宽带光纤放大器技术与光通信光源技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤放大器技术和光源技术是 DWDM 传输系统的核心技术。本论文主要围
    绕宽带光纤放大器技术、多波长光源技术和可调谐光源技术取得如下研究成果:
    一、宽带 EDFA 的理论分析与实验研究
    1. 使用模拟软件 OptiAmplifier 4.0 对 L 波段 EDFA 的本征增益平坦特性及级联
    结构的作用机理进行了详细的分析与优化设计,并给出了特定条件下的本征增益
    平坦的近似计算公式,实验获得的结果与数值模拟符合很好。
    2. 使用并联结构进行了 C+L 宽带 EDFA 的实验研究,小信号增益大于 20 dB,
    可用带宽约 70 nm(1530~1561 nm,1567~1607 nm)。
    二、宽带 FRA 与宽带 EDFA/FRA 混合放大器的数值模拟
    1. 数值模拟了 7 个波长泵浦的宽带增益平坦 FRA,通过合理配置泵浦波长和泵
    浦功率,可实现 80 nm(1530~1610 nm)范围内±0.5 dB 的平坦增益。
    2. 数值模拟了分立式 EDFA/FRA 混合放大器,结合增益均衡滤波器,对设定的
    多波长信号得到了 75 nm (1530~1605 nm)范围内约 22.7 dB 的平坦增益。
    三、多波长半导体光放大器-光纤环形腔激光器(SFRL)实验研究
    1. 报道了一种基于 SOA 的结构简单的新型双波长 SFRL,其中以两个中心波长
    不同的 FBG 作为选频滤波器,在室温下实现了稳定的双波长输出。
    2. 以 F-P 腔做为梳状滤波器的多波长 SFRL,在室温条件下得到了具有高信噪比、
    窄线宽、高稳定度的 7 个波长输出,峰值功率相对起伏小于 4%
    3. 利用高双折射光纤环形镜(Hi-Bi FLM)的梳状滤波特性的多波长 SFRL,在
    室温下获得了基本符合 ITU 标准 100 GHz 的 15 个波长以上的输出,线宽 0.1 nm,
    各信道峰值功率相对起伏小于 12%
    四、可调谐光纤激光器的研究
    1. 宽可调谐 SOA 基高双折射环形腔激光器:在 SFRL 的腔内串接一段高双折射
    光纤,通过调节腔内偏振控制器和偏振片,获得了 1555~1604 nm 范围的可调谐
    激光输出。我们获得的 L 波段可调谐,以及 49 nm 的宽可调谐范围,在国内外
    均属首次。
    2. 离散可调谐掺铒光纤环形腔激光器:使用高双折射光纤环形镜和一个选择信
    道的可调谐薄膜滤波器,获得了 C 波段 41 个离散波长的可调谐输出,各信道波
    长输出的功率起伏几乎为零。
The optical fiber amplifiers and light sources are key devices in dense
    wavelength division multiplexing (DWDM) transmission systems. This dissertation is
    focused on broad-band fiber amplifiers and light sources for optical communication,
    which include:
    1. Broad-band erbium-doped fiber amplifiers (EDFA)
     1) The intrinsic flat gain characteristics and dual-stage configuration mechanics
     of L-band EDFA are investigated by Optiwave corporation’s simulation
     software (OptiAmplifier 4.0). Without gain equalized filter (GEF), gain
     spectrum is flat on optimum population inversion level and low noise less
     than 6 dB is achieved with the configuration.
     2) Experimental investigation on C+L band with parallel configuration is carried
     out, and a novel simple structure is proposed. The small signal gain and band
     width are obtained more than 20 dB and 70 nm, respectively.
    2. Broad-band Raman fiber amplifiers and hybrid EDFA/FRA
     1) The optimal design method for flat-gain broad-band FRA is presented using
     OptiAmplifier 4.0. With seven proper pumps, the relative gain flatnesses are
     all less than ±0.5 dB within the bandwidths of 80 nm (1530~1610 nm).
     2) A finely gain-flattened broad-band hybrid amplifier is simulated by using
     OptiAmplifer 4.0. With an extremely large seamless bandwidth of 75 nm
     (1530-1605 nm) and a significantly enhanced optical signal-to-noise ratio, the
     hybrid amplifier is realized using a discrete FRA, a C-band EDFA, and a gain
     equalizer.
    3. Multiwavelength SOA-fiber ring lasers (SFRL)
     1) A FBG based dual wavelength SFRL is proposed using two different central
     wavelength FBGs, which act as frequency selective filters. And at room
     temperature, stable dual wavelength is obtained.
     2) Based on SOA and F-P comb filter, seven wavelengths are obtained in the
     ring-cavity configuration, with high stability and the wavelength spacing
     about 2.7 nm. The SNR of each channel is more than 29 dB and the output
     power relative fluctuation ratio is less than 4%.
     II
    
    
    ABSTRACT
     3) We propose a novel switchable multiwavelength fiber ring laser based on
     SOA, which uses a Hi-Bi fiber loop mirror (Hi-Bi FLM) as filter. More than
     15 wavelengths with linewidth about 0.1 nm spacing on ITU-grid (100GHz)
     are obtained, and the output power relative fluctuation ratio is less than 12%.
    4. Tunable fiber ring lasers
     1) We demonstrate a novel approach to obtain a narrow linewidth laser with 35
     dB sidemode suppression by utilizing a SOA in a fiber unidirectional ring that
     consists of a linear polarizer, 1.28 m Hi-Bi fiber and polarization controllers.
     The laser has a widely tuning range of 49 nm (1555~1604 nm), which is the
     best result with similar method until now.
     2) A wavelength-selectable discretely tunable erbium-doped fiber laser in
     C-band is fabricated using a precise multi-wavelength grid filter (Hi-Bi FLM)
     and a channel-selecting tunable filter. With 41 channel operation of ~100 GHz
     channel spacing, the laser is suitable for DWDM sources.
引文
第一章:
    [1] K. Fukuchi, T. Kasamatsu, M. Morie et al., 10.92 Tbit/s (273×40 Gbit/s)
    triple-band/ultra-dense WDM optical-repeatered transmission experiment, OFC’01,
    Paper PD24, Anaheim, USA, 2001
    [2] S. Bigo, Y. Frignac, G. Charlet et al., 10.2 Tbit/s (256×42.7 Gbit/s PDM/WDM)
    transmission over 100 km Tera-LightTM fiber with 1.28 bit/s/Hz spectral efficiency,
    OFC’01, Paper PD25, Anaheim, USA, 2001
    [3] M. Nakazawa, T. Yamamoto, and K. Tamura, 1.28 Tbit/s-70 km OTDM
    transmission using third-and fourth-orser simultaneous dispersion compensation with
    a phase modulator, ECOC’00, Paper PD2.6., Munich, Germany, 2000
    [4] S. Kawanishi, H. Takara, K. Uchiyana et al., 3 Tbit/s (160 Gbit/s×19 ch)
    OTDM/WDM Transmission experiment, OFC’99, Paper PD1, San Diego, USA, 1999
    [5] B. Zhu, Ultra high density and long haul transmissions, OFC’2004, Paper ThE1
    [6] G. Vareille, et al., 8370km with 22dB spans ULH transmission of 185×10.709Gb/s
    RZ-DPSK channels, OFC’2003, Paper PD20
    [7] B .Zhu, L. E. Nelson, S. Stulz et al., 6.4-Tb/s (160×42.7Gb/s) transmission with
    0.8bit/s/Hz spectral efficiency over 32×100km of fiber using CSRZ-DPSK format,
    OFC’2003, Paper PD25
    [8] 刘俭辉,丁永奎,贾东方等,Tbit/s 超大容量光纤通信系统的研究进展,光
    学技术,2003, 29(4): 408~410
    [9] J. X. Cai, D. G. Foursa, C. R. Davidson et al., A DWDM demonstration of
    3.73Tbit/s over 11,000 km using 373 RZ-DPSK channels at 10Gb/s, OFC’2003, Paper
    PD22
    [10] H. Kim, Cross-phase-modulation-induced nonlinear phase noise in WDM
    direct-detection DPSK systems, IEEE J. Lightwave Technol. Lett., 2003,
    21(8):1770~1774
    [11] G. Charlet, J. C. Antona, S. Lanne et al., From 2, 100km to 2, 700km distance
    using phase-shaped binary transmission at 6.3Tbit/s capacity, OFC’2003, Paper WE3
    [12] 雷震洲, 2001 年十大热门技术评述, 中兴通讯技术, 2001, 10: 47~51
    [13] 于林生,董胜,唐斯宁等,拉曼光纤放大器在国内的首次工程应用,光通
    信研究,2003,(3):29
     117
    
    
    天津大学博士学位论文
    [14] Marie Wandel, Poul Kristensen, Torben Veng et al., Dispersion compensating
    fibers for nonzero dispersion fibers, OFC’02, Paper WU1-1
    [15] Stig Nissen Knudsen, Design and manufacture of dispersion compensating fibers
    and their performance in systems, OFC’02, Paper WU3-1
    [16] S. Ramachandran, B. Mikkelsen, L. C. Cowsar et al., All-fiber grating-based,
    higher-order-mode dispersion compensator for broadband compensation and 1000 km
    transmission at 40 Gbps, ECOC’00, Paper PD2.5
    [17] T. Sugihara, K. Shimomura, K. Shimizu et al., Automatically tracked dispersion
    compensation with penalty-free tunable dispersion equalizer for 40 Gbit/s systems,
    OFC’02, Paper ThAA2-1
    [18] G. E. Kohnke, S. J. Spammer, N. Mlejnek et al., Fiber Bragg gratings for
    dispersion compensation, OFC’02, Paper ThAA3-1
    [19] M. Shirasaki, Y. Kawahata, S. Cao et al., Variable dispersion compensation using
    the virtually imaged phase array (VIPA) for 40Gbps WDM tramsmission systems,
    ECOC’00, Paper PD2.3,
    [20] M. Shirasaki, Compensation of chromatic dispersion and dispersion slope using a
    virtually imagrd phased array, OFC’01, Paper TuS1-1
    [21] H. Ooi, K. Nakamura, Y. Akiyama et al., 3.5 Tbit/s (43 Gbit/s×88 ch)
    transmission over 600-km NZDSF with VIPA variable dispersion compensators,
    OFC’02, Paper ThX3
    [22] P. A. Anserson, High speed soliton transmission on installed fibers, OFC’2000,
    Paper TuP2
    [23] S. Bigo, W. Idler, J.-C. Antona et al., Transmisson of 125 WDM channel at
    42.7Gbit/s (5Tbit/s capacity)over 12×100km of Teralight ultra fiber, ECOC’2001,
    Paper PD.M.1.1
    [24] H. Bissessur, A. Hugbart, C. Bastide, et al., Transmission of 32×43Gb/s over
    27×100km of TereLight fiber with low-cost EDFA amplification, OFC’2004, Paper
    ThE3
    [25] 韦乐平,光通信技术的发展趋势,电信工程技术与标准化,2003,(7):2~8
    [26] 王孝明,密集波分复用技术发展综述,现代通信,2003,(8):21~22
    [27] 张煦,OFC-2003 关于光纤传输系统的报告,光通信技术,2003,27:6~7
    [28] C. Rasmussen, et al., DWDM 40G transmission over trans-pacific distance
    (10,000 km) using CSRZ-DPSK, enhanced FEC and all-raman amplified 100 km
    Ultra Wave fiber spans, OFC’2003, Paper PD18
    [29] P. Petropoulos, T. M. Monro, W. Belardi et al., A highly nonlinear holey fiber and
    its application in a regenerative optical switch, 2001,OFC’2001, TuC3-1-3-3
    [30] J. H. Lee, Z. Yusoff, W. Belardi et al., Holey fiber based tunable WDM
    wavelength conversion using cross-phase modulation and filtering, ECOC’2002,
     118
    
    
    参考文献
    paper 3.4.3
    [31] A. V. Husakou and J .Herrmann, Supercontinuum generation of higher-order
    solitons by fission in photonic crystal fibers, Phys. Rev. Lett., 2002, 87(11):
    203901~203904
    [32] J. E. Sharping, M. Fiorentino, P. Kumar et al., All-optical switching based on
    cross-phase modulation in microstructure, IEEE PTL, 2002, 14(1): 77~79
    [33] D. Chen, S. Wheeler, D. Nguyen et al., 3.2 Tbit/s field trial (80×40 Gbits)over
    3×82 km SSMF using FEC, Raman and tunable dispersion compensation, OFC’01,
    Paper PD36
    [34] B. Zhu, L. Leng, L. E. Nelson et al., 3.08Tbit/s (77×42.7Gbit/s)transmission over
    1200 km of non-zero dispersion-shifted fiber with 100 km spans using C-and L-Band
    distributed raman amplification, OFC’01, Paper PD23
    [35] E. Brandon, J.-P. Blondel, F. Boubal et al., 1.28 Tbit/s (32×40 Gbit/s)
    unrepeatered transmission over 250 km, ECOC’00, Vol. 4, pp.21~23
    [36] K. Shimiz K. Kinjo, N. Suzuki et al., Fiber-effective-area managed fiber lines
    with distributed Raman amplification in 1.28-Tb/s (32×40 Gbit/s), 202-km
    unrepeatered transmission, OFC’01, Paper TuU2
    [37] K. Tanaka, H. Sakata, T. Miyakawa et al., 40 Gbit/s×25 WDM 306 km
    unrepeatered transmission using 175 μm2-Aeff fiber, Electron. Lett., 2001, 37 (22):
    1354~1355
    [38] T.Miyakawa, I.Morita, K. Tanaka, et al., 2.56Tb/s unrepeatered 230km
    transmission with 0.8bit/s/Hz spectral efficiency using low-noise fiber Raman
    amplifier and 170 μm2-Aeff fiber, OFC’01, Paper PD26
    [39] H. Sotobayashi, W. Chujo, and Ken-ichi Kitayama, 1.6 bit/s/Hz, 6.4 Tbit/s
    OCDM/WDM (4 OCDM×40 WDM×40 Gbit/s) transmission experiment, ECOC’01,
    Vol. 6, pp. 6~7
    [40] K. Kudo et al., 1.55-μm wavelength-selectable microarray DFB-LD’s with
    integrated MMI combiner, SOA, and EA-modulator, OFC’2000, paper TuL5
    [41] H. Hatakeyama et al., Wavelength-selectable microarray light sources for S-, C-,
    and L-bands WDM applications, OFC’2002, paper WF2
    [42] Y. A. Akulova, C. Schow, A. Karim et al., Widely-tunable elecroabsorption
    modulated sampled grating DBR laser integrated with semiconductor optical amplifier,
    OFC’2002, paper ThV1
    [43] G. Busico et al., A widely tunable digital supermode DBR laser with high SMSR,
    ECOC’2002, paper Tu3.3.2
    [44] M. Jiang, C-C. Lu, P. Chen et al., Error free 2.5 Gb/s transmission over 125 km
    conventional fiber of a directly modulated widely tunable vertical cavity surface
    emitting laser, OFC’01, Paper TuJ3-1
     119
    
    
    天津大学博士学位论文
    [45] G. S. Li, R. F. Nabiev, W. Yuen et al., Electrically-pumped directly-modulated
    tunable VCSEL for metro DWDM applications, ECOC’01, Paper Tu.B.3.3
    [46] J. D. Berger et al., Widely tunable external cavity diode laser based on a MEMS
    electrostatic rotary actuator , OFC’2001, paper TuJ2
    [47] D. Anthon, J. D. Berger, and A. Tselikov, C+L band MEMS tunable external
    cavity semiconductor laser, OFC’04, Paper WL2
    [48] Y. Sun, J. W. Sulhoffnd, A.M. Vengsarkar, 80 nm ultra-wideband erbium-doped
    silica fiber amplifier,” Electron. Lett., 1997, vol. 33, pp. 1965~1967
    [49] M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, Broadband and gain
    flattened amplifier composed of a 1550nm-band and a 1580nm-band Er -doped fiber
    amplifier in a parallel configuration, Electron. Lett., 1997, vol. 33, pp. 710~711
    [50] Yamashita. S, Nishihara M, L-Band Erbium-Doped Fiber Amplifier
    Incorporating an Inline Fiber Grating Laser, IEEE J. Selec. Top. Quantum Electron.,
    2001, 7 (1): 41~48
    [51] T. K. Sudoh, Y. Nakano, and K.Tada, Wavelength trimming feedback laser arrays
    by photo-induced refractive index change, Electron. Lett., 1997, 33 (3): 216~217
    [52] D. Vakhshoori, P. D. Wang, M. Azimi et al., MEMS-tunable vertical-cavity
    surface-emitting lasers, OFC’01, Paper TuJ1-1
    [53] J. -N. Maran, S. LaRochelle, C. Juignet et al., An actively-modelocked
    erbium-doped fiber laser emitting over 30 wavelength simultaneously with a 5GHz
    repetition rate, ECOC’03,Paper We267
    [54] Lim D S, Lee H K, Kim K H et al., Generation of multi order stokes and
    anti-stokes lines in a Brillouin Erbium-fiber laser with a Sagnac loop mirror, Optics
    letters, 1998, 23(21):1671~1673
    [55] Wang Yuhl oh, Je-Soo Ko, Dong Sung Lim et al., 10 and 20GHz optical combs
    generation in Brillouin /Erbium fiber 1aser with shared cavity of Sagnac reflector, Opt.
    Commun., 2002, 201:309~403
    [56] M. L. Nielsen, M. Nord, M. N. Petersen et al., 40Gbit/s standard-mode
    wavelength conversion in all-active MZI with very fast response, IEEE Electron. Lett.,
    2003, 39(4): 385~386
    [57] T. Papakyriakopoilos, A. Stavdas, E. N. Protomotarios et al., 10×10 GHz
    Simultaneously modelocked multiwavelength fiber ring laser, IEEE Electron. Lett.,
    1999, 35(9):717~718
    [58] H. Shi, G. A. Alphonse, J. C. Connolly et al., 20×5 Gbit/s optical WDM
    transmitter using single-stripe multiwavelength modelocked semiconductor laser,
    IEEE Electron. Lett., 1998, 34(2):179~181
    [59] M. H. Reeve, A. R. Hunwicks, W.Zhao et al., LED spectral slicing for
    single-mode local loop application, Electron. Lett., 1988, 24(4):389~390
     120
    
    
    参考文献
    [60] P. D. D. Kilkelly, P. J. Chidgey, and G. Hill, Experimental demonstration of a
    three channel WDM system over 110km using superluminescent diode, Electron. Lett.,
    1990, 26(20):1671~1672
    [61] J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, Spectral-sliced fiber amplifier light
    source for multichannel WDM applications, IEEE Photon. Technol. Lett., 1993,
    5(12):1458~1461
    [62] A. J. Keating, W. T. Holloway, and D. D. Sampson, Feedforward noise reduction
    of incoherent light for spectrum-sliced transmission at 2.5Gb/s, IEEE Photon. Technol.
    Lett., 1995, 7(12):1513~1515
    [63] J. -H. Ham, J. -W. Ko, J. -S. Lee et al., 0.1nm narrow bandwidth transmission of
    a 2.5Gb/s spectrum-sliced incoherent light channel using an all-optical bandwidth
    expansion technique at the receiver, IEEE Photon. Technol. Lett., 1998, 10(12):
    1501~1503
    [64] H. Sanjoh, H. Yasaka, Y. Sakai et al., Multiwavelength light source with precise
    frequency spacing using a mode-locked semiconductor laser and an arrayed
    waveguide grating fiber, IEEE Photon. Technol. Lett., 1997, 9(7):827~829
    [65] L. Boivin, M. Wegmuller, M. C. Nuss et al., 110-channel ×2.35Gb/s from a single
    femtosecond laser, IEEE Photon. Technol. Lett., 1999,11(4): 466~468
    [66] Y. J. Chai, R. V. Penty, and I. H. White, 1.36Tbit/s Spectral slicing source based
    in a Cr4+: YAG femtosecond laser, OFC’04, Paper FJ6
    [67] H. Takara, T. Ohara, K. Mori et al., More than 1000 channel optical frequency
    chain generation from single supercontinuum source with 12.5 GHz channel spacing,
    Electron. Lett., 2000, 36 (25): 2089~2090
    [68] L. Boivin, S. Taccheo, C. R. Doerr et al., A supercontinuum source based on an
    electroabsorption-modulated laser for long distance DWDM transmission, IEEE
    Photon. Technol. Lett., 2000, 12(12): 1695~1697
    [69] E. Yamada, H. Takara, T. Ohara et al., 150 channel supercontinuum CW optical
    source with high SNR and precise 25 GHz spacing for 10 Gbit/s DWDM systems,
    Electron. Lett., 2001, 37 (5): 304~307
    [70] E. Yamada, H. Takara, T. Ohara et al., 106 channel×10 Gbit/s, 640 km DWDM
    transmission with 25 GHz spacing with supercontinuum multi-carrier source, Electron.
    Lett., 2001, 37 (25): 1534~1537
    [71] H. Sotobayashi, A. Konishi, W. Chujo et al., Simultaneously generated 3.24
    Tbit/s (81 WDM ×40 Gbit/s) carrier suppressed RZ transmission using a single
    supercontinuum source, ECOC’01, Paper Mo.F.3.3, pp. 56~57
    [72] K. Takada, M. Abe, T. Shibata et al., 5 GHz-spaced 4200-channel two-stage
    tandem demultiplexer for ultra-multi-wavelength light source using supercontinuum
    generation, Electron. Lett., 2002, 28 (12): 572~573
     121
    
    
    天津大学博士学位论文
    [73] W. S. Lee, Yanjun Zhu, B. Shaw et al., 2.56 Tbit/s capacity, 0.8 bit/s/Hz DWDM
    transmission over 120 km NSDF using polarization-bit-interleaved 80 Gbit/s OTDM
    signal, OFC’01, Paper TuU1
    [74] H. Sotobayashi, A. Konishi, W. Chujo et al., Simultaneously generated 3.24
    Tbit/s (81 WDM ×40 Gbit/s) carrier suppressed RZ transmission using a single
    supercontinuum source, ECOC’01, Paper Mo.F.3.3, pp. 56~57
    [75] H. P. Sardesai, C. C. Chang, and A. M. Wekiner, A femtosecond code-division
    multiple-access communication system test bed, J. Lightwave Technol., 1998,16(8):
    1953~1960
    [76] C. C. Chang, H. P. Sardesai, and A. M. Wekiner, Code-division multiple-access
    encoding and decoding if a femtosecond optical pulses over a 2.5km fiber link, IEEE
    Photon. Technol. Lett., 1999, 10(2):171~173
    [77] W. T. Holloway, A. J. Keating, and D. D. Sampson, Multiwavelength source for
    spectrum-sliced WDM access networks and LANs, IEEE Photon. Technol. Lett., 1997,
    9 (7): 1014~1016
    [78] B. C. Colling, M. L. Mitchell, L. Boivin et al., A 1022-channel WDM transmitter,
    ECOC’99, Paper PD1-4, Nice, France
    [79] Th. Pfeiffer and G. Veith, 40GHz pulse generation using a widely tunable
    all-polarisation preserving erbium fibre ring laser, IEEE Electron. Lett., 1993, 29(21):
    1849-1850
    [80] B. Bakhshi and P. A. Andrekson, 40GHz actively modelocked polarization
    maintaining erbium fiber ring laser, IEEE Electron. Lett., 2000, 36(5): 411~413
    [81] E. Yoshida, N. Shimizu and M. Nakazawa, A 40GHz 0.9-ps Regeneratively
    Mode-locked Fiber Laser with a Tuning Range of 1530~1560nm, 1999, 11(12):
    1587~1589
    [82] T.Papakyriakopoulos, K. Vachos, A. Hatziefremidis, et al., 20GHz broadly
    tunable and stable mode-locked semiconductor amplifier fiber ring laser,Opt. Lett.,
    1999, 24(17): 1209~1211
    [83] K. Zoiros, K. Vlachos, T. Stathopoulos, et al., 4oGhz mode-locked SOA fiber
    ring laser with 20nm tuning range, OFC’2000, Paper TuR3
    [84] B.Huettl, R.Kaiser, F.Boczianowski, et al., Monolithic Mode-locked laser on
    GaInAsP/InP for 160Gb/s TDM application, OFC’2003, Paper FF7
    [85] J. Hansryd and P.A.Andrekson, Wavelength tunable 40GHz pulse source based
    on fiber optical parametric amplifier, Electron. Lett., 2001, 37(9): 584~585
    [86] T. Torounidis, H. Sunnerud, P.A.Andrekon, et al., 40Gb/s transmission using
    RZ-pulse source based on fiber optical parametric amplification, IEEE Photon.
    Technol. Lett., 2003, 15(8): 1159~1161
    [87] H.-F.Chou, Y.-J.Chiu and J.E.Bowers, 40GHz optical pulse generation using
     122
    
    
    参考文献
    sinusoidally-driven traveling-wave electroabsorption modulator, Electron. Lett., 2002,
    38(8): 379~380
    [88] T. Ido, S. Tanaka, M. Suzuki et al., Ultra-high-speed multiple-quantum-well
    electro-absorption optical modulators with integrated waveguides, IEEE J. Light.
    Tech., 1996, 14(9): 2026~2034
    [89] J. R. Burie, J. F. Cadiou, O. L. Gouezigou et al., Transform limit optical pulse at
    40GHz from a 1.55μm module with an integrated DFB laser/electroabsorption
    modulator, in International Semiconductor Laser Conference, 1998, TuD5, pp. 91~92
    [90] H. Takeuchi, K. Tsuzuki, K. Sato et al., Very high-speed light-source module up
    to 40Gb/s containing an MQW electroabsorption modulator integrated with a DFB
    laser, IEEE J. Sel. Top. Quant. Electron., 1997, 3(2): 336~343
    [91] H. Feng, T. Makino, S. Ogita et al., 40Gb/s electro-absorption-modulator
    -integrated DFB laser with optimized design, OFC’02, March: 340~341
    [92] Y. Akage, K. Kawano, S. Oku et al., Wide bandwidth of over 50GHz
    traveling-wave electrode electroabsorption modulator integrated DFB lasers, IEEE
    Electron. Lett., 2001, 37(5): 299~300
    [93] C. Bobbert, J .Kreissl, L. Molle et al., Novel compact 40GHz RZ-pulse-source
    based on self-pulsating phaseCOMB laser, OFC’2004 ,Paper WL5
    [94] Xing Wei, Juerg Leuthold, and Liming Zhang, Delay-interferometer-based
    optical pulse generator, OFC’2004, Paper WL6
    [95] P.C.Reeves-Hall and J.R.Taylor, Wavelength and duration tunable subpicosecond
    source using adiabatic Raman compression, Electron. Lett., 2001, 37(7): 417~418
    [96] M.Kato, K.Kurokawa, K. Fujiura, et al., High bit rate and programmable
    multiwavelength gnenrator based on Raman effect in DSF, 2002, 38(4): 164~166
    [97] A.D.Errico, C.Loiacono, M.Presi, et al., Widely tunable 40GHz pulse source for
    160Gbit/s OTDM by simultaneous soliton generation and compression, ECOC’2003,
    Paper We2.6.5
    [98] S.V.Chernikov, D.J.Richardson, E.M.Dianov, et al., Picosecond soliton pulse
    compressor based on dispersion decreasing fiber, Electron. Lett., 1992, 28(19):
    1842~1844
    [99] M.J.Guy, S.V.Chemikov, and J.R.Taylor, A duration-tunable, multiwavelength
    pulse source for OTDM and WDM communications systems, IEEE Photon. Technol.
    Lett., 1997, 7(7): 1017~1019
    [100] M. Yamada, H. Ono, T. Kanamori et al., Broadband and gain-flattened amplifier
    composed of a 1.55μm-band and a 1.58μm-band Er3+-doped fiber amplifier in a
    parallel configuration, Electron. Lett., 1997, 33(8): 710~711
    [101] M. Yamada, H. Ono, Y. Ohishi et al., Gain-flattened broadband Er3+-doped
    silica fiber amplifier with low noise characteristics, Electron. Lett., 1998, 34(18):
     123
    
    
    天津大学博士学位论文
    1747~1748
    [102] Y. Sun, J. W. Sulhoff, A. K. Srivastava et al., 80nm ultra-wideband Er3+-doped
    fiber silica amplifier, Electron. Lett., 1997, 33(23): 1965~1967
    [103] T. N. Nielsen, A. J. Stentz, K. Rottwitt, et al., 3.28 Tb/s (82/spl times/40 Gb/s)
    transmission over 3/spl times/100 km nonzero-dispersion fiber using dual C- and
    L-band hybrid Raman/erbium doped inline amplifiers, OFC’00, Vol.4, pp. 236~238
    [104] T. Sakamoto, S. Aozasa, M. Yamada et al., High-gain hybrid amplifier
    consisting of cascaded fluoride-based TDFA and silica-based EDFA in 1458-1540 nm
    wavelength region, Electron. Lett., 2003, 39(6): 597~599
    [105] S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, Triple wavelength pumped
    silica-fibre Raman amplifiers with 114nm bandwidth, Electron. Lett., 1999, 35 (16):
    1761~1762
    [106] H.Masuda and S.Kawai, Ultra wide-band amplification with a total gain
    bandwith of 132 nm of two gain-bands around 1.5μm, ECOC’99, Paper We D3.2
    [107] H. Masuda, K. –I. Suzuki, S. Kawai et al., Ultra-wideband optical amplification
    with 3 dB bandwidth of 65 nm using a gain equalized two-stage erbium-doped fiber
    amplifier and Raman amplification, Electron. Lett., 1997, 33(9): 753~754
    [108] H. Masuda, Review of wideband hybrid amplifiers, OFC’00, Paper TuA1-1,
    Baltimore, USA, 2000
    [109] H. Masuda, Y. Miyamoto, and H. Kawakami, Hybrid optical amplification
    technologies for high-speed and wideband optical communication systems, ECOC’
    2003,Paper Tu471
    [110] J. Hansryd and P.A.Andrekson, Wavelength tunable 40GHz pulse source based
    on fiber optical parametric amplifier, Electron. Lett., 2001, 37(9): 584~585
    [111] Jonas Hansryd, P.A. Andrekson, M. Westlund, et al., Fiber-based optical
    parametric amplifiers and their applications, IEEE J. Selected Topics in Quantum
    Electronics, 2002, 8(3): 506~520
    [112] J.Hansryd, P.A. Andrekson, Jie Li, et al., Optical parametric amplifiers and their
    application, OFC’2002, Paper TuS1, 123~124
    [113] S.Radic, C.J.Mckinstrie, R.M.Jopson, et al., Record performance of parametric
    amplifier constructed with highly nonlinear fiber, Electron. Lett., 2003, 39(11):
    838~839
    [114] Jonas hansryd and Peter A. Andrekson, Broad-band continuous wave pumped
    fiber optical parametric amplifier with 49dB gain and wavelength conversion
    efficiency, IEEE Photon. Technol. Lett., 2001, 13(3): 194~196
    [115] M.N.Islam and O. Boyraz, Fiber parametric amplifiers for wavelength band
    conversion, IEEE J. Selected Topics in Quantum Electronics, 2002,8(3): 527~537
    [116] J.L, J. Hansryd , P.O. Hedekvist, et al., 300 Gbit/s eye-diagram measurement
     124
    
    
    参考文献
    by optical sampling using fiber based parametric amplification, OFC’2001, Vol.4
    Paper PD31
    [117] Jonas hansryd and Peter A. Andrekson, O-TDM demultiplexer with 40dB gain
    based on a fiber optical parametric amplifier, IEEE Photon. Technol. Lett., 2001,
    13(7): 732~734
    [118] T.Torounidis, H.Sunnerud, F.O.Hedekvist, et al.,40Gb/s transmission using
    RZ-pulse source based on fiber optical parametric amplification, IEEE Photon.
    Technol. Lett., 2003, 15(8): 1159~1161
    [119] G.Raybon, Optical 3R regeneration in 40Gbit/s pseudolinear transmission
    systems, OFC’2003, Paper TuH1
    [120] Yuhua Li, K.Croussore, C. Kim et al., All-optical 2R regeneration using
    data-pumped fiber parametric amplification, Electron. Lett., 2003, 39(17): 1263~1264
    [121] M.-C.Ho, K. Uesaka, M. Marhic,et al., 200-nm-bandwidth fiber optical
    amplifier combing parametric and raman gain, J. Lightwave Technol., 2001, 19(7):
    977~981
    [122] S. Radic, C. J. McKinsstrie, R. M. Jopson et al., Continuous wave fiber
    parametric amplifier with 41.5nm of flat gain, OFC’2004, Paper TuC4
    第二章:
    [1] P. C. Becker, N.A. Olsson, J.R. Simpson et al., Erbium-Doped Fiber Amplifiers:
    Fundamentals and Technology, Academic Press, 1999
    [2] Optiwave: OptiAmplifier 40 Technical Background
    [3] 范崇澄编,掺铒光纤放大器,清华大学电子工程系讲义,2000
    [4] M.Yamada, et al., Gain characteristics of an Er3+-doped multicomponent glass
    single-mode optical fiber, IEEE Photon. Tech. Lett., 1990, 2(9): 656 ~658
    [5] M.Rochette, M.Guy, Gain equalization of EDFA’s with Bragg gratings, IEEE
    Photonics Tech. Lett., 1999, 11(5): 536~538
    [6] Felton A. Flood, L-band erbium-doped fiber amplifiers, OFC’00, 2000, Paper
    WG1
    [7] M. Karasek, Gain Enhancement in Gain-Shifted Erbium-Doped Fiber Amplifiers
    for WDM Applications, IEEE Photon. Tech. Lett., 1999, 11(9): 1111~1113
    [8] W.J. Miniscalco, Erbium-doped glasses for fiber amplifiers at 1500 nm, Lightwave
    Tech., 1991, 9(2): 234~250
    [9] Tanaka, S., Imai, K., Yazaki, T. et al., Ultra-wideband L-band EDFA using
    phosphorus co-doped silica-fiber, OFC 2002, March 2002 Pages:458–459
     125
    
    
    天津大学博士学位论文
    [10] T. Komukai, T.Yamamoto, T.Sugawa et al., 1.47 μm band Tm3+ doped fluoride
    fibre amplifier using a 1.064μm upconversion pumping scheme, Electron. Lett., 1993,
    29(1): 110~112
    [11] R. M. Percival and J.R.Williams, Highly efficient 1.064 μm upconversion
    pumped 1.47μm thulium doped fluoride fiber amplifier, Electron. Lett., 1994, 30(20):
    1684~1685
    [12] Mori, A., Kobayashi, K., Yamada, M. et al., Low noise broadband tellurite-based
    Er3+-doped fibre amplifiers, 1998, Electronics Letters , 34(9): 887~888
    [13] Mori, A., Ohishi, Y., Tellurite-based EDFAs for broadband communication, OFC
    '98., Technical Digest, 1998 Pages:97
    [14] Obara, S., Sugimoto, N., Ochiai, K., Hayashi, H. et al., Extra-broadband and
    highly efficient short length Bi2O3-based EDF, OFC 2003 , 23-27 March 2003
    Pages:635~636
    [15] http://www.agc.co.jp/english/biedf/
    [16] Carena A,Curri V,Gaudino R et al.Optimal configuration for hybrid
    Raman/erbium-doped fiber amplifiers. ECOC’ 2000, 2000, 14: 1~2
    [17] Emori, K.Tanaka and S.Namiki, 100 nm bandwidth flat-gain Raman amplifiers
    pumped and gain-equalized by 12-wavelength-channel WDM laser diode, Electron.
    Lett., 1999, 35(16):1355~1356
    [18] 杨祥林 等编著,光放大器及其应用,北京:电子工业出版社,2000
    [19] E.Desurvier, Erbium-doped Fiber Amplifier: Principles and Applications, New
    York: A Wiley-Interscience, 1994: 3~26
    [20] C.R.Giles, E.Desurvire. Modeling erbium-doped fiber amplifiers. Journal of
    Lightwave Technology, 1991, 9(2): 271~283
    [21] Giles C, Burrus C, and et al., Characterization of erbium-doped fibers and
    application to modeling 980 nm and 1480 nm pumped amplifiers, IEEE Photon Tech
    Lett, 1991, 3(4): 363~365
    [22] Saleh A, Jopson R, Evankow J, and et al., Modeling of gain in erbium-doped
    fiber amplifier, IEEE Photon Tech Lett, 1991, 2(10): 714~719
    [23] Jopson R, Saleh A, Modeling of gain and noise in erbium-doped fiber amplifiers,
    SPIE, 1991, Fiber Laser Sources and Amplifiers: 114~119
    [24] Burgmeier J, Cords A, Marz R, and et al., A black box model of EDFA's
    operating in WDM systems, J lightwave Technol, 1998, 16: 1271~1275
    [25] Xiupu Zhang, Alan Mitchell, A Simple Black Box Model for Erbium-Doped
    Fiber Amplifiers, IEEE Photon Tech Lett, 2000, 12(1)
    [26] 唐晓东 曾庆济 徐 捷 金耀辉,EDFA 黑盒模型及其虚拟实验验证,光子学
    报,2001, 30(2): 249~252
    [27] G. P. Agrawal 著,贾东方 等译,非线性光纤光学及应用,北京:电子工业
     126
    
    
    参考文献
    出版社,2002
    [28] 童治,魏淮,简水生,光纤喇曼放大器的特性及其在宽带通信中的应用,
    光学技术,2001, 27(3): 196~200
    [29] Aoki Y. Properies of fiber raman amplifiers and their applicablility to digital
    optical communication systems, J. Lightwave Tech., 1988, 6(7): 1225~1239
    [30] Jiang Weijian, Ye Peida, Crosstalk in fiber raman amplification for WDM
    systems, J.Lightwave Tech., 1989, 7(9): 1407~1411
    [31] Wan Ping, Conradi J, Impact of double rayleigh backscatter noise on digital and
    analog fiber systems, J.Lightwave Tech., 1996, 14(3): 288~297
    [32] A. Rahman, Design issues of distributed Raman amplifiers for reduced noise
    accumulation in long-haul repeated transmission, J. Lightwave Technol., 2000, 17(9):
    70~75
    [33] M. Karasek, Gain Enhancement in Gain-Shifted Erbium-DopedFiber Amplifiers
    for WDM Applications, IEEE Photon. Tech. Lett., 1999, 11(9): 1111~1113
    [34] J. Lee, et al., Enhancement of power conversion efficiency for an L-band EDFA
    with a secondary pumping effect in the unpumped EDF section, IEEE Photon. Tech.
    Lett., 1999, 11(1): 42~44
    [35] A. R. Pratt, et al., Gain Control in L-Band EDFAs by Monitoring Backward
    Traveling C-Band ASE, IEEE Photon. Tech. Lett., 2000, 12(8): 983~985
    [36] R.Di Muro, et al., Dependence of L-band amplifier efficiency on pump
    wavelength and amplifier design, OFC’00, 2000, WG7
    [37] Qinghe Mao, et al., Amplification enhancement of L-band erbium-doped fiber
    amplifiers by reflection scheme, Optics Communications, 2002, 201: 61~69
    [38] M.Yamada, H.Ono, Y.Ohishi , Gain-flattened broadband Er3+-doped silica fiber
    amplifier with low noise characteristics, Electron. Lett., 1998, 34(18): 1747~1748
    [39] M.Yamada, H.Ono, T.Kanamori et al., Broadband and gain-flattened amplifier
    composed of 1.55μm-band and a 1.58μm-band Er3+-doped fiber amplifier in a
    parallel configuration, Electron. Lett., 1997, 33(8): 710~711
    [40] R.Di Muro, D Lowe, S. Wilson, Broad-band amplification using a novel
    amplifier topology , IEEE Photon. Technol. Lett., 2001, 13(10) : 1073~1075
    [41] Y. Sun, J. W. sulhoff, A. K. Srivastava et al., 80nm ultra-wide band
    erbium-doped silica fiber amplifier , Electron. Lett., 1997, 33(23): 1965~1967
    [42] S.Tammela, M.Hotoleanu, K. Janka et al., Potential of nanoparticle technologies
    for next generation erbium-doped fibers, OFC 2004, FB5
    [43] S. Tammela et al., Direct Nanoparticle Deposition process for manufacturing
    very short high gain Er-doped silica glass fibers, ECOC 2002 Proceedings, 4,
    9.4.1-9.4.3.
    [44] Y. Emo, K. Tanaka, and S. Namiki, 100nm bandwidth flat-gain Raman amplifiers
     127
    
    
    天津大学博士学位论文
    pumped and gain-equalized by 12-wavelength-channel WDM laser diode unit,
    Electron. Lett., 1999, 35(16): 1355~1356
    [45] S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, Triple wavelength pumped
    silica-fibre Raman amplifiers with 114nm bandwidth, Electron. Lett., 1999, 35(16):
    1761~1762
    [46] H.Masuda and S.Kawai, Ultra wide-band amplification with a total gain
    bandwith of 132 nm of two gain-bands around 1.5μm, ECOC’99, Paper We D3.2,
    Nice, France, 1999
    [47] S. Kawai, H.Masuda, K.I. Suzuki et al. Ultra-wide, 75 nm 3 dB gain-band optical
    amplifier utilizing gain-flattened erbium-doped fluoride fiber amplifier and discrete
    Raman amplification, Electron. Lett., 1998, 34 (9): 897~898
    [48] H. Masuda, S.Kawai, and K. Aida, Ultra-wideband hybrid amplifier comprising
    distributed Raman amplifier and erbium-doped fibre amplifier, Electron. Lett., 1998,
    34(13): 1342~1344
    [49] Hiroji Masuda and Shingo Kawai, Wide-band and Gain-flattened hybrid fiber
    amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,
    IEEE Photon. Technol. Lett., 1999, 11(7): 647~649
    [50] J. Kani and M. Jinno, Wideband and flat-gain optical amplification from 1460 to
    1510nm by serial combination of a thulium-doped fluoride fibre amplifier and fibre
    Raman amplifier, Electron. Lett., 1999, 35(12): 1004~1006
    [51] Shu Namiki and Yoshihiro Emori, Ultra broad-Band Raman Amplifiers Pumped
    and Gain-Equalized by Wavelength-Division-Multiplexed High-Power Laser Diodes,
    IEEE Journal on selected topics in quantum electronics, 2001, 7(1): 3~15
    [52] http://www.rsoftdesign.com/
    [53] http://www.optiwave.com/
    [54] http://www.vpiphotonics.com/
    第三章:
    [1] Y. Sun, J. W. Sulhoff, A. K. Srivastavva. 80 nm ultrawideband erbium-doped silica
    fibre amplifier. Electron. Lett., 1997, 33(23): 1965~1967
    [2] http://www.coractive.com/anglais/product/product1e.html
    [3] http://www.fibercore.com/15erbium.php
    [4] A.K. Srivastava, Y. Sun, J. W. Sulhoff, and et al., 1 Tb/s transmission of 100 WDM
    10Gb/s channels over 400 km of TrueWaveTM fiber, OFC’98 Technical Digest,
    Postdeadline Papers PD10, San Jose, CA, February 22~27, 1998
    [5] S. Aisawa, T. Sakamoto, M. Fukui, J. Kani, and et al., Ultra-wide Band, Long
     128
    
    
    参考文献
    Distance WDM Transmission Demonstration: 1Tb/s (50×20Gb/s), 600 km
    Transmission Using 1550 and 1580 nm Wavelength Bands, OFC’98 Technical Digest,
    Postdeadline Paper PD11, San Jose, CA, February 22~27, 1998
    [6] M.Yamada, T.Kanamori, Y.Terunnma et al., Fluoride-based erbium-doped fiber
    amplifier with inherently flat gain spectrum. IEEE Photon. Technol. Lett., 1996, 8(7):
    882~884
    [7] M. Yamada, A. Mori, K. Kobayashi et al., Gain-flattened Tellurite-based EDFA
    with a flat amplification bandwidth of 76nm, IEEE Photon. Technol. Lett., 1998,
    10(9): 1244~1246
    [8] S. Yoshida, S. Kuwano, K. Iwashita, Gain-flattened EDFA with high Al
    concentration for multistage repeated WDM transmission systems, IEEE Electron.
    Lett., 1995, 31(20): 1765~1767
    [9] J. H. Lee and N. Park, Reduction of temperature-dependent multichannel gain
    distortion using a hybrid erbium-doped fiber cascade, IEEE Photon. Technol. Lett.,
    1998, 10(8): 1168~1170
    [10] Namkyoo Park, et al., High-power Er-Yb-doped fiber amplifier with
    multichannel gain flatness within 0.2dB over 24nm, IEEE Photon. Tech. Lett., 1996,
    8(13): 1148~1150
    [11] P. F. Wysocki, J. B. Judkins, R. P. Espindola et al., Broad-band erbium-doped
    fiber amplifier flattened beyond 40nm using long-period grating filter, IEEE Photon.
    Tech. Lett., 1997, 9(10): 1343~1345
    [12] M. Yamada, H. Ono and Y. Ohishi, Gain-flattened broadband Er3+-doped silica
    fibre amplifier with low noise characteristics, IEEE Electron. Lett., 1998, 34(18):
    1747~1748
    [13] H. Masuda, S. Kawai, K. I. Suzuki et al., Wideband, gain-flattened,
    erbium-doped fibre amplifiers with 3dB bandwidths of >50nm, IEEE Electron. Lett.,
    1997, 33(12): 1070~1072
    [14] 张瑞峰,葛春风,王书慧等,全光纤奇偶交错空分滤波器的优化设计,光
    电子·激光,2003, 14(5): 496~500
    [15] M.Kawachi and K.jinguji, Planar lightwave circuit for optical signal processing.
    OFC’94 Technical Digest, Vol.4, PP.281~282
    [16] K.Jinguji, M.Kawachi, Synthesis of coherent two-port lattice-form optical
    delay-line ciruit. J.Lightw.Technol., 1995, 13(1): 72~82
    [17] C.K.Madsen and J.H.Zhao, Optical filter design and analysis: a signal processing
    approach. John&Sons, New York, 1999
    [18] 张岩滨等,本征平坦增益带宽>33nm 的高增益、低噪声 L-波段铒光纤放大
    器,中国激光,2002, 29(11): 987~990
    [19] 王思劼,L 带及宽带掺铒光纤放大器的研究:[硕士学位论文],天津:天津
     129
    
    
    天津大学博士学位论文
    大学,2003
    [20] M.Yamada, H.Ono, Y.Ohishi , Gain-flattened broadband Er3+-doped silica fiber
    amplifier with low noise characteristics, Electron. Lett. , 1998, 34(18): 1747~1748
    [21] M.Yamada, H.Ono, T.Kanamori et al., Broadband and gain-flattened amplifier
    composed of 1.55μm-band and a 1.58μm-band Er3+-doped fiber amplifier in a
    parallel configuration , Electron. Lett., 1997, 33(8): 710~711
    [22] R.Di Muro, D Lowe, S. Wilson, Broad-band amplification using a novel
    amplifier topology, IEEE Photon. Technol. Lett. 2001, 13(10): 1073~1075
    [23] Y. Sun, J. W. sulhoff, A. K. Srivastava et al., 80nm ultra-wide band erbium-doped
    silica fiber amplifier, Electron. Lett., 1997, 33(23): 1965~1967
    第四章:
    [1] 纪越峰,光波分复用系统,北京:北京邮电大学出版社,2001,15~21
    [2] Agrawal G. P. 著,贾东方 等译,非线性光纤光学原理及应用,北京:电子工
    业出版社 2002,473~496
    [3] 徐荣,龚倩,高速宽带光互联网技术,北京:人民邮电出版社,2002,227~241
    [4] Fenghai Liu, Bennike, J., Dey, S.et al., 1.6 Tbit/s (40 × 42.7 Gbit/s) transmission
    over 3600 km UltraWave fiber with all-Raman amplified 100 km terrestrial spans
    using ETDM transmitter and receiver Optical Fiber Communication Conference and
    Exhibit, 2002. OFC 2002, 17-22 March 2002 Pages: FC7-1 - FC7-3
    [5] http://www.iscpc.org/cabledb/atlan_page.htm
    [6] http://www.lightreading.com/document.asp?doc_id=13326&site=ofc
    [7] Zhu, B.; Nelson, L.E.; Leng, L. et al., 1.6 Tbit/s (40 × 42.7 Gbit/s) WDM
    transmission over 2400 km of fibre with 100 km dispersion-managed spans
    Electronics Letters, 2002, 38(13): 647 ~ 648
    [8] Matsuda, T.; Kotanigawa, T.; Naka, A. et al., 62×42.7 Gbit/s (2.5 Tbit/s) WDM
    signal transmission over 2200 km with broadband distributed Raman amplification
    Electronics Letters, 2002, 38(15): 818~819
    [9] B.Zhu, L.Nelson, L.Leng et al., Transmission of 1.6Tb/s Over Transoceanic
    Distance with Terrestrial 100 km Amplifier Spans, FN2, OFC 03
    [10] G.charlet, J.C.Antona, S.Lanne et al., From 2100 km to 2700 km Distance using
    Phase-Shaped Binary Transmission at 6.3Tbit/s Capacity WE3, OFC 03
    [11] Charlet, G.; Lanne, S.; Pierre, L. et al., Cost-optimized 6.3Tbit/s-capacity
    terrestrial link over 17×100km using phase-shaped binary transmission in a
    conventional all-EDFA SMF-based system Optical Fiber Communications Conference,
    2003. OFC 2003, Pages: PD25-1-PD25-3
     130
    
    
    参考文献
    [12] Zhu, B., Doerr, C.R., Gaarde, P. et al., Broad bandwidth seamless transmission of
    3.56 Tbit/s over 40/spl times/100 km of NZDF fibre using CSRZ-DPSK format
    Electronics Letters, 2003, 39(21): 1528~1530
    [13] H.Bissessur, C.Bresson, J.Hebert et al., Transmission of 40×43Gb/s over 2540
    km of SMF with Terrestrial 100 km Spans Using NRZ Format, FN3, OFC 03
    [14] Katsuyuki Mino, Yoshihisa Inada, Toshiharu Ito et al., Demonstration of 42.7
    Gb/s × 32 WDM 4,300 km Straight Line Transmission with Commercially-Applicable
    EDFA and DMF Technologies, FM5, OFC 04
    [15] H.Bissessur, A.Hugbart, C.Bastide et al., Transmission of 32×43 Gb/s over
    27x100 km of TeraLight fiber with low-cost EDFA amplification ThE3 OFC 04
    [16] Zhou Xiang, Lu Chao, Shun Ping, et al. A simplified model and optimal design
    of a multiwavelength backward-pumped fiber Raman amplifier, Photonics
    Technology Letters, 2001, 13(9): 945~947
    [17] Yan Minhui, Chen Jianpin, Jiang Wenning, et al., Automatic design scheme for
    optical-fiber Raman amplifiers backward-pumped with multiple laser diode pumps,
    Photonics Technology Letters. 2001, 13(9): 948~950
    [18] Kidorf H, Rottwitt K, Nissov M, et al., Pump interactions in a 100 nm bandwidth
    Raman amplifier, IEEE Photon. Lett., 1999, 11(5): 530~532
    [19] Zhu B,Leng,L NeIson L E et al., 3.08Tbit/s (77×42.7Gbit/s)WDM transmission
    over 1200 km fibre Raman/erbium-doped inline amplifiers, Electron. Lett, 2001, 37:
    844~845
    [20] Radic S , Chandrasekhar S , Bernasconi P et al., Feasibility of hybrid
    Raman/EDFA amplification in bidirectional optical transmission, IEEE Photon.
    Technol. Lett., 2002, (14): 221~223
    [21] Carena A,Curri V,Gaudino R et al.Optimal configuration for hybrid
    Raman/erbium-doped fiber amplifiers, ECOC’ 2000, 14: 1~2
    [22] Nissov M,Davidson CR,Rottwitt K,et al., 100 Gb/s (10×10 Gb/S) WDM
    transmission over 7200 km using distributed Raman amplification, ECOC’ 1997.
    9~12
    [23] Hansen PB,Eskildsen L,Grubb SG,et al.Capacity upgrades of transmission
    system by Raman amplification, IEEE Photon. Technol. Lett., 1997, (9): 262~264
    [24] ZhU YJ.Experimental comparison of all-Raman vs. Raman/EDFA hybrid
    amplification with 40Gb/s based ETDM/DWDM transmissions over 400 km TW-RS
    fibre, OFC’ 2002. 552~554.
    [25] H. Masuda, Review of wideband hybrid amplifiers, OFC 2000, vol.1, Pages: 2~4
    [26] D. G. Foursa, C. R. Davidson, M. Nissov et al., 2.56 Tb/s (256×10 Gb/s)
    transmission over 11,000 km using hybrid Raman/EDFAs with 80 nm of continuous
    bandwidth, 2002, OFC’ 2002, Pages:FC3-1 - FC3-3
     131
    
    
    天津大学博士学位论文
    [27] D. Chen et al., 3.2 Tb/s field trial (80×40 Gb/s) over 3×82 km SSMF using FEC,
    Raman and tunable dispersion compensation, OFC, PD36, 2001
    [28] S. Kuwahara et al., ECOC, 2003
    [29] Y. Miyamoto et al., Electron. Lett., WDM field trials of 43-Gb/s/channel
    transport system for optical transport network, Vol. 38, p. 1569, 2002
    [30] A. Mori et al., ECOC, Symposium 3.1 2002
    [31] A. Mori et al., M. Shimizu, H. Masuda, Ultra-wideband tellurite-based fiber
    raman amplifiers, OFC’ 2003, TuB2, 427~429
    [32] H. Takara, H. Masuda, H. Mori et al., Ultra-wideband tellurite/silica fiber Raman
    amplifier and supercontinuum lightwave source for 124-nm seamless bandwidth
    DWDM transmission, OFC’ 2002, Pages: FB1-1 - FB1-3
    [33] Shu namiki and Yoshihiro Emori, Ultrabroad-Band Raman amplifiers pumped
    and gain-equalized by wavelength-division-multiplexed high-power laser diodes,
    IEEE Journal on selected topics in quantum electronics, 2001, 7(1): 3~16
    [34] Y.Zhu, C.R.S. Fludger, W.S.Lee et al., Experimental comparison of all-Raman
    and Raman/EDFA hybrid amplification using 40Gbit/s-based transmission over 400
    km TW-RS fibre, Electronics Letters, 2002, 38(16): 893~895
    第五章:
    [1] Takashi Ono and Yutaka Yano. Key technologies for Terabit/Second WDM
    systems with high spectral efficiency of over 1 bit/s/Hz. IEEE Journal of Quantum
    Electronics, 1998, 34(11): 2080~2088
    [2] M. Zirngibl, C. H. Joyner, L. W. Stulz, C. Dragone, H. M. Presby, and I. P.
    Kaminow. LARNet, a local access router network. IEEE Photonics Technology
    Letters, 1995, 7(2): 215~217
    [3] Tzu-Ming Liu, Shi-Peng Tai, Hsu-Hao Chang, and Chi-Kuang Sun. Simultaneous
    multiwavelength generation from a mode-locked all-solid-state cr:forsterite laser.
    IEEE Photonics Technology Letters, 2001, 26(11): 834~836
    [4] L. E. Eng, K. Bacher, W. Yuen, J. S. Harris, and C. J. Chang-Hasnain. Multiple
    wavelength vertical cavity laser arrays on patterned substrates. IEEE Journal of
    Selected Topics in Quantum Electronics, 1995, 1(2): 624~628
    [5] Wupen Yuen, Gabriel S. Li, and Constance J. Chang-Hasnain.
    Multiple-wavelength vertical-cavity surface-emitting laser arrays. IEEE Journal of
    Selected Topics in Quantum Electronics, 1997, 3(2): 422~428
    [6] Hong Shi and Peter J. Delfyett, 4×2.5Gbit/s WDM-TDM laser source based on
    mode-locked semiconductor lasers. In Proceedings of the SPIE, volume 3075, pages
     132
    
    
    参考文献
    60~64. Society of Photo-Optical Instrumentation Engineers, 1997.
    [7] Peter J. Delfyett, Hong Shi, S. Gee, Ikuko Nitta, John C. Connolly, and Gerard A.
    Alphonse, Joint time-frequency measurements of mode-locked semiconductor diode
    lasers and dynamics using frequency-resolved optical gating. IEEE Journal of
    Quantum Electronics, 1999, 35(4): 487~500
    [8] T. Papakyriakopoulos, A. Stavdas, E. N. Protonotarios, and H. Avramopoulos.
    10x10 GHz simultaneously mode-locked multiwavelength fiber ring laser. Electronics
    Letters, 1999, 35(9): 717~718
    [9] K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos. 10 simultaneously
    mode-locked and synchronised channels at 30 GHz from fiber ring laser. In Optical
    Fiber Communication Conference Technical Digest, number WM45. Optical Society
    of America, 2000.
    [10] 王肇颖,光纤超短脉冲光源和全光波长变换技术的研究:[博士学位论文],
    天津:天津大学,2003
    [11] Jong Chow, Graham Town, Ben Eggleton et al., Multiwavelength generation in
    an erbium-doped fiber laser using in-fiber comb filters, IEEE Photon. Tech. Lett.,
    1996, 8(1): 60~62
    [12] Yamashita S., Hotate K., et al., Multiwavelength erbium-doped fibre laser using
    intracavity etalon and cooled by liquid nitrogen, Electron. Lett., 1996, 32(14):
    1298~1299
    [13] Q. Mao and J. W. Y. Lit, L-Band multiwavelength oscillation in erbium-doped
    fiber ring laser, Microwave Opt. Technol. Lett., 2002, vol. 32, pp. 88~91
    [14] E. L. Goldstein, L. Eskidsen, V. Da Silva, M. Andrejco and Y. Silberberg,
    Suppression of dynamic cross-saturation in multiwavelength lightwave networks with
    inhomogeneously broadened amplifiers, IEEE Photonics Technology Letters,1993, 5:
    937
    [15] A.M.Briancon, B.Jacquier, J.C.Gacon et al., Inhomogeneous line broadening of
    optical transitions in Nd3+ and Er3+ doped preforms and fibers, Proc. SPIE, Fiber
    Laser Sources and Amplifiers, 1373 (1990) 9
    [16] E. Desurvire, J. L. Zyskind, and J. R. Simpson, Spectral gain hle-burning at
    1.53μm in erbium-doped fiber amplifiers, IEEE Photon. Technol. Lett., 1990, vol. 2,
    pp.246~248
    [17] S. Yamashita and K. Hotate, Multiwavelength erbium-doped fiber laser using
    intra-cavity etalon and cooled by liquid nitrogen, Electron. Lett., 1996, vol. 32, pp.
    1298~1299
    [18] S. Yamashita and T. Baba, Multiwavelength fiber lasers with tunable wavelength
    spacing,” OFC 2001, 2001, Volume: 3, Page(s): WA8-1 -WA8-3
    [19] Nam Seong Kim, Xingyu Zou and Lewis, K. “CW depolarized multiwavelength
     133
    
    
    天津大学博士学位论文
    Raman fiber ring laser with over 58 channels and 50 GHz channel spacing.” OFC
    2002, Page: 640~642
    [20] D. S. Lim, H. K. Lee, K.H. Kim et al., Figure-of-eight Brillouin/erbium fiber
    lasers, IEEE Electrocn. Lett., 1998, 34(25): 2406~2407
    [21] W. Y. Oh, J. S. Ko, D. S. Lim et al., 10 and 20GHz optical combs generation in
    Brillouin/erbium fiber laser with shared cavity of Sagnac reflector, Opt. Commun.,
    Vol. 201, No. 4-6, 2002: 399~403
    [22] O. Graydon, W. H. Loh, R.I. Laming, and L. Dong, Triple-frequency operation of
    an Er-doped twincore fiber loop laser, IEEE Photon. Technol. Lett., 1996, 8(1): 63~65
    [23] Gantam Das and J. W. Y. Lit, L-Band Multiwavelength Fiber Laser Using an
    Elliptical Fiber, IEEE Photon. Technol. Lett., 2002, 14(5): 606~607
    [24] Qianfan Xu, Minyu Yao, Theoretical analyses on short-term stability of
    semiconductor fiber ring lasers, IEEE Journal of quantum electronics, 2003, 39(10):
    1260~1265
    [25] D. Zhou, P. R. Prucnal, and I. Glesk, A widely tunable narrow linewidth
    semiconductor fiber ring laser, IEEE Photon. Technol. Lett., 1998, vol. 10,
    pp.781~783
    [26] Z. Hu, F. Li, Z. Pan, and W. Tan, Wavelength-tunable narrow-linewidth
    semiconductor fiber-ring laser, IEEE Photon. Technol. Lett., 2000, vol. 12, pp.
    977~979
    [27] N. Pleros, C. Bintjas, M. Kalyvas, G. Theophilopoulos, K. Yiannopoulos, S.
    Sygletos, and H. Avramopoulos, “Multiwavelength and power equalized SOA laser
    sources,” IEEE Photon. Technol. Lett., 2002, vol. 14, pp. 693~695
    [28] K. Vlachos, K. Zoiros, T. Houbavlis, and J. Avramopoulos, 10×30 GHz pulse
    train generation from semiconductor amplifier fiber ring laser, IEEE Photon. Technol.
    Lett., 2000, vol. 12, pp. 25~27
    [29] B. A. Yu, D. H. Kim, and B. Lee, Multiwavelength pulse generation in
    semiconductor-fiber ring laser using a sampled fiber grating, 2001, Opt. Commun.,
    vol. 200, pp. 343~347
    [30] D. H. Kim, S. H. Kim, Y. M. Jhon et al., Relaxation-free harmonically
    mode-locked semiconductor-fiber ring laser, IEEE Photon. Technol. Lett., 1999, vol.
    11, pp. 521~523
    [31] D. M. Patrick and R. J. Manning, 20 Gbit/s all-optical clock recovery using
    semiconductor nonlinearity, Electron. Lett., 1994, vol. 30, pp. 151~152
    [32] K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, 30
    Gb/s all-optical clock recovery circuit, IEEE Photon. Technol. Lett., 1999, vol. 12, pp.
    705~707
    [33] M. Horowitz, C. R. Menyuk, T. F. Carruthers et al., Pulse dropout in
     134
    
    
    参考文献
    harmonically mode-locked fiber lasers, IEEE Photon. Technol. Lett., 2000, vol. 12, pp.
    255~268
    [34] M. Dong and P. K. Cheo, Analysis of Er-doped fiber laser stability by
    suppressing relaxation oscillation, IEEE Photon. Technol. Lett., 1996, vol. 8, pp.
    1151~1153
    [35] H. Takara, S. Kawanishi, and M. Saruwatari, Stabilization of a modelocked
    Er-doped fiber laser by suppressing the relaxation oscillation frequency component,
    Electron. Lett., 1995, vol. 31, pp. 292~293
    [36] Y. Li, C. Lou, J. Wu, B. Wu, and Y. Gao, Novel method to simultaneously
    compress pulses and suppress supermode noise in actively mode-locked fiber ring
    laser, IEEE Photon. Technol. Lett., 1998, vol. 10, pp. 1250~1252
    [37] E. R. Thoen, M. E. Grein, E. M. Koontz, E. P. Ippen, H. A. Haus, and L. A.
    Kolodziejski, Stabilization of an active harmonically mode-locked fiber laser using
    two-photon absorption, Opt. Lett., 2000, vol. 25, pp.948~950
    [38] Q. Mao and J. W. Y. Lit, Multiwavelength erbium-doped fiber lasers with active
    overlapping linear cavities, IEEE Light. Tech., 2003, 21(1): 160~169
    [39] Yong Wook Lee,Jaehoon Jung,Byounggho Lee. Multiwavelength-Switchable
    SOA-Fiber Ring Laser Based on Polarization-Maintaining Fiber Loop Mirror and
    Polarozation Beam Splitter, IEEE Photonics Technology Letters, 2004, 16(1): 54~56
    [40] Lawrence R. Chen, Tunable Multiwavelength Fiber Ring Lasers Using a
    Programmable High-Birefringence Fiber Loop Mirror. IEEE Photonics Technology
    Letters, 2004, 16(2): 410~413
    [41] 张颖,张新亮,孙军强等,基于 SOA 的高稳定度 DWDM 多波长光源,华
    中科技大学学报,2001, 29(8): 7~9
    [42] Narottam Kumar Das,Yasuhiro Yamayoshi,Hitoshi Kawaguchi. Analysis of Basic
    Four-Wave Mixing Characteristics in a Semiconductor Optical Amplifier by the
    Finite-Difference Beam Propagation Method, IEEE Journal of Quantum Electronics,
    2000, 36(10): 1184~1192
    [43] X. P. Dong, Shenping Li, K. S. Chiang et al., Multiwavelength erbium-doped
    fibre laser based on a high-birefrigence fibre loop mirror, IEEE Electron. Lett., 2000,
    36(9): 1609~1610
    [44] Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J.Feinberg,
    40-nm-wide tunable fiber ring laser with single-mode operation using a highly
    stretchable FBG, IEEE Photon. Technol. Lett., 2001, vol.13, pp. 1167~1169
    [45] M. Matsuura and N. Kishi, Frequency control characteristics of a
    single-frequency fiber laser with an external light injection, IEEE J.Select. Topics
    Quantum Electron., 2001, vol. 7, pp. 55~58
    [46] Hongxin Chen, F.Babin, M.Leblanc and et al., Widely tunable single-frequency
     135
    
    
    天津大学博士学位论文
    Erbium-doped fiber laser, IEEE Photonics Technology letters, 2003, 15(2): 185-187
    第六章:
    [1] Antoine Bellemare, Miroslav Karasek, Christophe Riviere et al., A broadly tunable
    Erbium-doped fiber ring laser:experimentation and modeling, IEEE Journal on
    selected topics in quantum electronics, 2001, 7(1): 22~29
    [2] Hongxin Chen, F.Babin, M.Leblanc and et al., Widely tunable single-frequency
    erbium-doped fiber lasers, IEEE Photonics Technology Letters, 2003, 15(2): 185~187
    [3] Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J.Feinberg,
    40-nm-wide tunable fiber ring laser with single-mode operation using a highly
    stretchable FBG, IEEE Photon. Technol. Lett., 2001, vol. 13, pp. 1167~1169
    [4] S. H. Chang, I. K. Hwang, B. Y. Kim, and H. G. Park, Widely tunable
    single-frequency Er-doped fiber laser with long linear cavity, IEEE Photon. Technol.
    Lett., 2001, vol. 13, pp. 287~289
    [5] http://www.multiplexinc.com
    [6] P J Williams, D J Robbins, and et al., High Power and Wide Quasi-Continuous
    Tuning, Surface Ridge SG-DBR Lasers, Proceedings of ECOC'2000, Munich,
    Germany, Sept. 2000.
    [7] Sarlet, G., Morthier, G., Baets, R, Control of widely tunable SSG-DBR lasers for
    dense wavelength division multiplexing, Lightwave Technology, Journal of, 2000,
    18(8): 1128~1138
    [8] Olga A. Lavrova, Daniel J. Blumenthal. Detailed Transfer Matrix Method-Based
    Dynamic Model for Multisection Widely Tunable GCSR Lasers, Journal of Lightwave
    Technology, 2000, 18 (9)
    [9] M. Jiang, C-C. Lu, P. Chen et al., Error free 2.5 Gb/s transmission over 125 km
    conventional fiber of a directly modulated widely tunable vertical cavity surface
    emitting laser, OFC’01, Paper TuJ3-1, Anaheim, USA, 2001
    [10] Song, Y.W., Havstad, S.A., Starodubov, D., and et al., 40-nm-wide tunable fiber
    ring laser with single-mode operation using a highly stretchable FBG, IEEE Photonics
    Technology Letters, v 13, n 11, November, 2001, pp 1167~1169
    [11] A. Bellemare, et al., IEEE J. Select. Topics Quantum Electron., vol. 7, pp. 22,
    2001
    [12] L. Reekie, et al., Tunable single-mode fiber lasers, J. Lightwave Technol., Vol.
    LT-4(7), pp. 956~960, 1986
    [13] K.R. Tamura, Y. Inoue, K. Sato and et al., 32 Wavelength Tunable Mode-locked
    Laser With 100 GHz Channel Spacing Using An Arrayed Waveguide Grating, OFC'01,
     136
    
    
    参考文献
    Paper TuJ5-1, Anaheim, USA, 2001
    [14] Antoine Bellemare, Miroslav Karasek, Christophe Riviere, and etl., A broadly
    tunable Erbium-doped fiber ring laser:experimentation and modeling, IEEE Journal
    on selected topics in quantum electronics, 2001, 7(1): 22~29
    [15] H. Chen, F. Babin, et al., S-band Amplifiers and Tunable Lasers with
    Thulium-Doped Fluoride Fiber, ECOC 2002, paper 2.2.4
    [16] Reeves-Hall, P.C. and Taylor, J.R. Wavelength tunable CW Raman fibre ring
    laser operating at 1486-1551 nm, Electronics Letters, 2001, 37(8): 491~492
    [17] D. K. Serkland and P. Kumar, Tunable fiber-optic parametric oscillator, Optics
    Letters, 1999, 24(2): 92~94
    [18] Oh J M, Choi H B, Lee D et al., Efficient tunable fiber ring laser for 1580 nm
    band with a fiber Bragg grating. OFC’01, Anaheim, California, 2001, paper WA6
    [19] Yamashita S, Nishihara M, Widely tunable erbium-doped fiber ring laser
    covering both C-band and L-band. IEEE J. Selected Topics in Quant. Electron., 2001,
    7(1): 41~43
    [20] D. Zhou, P. R. Prucnal, and I. Glesk, A widely tunable narrow linewidth
    semiconductor fiber ring laser, IEEE Photon. Technol. Lett., 1998, vol.10, pp.781~783
    [21] Z. Hu, F. Li, Z. Pan, and W. Tan, Wavelength-tunable narrow-linewidth
    semiconductor fiber-ring laser, IEEE Photon. Technol. Lett., 2000, vol. 12, pp.
    977~979
    [22] Qianfan Xu, Minyu Yao, Theoretical analyses on short-term stability of
    semiconductor fiber ring lasers, IEEE Journal of quantum electronics, 2003, 39(10):
    1260~1265
    [23] S.K.Liaw, C.C.Lee, K.P.Ho and et al., Dynamically wavelength-switching,
    gain-equal, and high-SNR fiber Bragg grating ring lasers, Technical. Digest
    Conference on Laser and Electro-Optics 1998 (CLEO '98), Paper CThO48,
    pp.418~419
    [24] Bellemare, J.F.Lemieux, M.Tetu, and S.Larochelle, Er-doped fiber ring lasers
    step-tunable to exact multiples of 100 GHz (ITU-Grid) using periodic filters, Tech.
    Digest European Conf. On Opt. Commun., Madrid, Spain, pp. 153~154, (1998)
    [25] Talneau, M.Allovon, N.Bouadma, S.Slempkes, A.Ougazzaden, and H.Nakajima,
    Agile and fast switching monolithically integrated four wavelength selectable source
    at 1.55 um, IEEE Photon. Technol. Lett., 1999, v.11, pp.12~14
    [26] R. Monnard, A. K. Srivastava, C. R. Doerr et al., 16-channel spacing long-haul
    transmitter for DWDM system, Electron. Lett., 1998, v.34, pp.765~767
    [27] 葛春风,光纤通信系统中的部分关键技术的研究:[博士学位论文],天津:
    南开大学,1999
    [28] 林学煌 等编著,光无源器件,北京:人民邮电出版社,2000
     137
    
    
    天津大学博士学位论文
    [29] Q. Li, A. A. Au, C. H. Lin et al., An Efficient All-Fiber Variable Optical
    Attenuator via Acoustooptic Mode Coumpling, IEEE Photon. Technol. Lett., 2002,
    14(11): 1563~1565
    [30] Zhang.U.M, Liu.A.Q, Lu.C, et al., MEMS variable optical attenuator using low
    driving viltage for DWDM systems. Electon. Lett., 2002, 38(8): 382~383
    [31] Zhang Hao, Liu Yange, Yu Ling, Liu Lihui, et al., Novel all-fiber variable optical
    attenuator based on high birefringence fiber loop mirror, Porc. SPIE 5279~5289
    [32] Xuewen Shu, Shan Jiang, Dexiu Huang. Fiber grating Sagnac loop and its
    multiwavelength-laser application. IEEE Photon. Technol. Lett., 2000, 12(8):
    980~982
    [33] 张瑞峰,葛春风等,熔锥型全波耦合器,物理学报,2003,52(2):390~394
    [34] J. J. Pan, Y. Shi, and T. Zhu, Continuously tunable high power fiber lasers with
    11nm tunability, in Porc. OFC'99, San Diego, CA, 1999:199~201
    [35] S. Jin, R. P. Espindola, H. Mavoori, T. A. Strasser et al., Magnetically
    programmable fiber Bragg gratings, Electron. Lett., 1998, 34(22): 2158~2159
    [36] Y.W.Song, S.A.Havstad, D.Starodubov et al., 40 nm wide tunable fiber ring laser
    with single-mode operation using a highly stretchable FBG,IEEE P.T.L, 2001, 13(11):
    1167~1169
    [37] Chee S. Goh, Sze Y. Set, Kazuro Kikuchi, Widely tunable optical filters based on
    fiber Bragg gratings, IEEE P.T.L., 2002, 14(9): 1306~1308
     138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700