prospects for cationic polymers in gene and oligonucleotide therapy against cancer, Adv. Drug Deliv. Rev. [J], 2002,54 (5):715-758.
    [51] D. Luo, K. Haverstick, N. Belcheva, et al., Poly(ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery, Macro- molecules[J], 2002,35 (9):3456-3462.
    [52] F. Kihara, H. Arima, T. Tsutsumi, et al., Effects of structure of polyamido- amine dendrimer on gene transfer efficiency of the dendrimer conjugate with alpha-cyclodextrin, Bioconjug. Chem. [J], 2002,13(6):1211-1219.
    [53] H. Arima, F. Kihara, F. Hirayama, et al., Enhancement of gene expression by polyamidoamine dendrimer conjugates with alpha-, beta-, and gamma-cyclodextrins, Bioconjug. Chem.[J],2001,12(4): 476-484.
    [54] B.H. Zinselmeyer, S.P. Mackay, et al., The lower-generation polypropylenimine dendrimers are effective gene-transfer agents, Pharm. Res[J], 2002,19 (7):960-967.
    [55] M. Ohsaki, T. Okuda, A. Wada, et al., In vitro gene transfection using dendritic poly(L-lysine), Bioconjug. Chem[J],2002,13(3):510-517.
    [56] Vlasov G.P, Korol'kov V.I., Pankova G.A., et al., Lysine dendrimers and their starburst polymer derivatives: Possible application for DNA compaction and in vitro delivery of genetic constructs, Russian Journal of Bioorganic Chemistry[J],2004, 30(1):12-20.
    [57] Kichler A et al. J Gene Med[J], 2001,3(2):135-141.
    [58] Dunlap D , Maggi A , Soria MR , et al . Optimized galenics improve in vitro gene transfer with cationic molecules up to 1000 fold. Nucleic Acids Res[J], 1997, 25: 3095-3101.
    [59] Kunath K, Harpe A, Fischer D, et al., Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine, J. Control Release[J], 2003,89(1):113-125.
    [60] D. Fi scher, T .Bieber, Y .Li, et al,A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity, Pharm. Res[J], 1999,16 (8):1273-1279.
    [61] Boussif O , Lezoualch F , Zanta MA, et al. A versatile vector for gene and oligo- nucleotide transfer into cells in culture and in vivo:polyethylenimine. Proc Natl Acad Sci USA[J], 1995,92: 7297-7301.
    [62] Godbey WT, Wu KK, Mikos AG. Poly ( ethylenimine ) mediated gene delivery affects endothelial cell function and viability, J Biomed Mater Res[J], 1999, 45:268-275.
    [63] Mann S, Nicholas H C S, et al. Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium[J]. Nature,1990,343:258-261
    [64] Ogris M, Steinlein P, Kursa M, The size of DNA/transferring-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther, 1998;5(10): 1425-1433
    [65] Harada-Shuba M, Polyion complex micelles as vectors in gene therapy- pharmacokinetics and in vivo gene transfer[J]. Gene Therapy, 2002, 9(6): 407-414.
    [66] Mumper R J,Wang J J,Claspell J M,et al. Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery,Proc Int Symp Control Rel Bioact Mater[J],1995,22;178-179.
    [67] Illum L,Jabbal-Gill I,Hinchcliffe M,et al. Chitosan as a novel nasal delivery system for vaccines[J]. Adv Drug Del Rev, 2001, 51: 81-96.
    [68] Erbacher P,Zou S ,Bettinger T,et al. Chitosan-based vector/DNA complexes for gene delivery:biophysical characteristics and transfetion ability[J]. Pharm Res, 1998,15(9): 1332-1339.
    [69] Maclaughlin F C,Mumper R J,Wang J,et al. Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J Control Rel[J],1998,56:259-272.
    [70] Mao H Q,Roy K,Truong-Le V L,et al. Proc Int Symp Control Rel Bioact Mater,Kyoto,Japan.1996,23:401~402.
    [71] Leong K W,Mao H Q,Roy K,et al. DNA-polycation nanospheres as non-viral gene delivery vehicles.J Control Rel[J],1998,53:183-193.
    [72] Mao H Q,Roy K,Truong-Le V L,et al.Proc Int Symp Control Rel Bioact Mater,Stockholm,Sweden,1997,24:671~672.
    [73] Richardson S C W,Kolbe V L,Duncan R.Int. Recent advances on the use of biodegradable microparticles and nanoparticles the controlled drug delivery.J Pharm[J],1999,178:231-243.
    [74] Sato T,Ishii T,Okahata Y. Biodegradable polymeric nanoparticles as drug delivery devices Biomaterial[J],2001,22:2075-2080.
    [75] K?ping-H?gg?rd M,Melnikova Y S,V?rum K M,et al. Collagen-biomaterial for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics J Gene Med[J],2003,5:130-141.
    [76] Philippova O E,Volkov E V,Sitnikova N L,et al.Biomacro molecules[J],2001,2: 483-490.
    [77] kiang T,Wen J,Lim H W,Leong K W. The effect of the degree of chitosan deacetylation on the efficiency of gene transfection, Biomaterials [J] ,2004,25:5293-5301.
    [78] Ishii T,Okahata Y,Sato T. Mechanism of cell transfection with plasmid/chitosan complexes Biochem Biophys Acta[J],2001,1514(1):51-64.
    [79] Roy K,Mao H Q,Huang S K et al. Oral gene delivery with chistosan DNA nanopartides generates immunologic protection in a murine model of peanut allergyNat Med[J],1999,5(4):387-391.
    [80]谭忠华,载药纳米微粒靶向输送和控缓系统的研究进展,国外医学(放射医学核医学分册)[J],2003,27:204-208.
    [81]余耀庭,张兴栋.生物医用材料.天津:天津大学出版社,2000,102~120
    [82] Ashwell G,Morell A Hepatocytetargeted in vivo gene expression by intra venous injection of plasmid DNA complexed with synthetic multi-functional gene delivery system Adv Enzymol[J],1974,41:99-128.
    [83] Park I K,Park Y H,Cho C S,et al. The basic sciences of gene therapy J Control Rel[J],2000,69:97-108.
    [84] Park I K,Kim T H,Cho C S,et alydrophilic poly(D,L-lactide-co-glycolide) microspheres for delivery of DNA to human-derived macrophages and dendritic cells.J Control Rel[J],2001,76:346-362.
    [85] Park I K,Ihn J E,Cho C S,et al. G alactosylated chitosan (GC)-graft-poly(vinyl pyrrolidone) (PVP) as hepatocyte-targeting DNA carrier[J]. J Control Rel,2003, 86:349-359..
    [86] Allen T M Gene Therapy:Principle and Practice Trends Pharmacol Sci[J], 1994,15:215-220.
    [87] Thanou M,Florea B I,Geldof M,Junginger H E,et al. Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines[J]. Biomaterials, 2002,23:153-159..
    [88]Liu W G,Yao K D,Liu Q G. Gene delivery systems:Bridging the gap between recombinant viruses and artificial vectors, J Appl Poly Sci[J],2001,82:3391-3395.
    [89] Li F,Liu W G,Yao K D.Biomaterials[J],2002,23:343-347.
    [90] Lee K Y,Kwon I C,Kim Y H,Jo W H,et al. Gene transfer by DNA-gelatin nanospheres J Control Rel[J],1998,51:213-220.
    [91] Kim Y H,Gihm S H,Park C R method for the determination of molar ratio of fluorophore to protein by florescence anisotropy detection.Bioconjug Chem[J], 2001,12:932-938.
    [92] Kim Y H, Ihm J E,Choi Y J,et al. In vivo performance of parenteral theophylline-loaded polyisobutylcyanoacrylate nanoparticles in rats, J Control Rel[J], 2003,93:389-402.
    [93]Leong K W,Mao H Q,Truong-Le V L,et al, The preparation and characterization of poly(lactide-co-glycolide) nanoparticles Control Re[J]l,1998,53:183-193.
    [94] Corsi K,Chellat F,Yahia L,et al. Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticlesBiomaterials[J],2003,24(7):1255-1264.
    [95] Park J H,Kwon S,Jeong S Y,et al. Influences of preparation conditions on particle size and DNA-loading efficiency for poly(DL-lactic acid-polyethylene glycol) nanoparticles J Control Rel[J],2004,95:579-588.
    [96] Yoo H S,Lee J E,Jeong S Y, PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studied of a water soluble drug, J Control Rel[J],2005, 103:235-243.
    [97] Kukowska Latallo J F, Bielinska AU, Johnson J et al. Efficicent transfer of gene ticmic material into mammalian cells using starburst polyamidoamine dendrimers, PROC Nat Acad Sci USA[J], 1996,93 (10): 4897-4902.
    [98] Tomalia D A, Naylor A M, Goddard W A. Starburst dendrimers:Molecular level Bisrol of Size Shape, Surface chemistry, Topology and Flexibillity from Atoms to Macroscopic Matter. Angew Chem Int ED Engl -[J], 1990, 29 (2):138-175.
    [99] TomaliaD A,Durst H D. Supramolecular chemistry I: Directed synthesis and molecular recognition[J]. Top Curr Chem, 1993, 165:193-313.
    [100] MatthewsO A, ShipwayA N. Dendrimers-branching out from curiosities into new technologies[J]. Prog Polym Sci, 1998, 23:1-56.
    [101] Voegtle F, Gestemann R, Hesse H, et al. Functional dendrimers[J]. Prog Polym Sci, 2002, 25: 987-1041.
    [102] Jyotsna I, Kala F P T. Synthesis and solution properties of new linean-dendric diblock copolymers [J]. Macromolecules, 1998(31):8757-8765.
    [103] M.X.Tang, C.T. Redemann, et al. In Vitro Gene Delivery by Degraded Polyamidoamine Dendrimers[J]. Bioconjugate Chem, 1996,7(6):703-714.
    [104]N. Bourne, L.R. Stanberry, et al. Dendrimers, a new class of candidate topical microbicides with activity against herpes simplex virus infection [J] .Antimicrob Agents Chemother, 2000, 44(9):2471- 2474.
    [105] G.D. Zhang, A. Harada, et al. Polyion complex micelles entrapping cationic dendrimer porphyrin: effective photosensitizer for photodynamic therapy of cancer[J] .Journal of Control Release, 2003, 93(2):141- 150.
    [106] H.Frauenrath. Dendronized polymers- building a new bridge from molecules to nanoscopic objects[ J] .Progress in Polymer Science, 2005, 30(3- 4):325- 384.
    [107] Singh P. Dendrimers and their applications in immunoassays and clinical diagnostics[J]. Biotechnology and Applied Biochemistry, 2007,48:1-9.
    [108] OttaviaiM F, Cossu E, Turro N J, et al. Characterization of starburst dendrimers by electron paramagnetic resonance 2 [ J ]. J Am Chem, 1995, 117:4387-4398.
    [109] Flory P J. Molecular size dimensional polymers VI,Branched polymers containing A-R-Bf-1 type units[J]. J Am Chem Soc,1952, 74 (11):2718-2723.
    [110]郭晨莹,王恒.纳米材料在基因转染中的应用Starburst PAMAM dendrimers研究现状[J].基础医学与临床, 2002, 22(2):103-108.
    [111] Hawker C J, Frechet JM J. Preparation of polymerswith controlled molecular architecture, a new convergent app roach to dendritic. Macromolecules[J].J Am Chem Soc, 1990, 112:7638-7647.
    [112] Miller TM,Neenan T X, Zayas R, etal. Synthesis and characterization of a series of monodisperse, 1,3,5-phenylenebased hydrocarbon dendrimers including C276H1S6 and fluorinated analogues[J]. J Am Chem Soc,1992,114:1018-1025.
    [113] F.Aulenta, W.Hayes, S.Rannard. Dendrimers a new class of nanoscopic containers and delivery devices[J] .European Polymer Journal, 2003, 39 (9):1741-1771.
    [114] E.R.Gillies, et als. Dendrimers and dendritic polymers in drug delivery[J]. Drug Delivery Today, 2005, 10(1):35-43.
    [115]郑世昭,徐伟箭.聚酰胺-胺树形大分子的合成与应用[J].高分子通报, 2004 (2):81-84.
    [116] Wooley K L, Hawker C J, Frechet J M J. A Branched– Monomer App roach for the Rap id Synthesis ofDendimers. Angew ChewInt Ed Engl[J], 1994, 33:82-85.
    [117] Kawagachi T,Walker K L,Wilkins C L, et al. Double exponential dendrimer growth. J Am Chem Soc[J], 1995, 117 (8):2159-2165.
    [118] MarcosM,Omenat A, Serrano J L. Structure - mesomorphism relationship in terminally functionalised liquid crystal dendrimers[J].Comptes Rendus Chimie, 2003, 6:947-957.
    [119]章昌华,胡剑青,涂伟萍.聚酰胺胺( PAMAM)树状分子的合成[J].化工新型材料, 2005, 33 (10):32-34.
    [120] Tomalia DA , Baker J , Dewald J , et al . A New Class of Polymers : Starburst dendritic Macromolecules [J ] . Polymer Journal, 1985 ,17 :117-132.
    [121] Haensler J,Szoka F C Jr.Polyamidoamine cascade polymers mediate efficient transfection of cells in culture.Bioconjug Chem[J],1993,4(5):37-379.
    [122] Yoo H,Sazanip,Jnliano R L.PAMAM dendrimers as delivery agents for antisense oligonucleotides.Pharm Res[J],1999,16(12):1799-1804.
    [123] Yoo H,Juliano R L.Enhanced delivery of antisense oligonucleotides with fluorophore-conjugated PAMAM dendrimers. Nucleic Acids Res[J], 2000, 28:4225-4231.
    [124] Bielinska AU , Kukowska Latallo JF , Baker JR. The interaction of plasmid DNA with polyamidoamine dendrimers:mechanism of complex formation and analysis of alterations induced in nuclease sensitivity and transcriptional activity of the complexed DNA[J] . Biochim Biophys Acta , 1997 ,1353:180-190
    [125] Delong R , Stephenson K, Loftus T, et al . Characterization of complexes of oligonucleotides with polyamidoamine starburst dendrimers and effects on intracellular delivery[J] . J Pharm Sci , 1997,86 :762-764.
    [126] Yoo H , Sazani P , Juliano RL. PAMAM dendrimers as delivery agents for antisense oligonucleotides[J] . Pharm Res , 1999 ,16:1799-1804.
    [127] Bielinska AU , Chen C , Johnson J , DNA complexing with polyamidoamine dendrimers: implications for transfection [J] . Bioconjug Chem , 1999,10 :843-850.
    [128] Jolanta F , Kukowska Latallo AUB , et al . Efficient transfer of genetic material into mammalian cells using Starburst polyamioamine dendrimers[J ],Pro Natl Acad Sci USA , 1996 ,93: 4897-4902.
    [129] Bielinska A , Kukowska Latallo JF , Johnson J , et al . Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers[J]. Nucleic Acids Res, 1996, 24: 2176-2182.
    [130] Blakemore R P. Magnetotactic bacteria [J ]. Science,1975,190:377-379
    [131] Bazylinski D A. Structure and function of the bacterial magnetosome[J].ASM News, 1995,61:337- 343
    [132] Stolz J F. Magnetosomes. Journal of General Microbiology[J],1993,139:1663- 1670
    [133] Frankel R B, Blakemore R P. Fe3O4 Precipitayion in Magnetotactic Bacteria[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,1983,763(2):147- 159.
    [134] Bazylinski D A, Garratt-Reed A, Frankel R B. Electronmicroscopic studies of magnetosomes in magnetotactic bacteria[J]. Microscopy Research and Technique, 1994,27(5):389-401
    [135]范国昌,钱凯先.趋磁细菌及其磁小体的研究及应用[J].生物技术通报,1998,(2):24-28
    [136]范国昌,李荣森,贾蓉芬,等.中国沉积物中趋磁细菌及磁小体的研究[J].科学通报,1996, 41(4):349-352
    [137] Frankel R B, Blakemore R P. Fe3O4 Precipitayion in Magnetotactic Bacteria[J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research,1983,763(2): 147-159.
    [138] Paoletti M, Hobson D, Adenovirus microbead conjugates possess enhanced infectivity:a new strategy for localized gene delivery, Virology, 2002,299(2):204-212.
    [139] Sakaguchi, magnetoreception: homing in on vertebrates, Nature, 1997,390: 339-340.
    [140] Tamegai H, Yamanaka T, purification and properties of a cytochrome hemoprotein from a magnetotactic bacterium, aquaspirillum magnetotacticum, Biochim biophys acta, 1993, 1158(3):237-243.
    [141] Kirschvink J L. Magnetite Biomineralization and Geomagnetic Sensitivity in Higher Animals : An Update and Recommendations for Future Study[J]. Bioelectromagnetics,1989,10(3):239-259
    [142] Dunn J R, Fuller M, Zoeger J, et al. Magnetic material in the human hippocampus[J]. Brain Research Bulletin,1995,36(2):149-153
    [143] J L Kirschvink, A Kobayashi-Kirschvink, B J Woodford. Magnetite Biomineralization in the Human Brain[J]. Proceedings of the National Academy of Sciences,1992,89(16):7683-7687
    [144] Lovley D R, Stolz J F, Nord GL, et al. Anaerobic production of magnetite by a dissimilatory iron - reducing microorganism[J] . Nature,1987,330:252-254
    [145] Mann S, Sparks H C, Board R G.Magnetotactic bacteria: Microbiology, biomineralization, palaeomagnetism and biotechnology[J]. Advances in Microbial Physiology,1990,31:125-181
    [146] Stolz J F, Chang SBR, Kirschvink JL. Magnetotactic bacteria and single domain magnetite in hemipelagic sediments[J]. Nature,1986,321:849-850.
    [147]阎桂林.第四纪沉积物磁性勘查油气法的原理及应用.物探与化探,1997,21(4):254-262
    [148] Thomas-keprta KL, Clemett SJ, Bazylinski DA,et al. Truncated hexaoctahedral magnetite crystals in ALH:presumptive biosignatures[J]. Proceeding of the National Academy of Science,2001, 98(5):2164-2169
    [149] Friedmann EI, Wierzchos J, Ascaso C, et al. Chains of magnetitecrystals in the meteorite ALH: Evidence of biological origin [J]. Proceeding of the National Academy of Science,2001,98(5):2176-21 81.
    [150] Scott ER. Origin of carbonate-magnetite-sulfide assembleages in Martian meteorite ALH[J]. Journal of Geophysical Research- Atmospheres,1999,104 (D2):3803-3813.
    [151] McKay DS, Gibson , Jr E K, Thomas-Keprta K L, et al. Search for past life on Mars:possible relic biogenic activity in Martian meteorite ALH84001[J]. Science, 1996,273(5277):924-930.
    [152] Gorby Y A, Beveridge T J, Blakemore R P. Characterization of the bacterial magnetosome membrane [J]. Journal of Bacteriology,1988,170:834-841
    [153]姜伟,付刚,李颖.细菌内磁纳米粒研究[J].中国医学工程杂志,2003,11 (6):59-62.
    [154]谭晖,冯定五,肖松文.趋磁性细菌载体磁分离技术.国外金属矿选矿,2000,(2):2-5.
    [155] Matsunaga T, Kamiya S. Use of magnetic particles isolated from magnetotactic bacteria for enzyme mobilization[J] . Applied Microbiology and Biotechnology,1987, 26:328-332.
    [156]解宇.使用磁性细菌粒子分离浓缩和检测癌胚抗原[J].中华微生物学和免疫学杂志,2003,23(2):159-160.
    [157] Matsunaga T, Sato R, Kamiya S, et al. Chemiluminescence enzyme immunoassay using ProteinA -bacterial magnetite complex [J]. Journal of Magnetism and Magnetic Materials,1999,194(1-3):126- 131.
    [158] Matsunaga T, Hashimoto K, Nakamura N, et al. Phagocytosis of bacterial magnetite by leucocytes[J]. Applied Microbiology and Biotechnology, 1989,31:401 -405.
    [159] Bahaj A S,James P A B. Characterization of magnetotactic bacteria using image processing tech-niques[J]. IEEE Transactions on Magnetics,1993,29(6):3358-3360.
    [160] Arakaki A, Takeyama H,Tanaka T, et al. Cadmium Recovery by a Sulfate-Reducing Magnetotactic Bacterium, Desulfovibrio magneticus RS-1, Using Magnetic Separation[J]. Applied Biochemistry and Biotechnology, 2002,98-100 (1-9):833-840.
    [161] Jorg Kreuter, Nanoparticulate systems for brain delivery of drugs, Advanced Drug Delivery Reviews[J], 2001, 47:65-81.
    [162] Ulrich, Bickel, Delivery of peptides and proteins through the blood-brain barrier, Advanced Drug Delivery Reviews[J], 2001, 46:247-279.
    [163]中华人民共和国国家技术监督局, GB/T 16886.5-1997,中华人民共和国国家标准,北京:中国标准出版社,1997-06-26
    [164] JinChang, Adriamycin-loaded immunological magnetic nanoparticles: site-specific targeting of the nanoparticles in rabbits guided by an outside magnetic field, Chinese Journal of Biomedical Engineering[J], 1996,15(4):354-359.
    [165] Maurice G, Pau M, et al., Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein,Cell[J], 1988, 55:1179-1188.
    [166] Frankel AD, Pabo CO., Cellular uptake of the tat protein from human immunodeficiency virus. Cell[J], 1988, 55(6): 1189-1193.
    [167] Weeks BS, Desai K, Loewenstein PM, et al., Identification of a novel cell attachment domain in the HIV-1 Tat protein and its 90-kDa cell surface binding protein, J Biol Chem[J],1993,268:5279-5284.
    [168] Vives E,Brodin P,Leblen B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulatesin the cell nucleus, J. Biol. Chem. [J], 1997,272:16010-16017.
    [169] Nagahara H, Vocero-Akbani AM, Snyder EL, et al., Transduction of full-length TAT fusion proteins into mammalian cells TAT-p27Kip1 induce cell migration, Nature Med[J], 1998,4: 1449-1452.
    [170] Schwarze SR, Ho A, Vocero-Akbani A, et al., In vivo protein transduction: delivery of a biologically active protein into the mouse, Science[J], 1999, 285(5433):1569-1572.
    [171] Rusnati M, Tulipano G, Urbinati C, et al., The basic domain in HIV-1 tat protein as a target for polysulfonated heparinmimicking extracellular tat antagonists, J Biol Chem[J], 1998, 273(26):16027-16037.
    [172] Maria TR, Montserrat G, Joan E, Bilayer distribution of phosphateidylserine and phosphateidylethanolamine in lipid vesicle, Bioconjugate Chem[J],1997,8:941-945.
    [173]Tavernier E, Pugin A, Transbilayer distribution of phosphatidylcholine and phosphatidylethanolamine in the vacuolar membrane of acer pseudoplatanus cells, Biochimie[J],1995(77):174-181.
    [174] Rudolf H, Robert H, Matthias Z, et al, Magnetic propertyes of bacterial magnetosomes as potentiall diagnostic and therapeutic tools, Journal of Magnetism and Magnetic Materials[J], 2005,293:80-86.
    [175] Yuri AG, Terry JB, Richard PB, Characterization of the bacterial magnetosome membrane, Journal of bacterialogy[J], 1988,170:834-841.
    [176] Schuler D, Frankel RB, Bacterial magnetosomes: microbiology, biomineralization and biotechnologyical applizations, Appl Microbiol Biotechnol[J], 1999,52:464-473.
    [177] Shcherbakov VP, Winklhofer M, Hanzlik M, Elastic stability of chains of magnetosomes in magnetotactic bacteria, Eur Biophys J[J], 1997,26:319-326.
    [178] Arato B, Szanyi, Z, Flies C, Crystal-size and shape distributeons of magnetite from uncultured magnetotactic bacteria as a potentiall biomarker, American Mineralogist[J], 2005,90:1233-1241.
    [179] Devouard B, Hua X, Dennis A, Magnetite from magnetotactic bacteria: size distributeons and twining, American Mineralogist[J], 1998,83:1387-1398.
    [180] Posfai M, Cziner K, Marton E, Crystal-size distributeon and possible biogenic origin of Fe sulfides, Eur J Mineral[J], 2001,13:691-703.
    [181] Josephson L, Tung CH, Moore A, High-Efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates, Bioconjugate Chem[J], 1999,10:186-191.
    [182] Patrick W, Lee J, Ralph W, Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles, Bioconjugate Chem[J], 2002,13:264-268.
    [183] Koch AM, Reynolds F, Kicher MF, Uptake and metabolism of a dual fluorochrome tat-nanoparticle in hela cells, Bioconjugate Chem[J], 2003, 14:1115-1121.
    [184] Zhao M, Kircher MF, Josephson L, Differential conjugateon of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake, BioconjugateChem[J], 2002,13:840-844.
    [185] Kleemann E, Neu M, Jekel N, nano-carrier for DNA delivery to the lung based upon a tat-derived peptide covalently coupled to PEG-PEI,Journal of controlled releasee[J], 2005,109:299-316.
    [186] Kang H, Delong R, Fisher MH, Tat-conjugated PAMAM dendrimers as delivery agents for antisense and siRNA oligonucleotides, Pharmaceutical Reaeasrch[J], 2005,22(12):2099-2105.
    [187] Pan B, Cui D, Sheng Y, Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system, cancer reaearch[J],2007,67(17):8156-8163.
    [188]刘洁,康春生,谭建,转铁蛋白修饰聚乳酸纳米微粒表面的99mTc标记及体内分布,高分子通报[J],2006,1:39-43.
    [189]刘军,吕天润,曹晓建,单光子发射计算机断层显像对自制注射用神经生长因子-脂质体脑靶向性研究,南京医科大学学报[J],2004,24(6):592-594.
    [190] Kang CS, Pu PY, Li YH, An in vitro study on the suppressive effect of glioma cell growth induced by plasmid-based small interference RNA targeting human epidermal growth factor recaptor, Journal of Neuro-oncology[J], 2005,74:267-273.
    [191]徐如祥,涂艳阳,姜晓单,短发卡RNA靶向抑制suvivin基因对人胶质瘤U251细胞凋亡和细胞周期的影响,第四军医大学学报[J],2006,27(10):920-922.
    [192]康春生,浦佩玉,王广秀,靶向表皮生长因子受体的小分子干扰RNA抑制TJ905人脑胶质瘤细胞增殖和侵袭的试验研究,中华医学杂志[J],2004,84(18):1503-1508.
    [193] Kang CS, Zhang ZY, Jia ZF, Suppression of EGFR expression by antisense or small interference RNA inhibits U251 gliomas cell growth in vitro and in vivo, Cancer gene therapy[J], 2006, 1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700