光纤布拉格光栅传输特性理论分析及其实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文首先综述了光纤光栅在WDM高速全光通信和传感领域的应用,总结了目前光纤光栅制作方法以及传输特性理论分析方法的进展,并在现有耦合模理论和实验基础上对光纤布拉格光栅(FBG)的传输特性进行了理论分析,对光栅的制作和应用进行了实验研究。
     耦合模理论通常被用来分析光纤光栅的传输特性。对于均匀正弦光纤布拉格光栅,耦合模方程组存在解析解。结合分段均匀的传输矩阵法,该方法可以分析各种非均匀的光纤光栅。采用这种方法,我们分析了单模均匀正弦光纤布拉格光栅Fabry-Perot(F-P)腔的传输特性。这种F-P腔的谐振峰只出现在光栅的反射峰内;由于光栅的反射相位因子影响,在光栅的第一对零点带宽内总是存在多个谐振峰;由于光栅反射峰边缘反射率逐渐减小到零,当F-P腔谐振谱线间隔大于光栅3db带宽的一半时,腔就处于单模运转状态。根据光纤光栅和光纤光栅F-P腔的传输特性,论文给出了如何设计F-P腔的结构来实现腔在光栅的中心耦合波长处的单模运转,为线性腔光纤激光器的设计提供理论依据。
     由于这种单模运转的光纤光栅F-P腔在同一根光纤材料上制作,其光谱形状随温度变化和应变的整体线性漂移特性,使其具有潜在的开发实用前景,如可调的窄带滤波器,带宽比光纤布拉格光栅带宽小几个量级,可调特性与光纤布拉格光栅相同。我们首次将这种单模运转的光纤光栅F-P腔滤波器作为环形腔光纤激光器的内腔选频元件,实现了稳定的单频输出。由于不存在增益介质长度的限制,这种结构的环形腔光纤激光器还具有大功率可调谐输出的潜在优点。
     多模光纤布拉格光栅正成为一个新的研究热点。一方面,多模光纤易与其他光源耦合,并且相对较小的色散使其适用于光纤通信系统,特别是在接入网应用中。另一方面,多模光纤布拉格光栅较为复杂的光谱特性也为光纤传感提供了更多的选择。我们首次采用耦合模理论分析了多模光纤布拉格光栅的模式耦合及传输特性,模拟了多模光纤布拉格光栅的反射光谱。由于多模光纤中存在传播常数不同的多个传输模式,多模光纤布拉格光栅中模式的相互耦合形成多个反射峰。各个模式携带的能量将影响着这些反射峰的大小,这也使得多模光纤布拉格光栅的反射谱形状依赖于光栅中模式的激发条件。
     当光纤中存在的模式数量较多时,耦合模方程组因数量太多而不利于求解。针对多模光纤中各个模式的角向分布规律不同,我们因此还提出了适用于具有圆柱对称结构波导中光传输的考虑了角向分布的三维标量时域有限差分法,并模拟了光纤中光的传播。使用此方法分析多模光纤布拉格光栅的工作还没有完善,在此基础上我们还需要能够将反射场与激发场分离开以便分析波导的反射和透射光谱特性。
     作为实验研究的基础,我们系统研究了光纤布拉格光栅的制作与封装,建立了一套基于相位掩模法的光纤光栅扫描刻写系统,紫外光源采用输出功率约100 mW的连续倍频氩离子激光系统(输出波长244 nm)。在此基础上,我们提出并实现了面向该光栅生产制作过程的计算机逆向程序辅助设计。该逆向设计首先需要在不同条件下刻写的两根光栅的参数作为刻写系统的标准参数,然后根据所需光栅的特性直接给出采用该系统制作光栅的实验刻写条件。在很多应用中,如光纤激光器的稳定单频输出、密集波分复用DWDM的中心波长稳定等,为保证器件性能都要求光纤光栅的光谱特性对环境温度是稳定的。因此我们设计了一种单端温度补偿的封装结构,其结构简单,成本低。另外,我们提出了一种新的利用光栅周期渐变来补偿折射率切趾引起的自致啁啾效应的切趾布拉格光栅刻写方法,这种光栅折射率调制相对于纤芯折射率不存在突变。在光栅刻写过程中总是或多或少地存在着各种随机扰动,我们因此还分析了光栅周期随机涨落和折射率调制横向分布不均匀对布拉格光栅反射特性的影响。
     最后,我们研究了有机双光子吸收介质中动态光栅的建立,以及因而产生的反向受激瑞利布拉格散射现象。由于存在双光子共振吸收,光致折射率变化得到共振增强,介质的非线性折射率系数n2相对较大。因此我们建议在双光子共振吸收材料制作的光纤上建立动态光纤光栅作为激光器的外腔反射镜来实现全光波长转换器。
The applications of fiber gratings in WDM high-speed all-optical communication system and sensing system are firstly introduced in this dissertation. Then the current fabrication methods of fiber gratings and the theories to analyse their transmission characteristics are briefly summarized. Based upon the coupled-mode theory and experiments, the spectra of fiber Bragg gratings (FBGs) are analysed theoretically and the fabrication and application of FBGs are explored experimentally here.
     The coupled-mode theory is usually used to analyse mode’s coupling in waveguides. There exists analytical solution to the coupled-mode equations for the case of a uniform FBG. Combined with piecewise-uniform approach, it can be used to analyse any kind of nonuniform FBG. By this method, the spectral characteristics of a Fabry-Perot (F-P) cavity composed of two single-mode uniform sinusoidal FBGs are analysed. The resonances of this type of F-P cavity only exist inside the reflection band of its FBGs. Due to the phase factor of the reflective coefficient, there is always more than one resonance inside the reflection band between the first zeros on either side of the maximum reflectivity. When the resonance space of the F-P cavity is larger than the FWHM bandwidth of its FBGs reflection, the cavity operates on the state with single resonance. Knowing the characteristics of the F-P cavity and its FBGs, we present how to design a F-P cavity with the single resonance at the FBG’s Bragg wavelength, which provides theoretical guidance for the design of fiber lasers with linear cavity.
     The FBG F-P cavity with single resonance is fabricated in one fiber, which makes the whole resonant spectrum shift linearly with respect to temperature and strain. That the bandwidth of the resonance is much smaller than that of FBG leads to the application of narrow band-pass filters (NBPF). Using this type of NBPF as an intra-cavity frequency-selective component, stable single frequency Er-doped fiber ring laser can be achieved. Because of no limitation of gain medium length, this type of fiber ring laser has advantages of potentially large output power and wavelength tunability.
     Multimode fiber Bragg gratrings (MMFBGs) are attracting more and more attentions. On one hand, multimode fiber is easier to couple with laser sources for its large core size, and its relatively small dispersion makes it suitable for optical fiber communication system, especially for the access network. On the other hand, the complicated MMFBG spectrum provides more selections for the fiber sensing system. We analyze to our knowledge for the first time the transmission characteristics of a MMFBG theoretically by using the coupled-mode theory and considering two modes coupling. The reflection spectra are simulated here. The results of the calculation show that MMFBGs have multiple reflection peaks due to the coupling between the same modes in counter-propagating direction and the coupling between the adjacent modes incounter-propagating direction, and the spectra depend on excitation conditions of the bounded modes, such as mode power and mode number.
     We also explore other theoretical methods to analyze the propagation of light in MMFBGs and present a three-dimensional scalar FDTD method for the waveguide with circular symmetry since it’s difficult to solve the coupled-mode equations when there are many modes coupled in MMFBGs. Light propagation in a fiber is simulated by using this scalar FDTD method. However, this method needs to be improved to be able to separate the reflection field from the excitation field in order to obtain the transmission and reflection characteristics.
     To do further experimental research, we study systematically the fabrication and encapsulation of FBGs, and build a set of scanning system of fabrication with phase mask method. The UV source is a double-frequency Ar+ laser system with output power of 100 mW (244 nm). To guide the fabrication of FBGs, an assistant converse program facing directly the process of fabrication is presented. This program needs the parameters of two FBGs fabricated by the system as the standard parameters of the system, then provides the fabrication conditions to fabricate a FBG which we want. In many applications, the Bragg wavelengthes of FBGs need to be insensitive to the environments. A new type of encapsulation of fiber gratings with single-end compensation for temperature effect with simple structure and low cost is thus proposed. Also we present a new method for the fabrication of the apodised FBGs without self-induced chirp. There is no abrupt change of refractive index between the grating and fiber core for the apodised FBG fabricated by this method. Relating to the random factors during the fabrication of FBGs, we analyze the influence of the random fluctuation and transverse asymmetry of the refractive index modulation.
     In the last chapter, dynamic grating formed in a two-photon absorbing organic dye solution and its induced backward stimulated Rayleigh Bragg scattering are studied here. Due to the enhancement of the two-photon resonant absorption, the medium has large nonlinear coefficient of refractive index. Based upon these studies, we proposed to form a dynamic grating in a fiber with two-photon resonant absorption as a feedback component of lasers to achieve a new type of all-optical wavelength convertor.
引文
1 Y. Frignac, G. Charlet, W. Idler, R. Dischler, P. Tran, S. Lanne, S. Borne, C. Martinelli, G. Veith, A. Jourdan, J. -P. Hamaide, S. Bigo, “Transmission of 256 wavelength-division and polarization-division-multiplexed channels at 42.7 Gb/s (10.2 Tb/s capacity) over 3×100 km of TeraLight/spl trade/ fiber,” Optical Fiber Communication Conference and Exhibit, 2002, FC5-1 - FC5-3.
    2 K. Fukuchi, “Wideband and ultra-dense WDM transmission technologies toward over 10 Tb/s capacity,” Optical Fiber Communication Conference and Exhibit, 2002, 558 – 559.
    3 B. Zhu, L. E. Nelson, S. Stulz, A. H. Gnauck, C. Doerr, J. Leuthold, L. Gruner-Nielsen, M. O. Pedersen, J. Kim, R. Jr. Lingle, Y. Emori, Y. Ohki, N. Tsukiji, A. Oguri, S. Namiki, “6.4 Tb/s (160×42.7 Gb/s) transmission with 0.8 bit/s/Hz spectral efficiency over 32×100 km of fiber using CSRZ-DPSK format,” Optical Fiber Communications Conference, 3 (2003), PD19 - P1-3.
    4 D. G. Foursa, C. R. Davidson, M. Nissov, M. A. Mills, L. Xu, J. X. Cai, A. N. Pilipetskii, Y. Cai, C. Breverman, R. R. Cordell, T. J. Carvelli, P. C. Corbett, H. D. Kidorf, N. S. Bergano, “2.56 Tb/s (256×10 Gb/s) transmission over 11000 km using hybrid Raman/EDFAs with 80 nm of continuous bandwidth,” Optical Fiber Communication Conference and Exhibit, 2002, FC3-1 - FC3-3.
    5 J. -X. Cai, D. G. Foursa, C. R. Davidson, Y. Cai, G. Domagala, H. Li, L. Liu, W. W. Patterson, A. N. Pilipetskii, M. Nissov, N. S. Bergano, “A DWDM demonstration of 3.73 Tb/s over 11000 km using 373 RZ-DPSK channels at 10 Gb/s,” Optical Fiber Communications Conference, 3 (2003), PD22 - P1-3.
    6 T. Ito, “Transmission of 1.6Tb/s (40×40 Gb/s) over 1,200km and three OADMs using 200-km SMF doubled-span with remotely pumped optical amplification,” Optical Fiber Communication Conference, 2 (2004), 3.
    7 宗磊,张汉一,郭奕理等,李艳和,WDM 全光网,电子科技导报,1999(1),23-25。
    8 B. Mukherjee, “WDM Optical Communication Network: Progress and Challenges,” IEEE J. Selected Areas in Communications, 18 (2000), 1810-1824.
    9 A. Marincic, V. Acimovic-Raspopovic, “Evolution of WDM optical networks,” 5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, 2 (2001), 473-480.
    10 P. Green, “Progress in Optical Networking,” IEEE Communications Magazine, 39 (2001), 54-61.
    11 G. Mohan, C. S. R. Murthy, “Lightpath restoration in WDM optical networks,” IEEE Network, 14 (2000), 24-32.
    12 O’Mahoney M J, Simeonidou D, Yu A, et al. “The design of a European optical network,” J. Lightwave Tech. 13 (1995), 817-828.
    13 C. Riziotis, M. N. Zervas, “Novel full-cycle-coupler-based optical add-drop multiplexer and performance characteristics at 40-Gb/s WDM networks,” J. Lightwave Tech. 21 (2003), 1828-1837.
    14 C. Dragone, “Low-loss wavelength routers for WDM optical networks and high-capacity IP routers,” J. Lightwave Tech. 23 (2005), 66-79.
    15 J. Strand, A, Chiu, “Realizing the advantages of optical reconfigurability and restoration with integrated optical cross-connects,” J. Lightwave Tech. 21 (2003), 2871-2882.
    16 M. Murakami, T. Matsuda, H. Maeda, Y. Tada, T. Imai, “WDM upgrading of an installed submarine optical amplifier system,” J. Lightwave Tech. 19 (2001), 1665-1674.
    17 Y. K. Chen, C. C. Lee. “Fiber Bragg grating-based large nonblocking multiwavelength cross-connect,” J. Lightwave Tech. 16 (1998), 1746-1756.
    18 S. K. Liaw, K. P. Ho, L. K. Chen, et al. “High-dynamic-range optical cross-connect device using fiber Bragg gratings,” IEEE Photon. Tech. Lett. 11 (1999), 1054-1056.
    19 Jungho Kim, Jaehoon Jung, Sungchul Kim, Byoungho Lee, “Reconfigurable optical cross-connect using WDM MUX/DEMUX pair and tunable fibre Bragg gratings,” Electron. Lett. 36 (2000), 67-68.
    20 T. Erdogan, “Fiber grating spectra,” J. Lightwave Tech. 15 (1997), 1277-1294.
    21 G. A. Ball, W. W. Morey, “Continuously tunable single-mode erbium fiber grating laser,” Opt. Lett. 17 (1992), 420-422.
    22 G. A. Ball, W. W. Morey, “Compression-tuned single frequency Bragg grating fiber gratinglaser,” Opt. Lett. 19 (1994), 1979-1981.
    23 Xinhuan Feng, Yange Liu, Shenggui Fu, Shuzhong Yuan, Xiaoyi Dong, “Switchable dual-wavelength ytterbium-doped fiber laser based on a few-mode fiber grating,” IEEE Photon. Tech. Lett. 16 (2004), 762-764.
    24 M. Achtenhagen, S. Mohrdiek, T. Pliska, N. Matuschek, C. S. Harder, A. Hardy, “L-I characteristics of fiber Bragg grating stabilized 980-nm pump lasers,” IEEE Photon. Tech. Lett. 13 (2001), 415-417.
    25 Jianliang Yang, Swee Chuan Tjin, Nam Quoc Ngo, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photon. Tech. Lett. 16 (2004), 1026-1028.
    26 Q. Mao, J. W. Y. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photon. Tech. Lett. 14 (2002), 612-614.
    27 T. Pliska, N. Matuschek, S. Mohrdiek, A. Hardy, C. Harder, “External feedback optimization by means of polarization control in fiber Bragg grating stabilized 980-nm pump lasers,” IEEE Photon. Tech. Lett. 13 (2001), 1061-1063.
    28 Hong-Gang Yu, Chang-Qing Xu, Yong Wang, J. Wojcik, Zhi-Lin Peng, P. Mascher, “External-cavity semiconductor laser with Bragg grating in multimode fiber,” IEEE Photon. Tech. Lett. 16 (2004), 2341-2343.
    29 M. M. de la Corte, J. M. H. Elmirghani, “Accurate noise characterization of wavelength converters based on XGM in SOAs,” J. Ligthtwave Tech. 21 (2003), 182-197.
    30 A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, A. Forchel, “Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm,” IEEE Photon. Tech. Lett. 15 (2003), 563-565.
    31 O. Qasaimeh, “Characteristics of cross-gain (XG) wavelength conversion in quantum dot semiconductor optical amplifiers,” IEEE Poton. Tech. Lett. 16 (2004), 542-544.
    32 Deming Liu, Ng Jun Hong, Lu Chao, “Wavelength conversion based on cross-gain modulation of ASE spectrum of SOA,” IEEE Photon. Tech. Lett. 12 (2000), 1222-1224.
    33 A. P. Zhang, Xue-Wen Chen, Zu-Guang Guan, Sailing He, Hwa-Yaw Tam, Weng-Hong Chung, “Optimization of step-changed long-period gratings for gain-flattening of EDFAs,” IEEE Photon. Tech. Lett. 17 (2005), 121-123.
    34 M. Harurnoto, M. Shigehara, H. Suganurna, “Gain-flattening filter using long-period fiber gratings,” J. Lightwave Tech. 20 (2002), 1027-1033.
    35 M. Ibsen, M. K. Durkin, M. N. Zervas, A. B. Grudinin, R. I. Laming, “Custom design of long chirped Bragg gratings: application to gain-flattening filter with incorporated dispersion compensation,” IEEE Photon. Tech. Lett. 12 (2000), 498-500.
    36 Ik-Bu Sohn, Jang-Gi Baek, Nam-Kwon Lee, Hyung-Woo Kwon, Jae-Won Song, “Gain flattened and improved EDFA using microbending long-period fibre gratings,” Electron. Lett. 38 (2002), 1324-1325.
    37 A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, et al. “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21 (1996), 336-338.
    38 J. C. Dung, S. Chi, S. Wen, “Gain flattening of erbium-doped fibre amplifier using fibre Bragg gratings,” Electron. Lett. 34 (1998), 555-556.
    39 S. K. Liaw, K. P. Ho, S. Chi, “Dynamic power-equalized EDFA module based on strain tunable fiber Bragg gratings,” IEEE Photon. Tech. Lett. 11 (1999), 797-799.
    40 J. Mora, A. Diez, M. V. Andres, P. Y. Fonjallaz, M. Popov, “Tunable dispersion compensator based on a fiber Bragg grating written in a tapered fiber,” IEEE Photon. Tech. Lett. 16 (2004), 2631-2633.
    41 D. Gauden, E. Goyat, A. Mugnier, P. Lesueur, P. Yvernault, D. Pureur, “A tunable four-channel fiber Bragg grating dispersion compensator,” IEEE Photon. Tech. Lett. 15 (2003), 1387-1388.
    42 H. Jeong, K. Oh, “Theoretical analysis of cladding-mode waveguide dispersion and its effects on the spectra of long-period fiber grating,” J. Lightwave Tech. 21 (2003), 1838-1845.
    43 N. Q. Ngo, S. Y. Li, R. T. Zheng, S. C. Tjin, P. Shum, “Electrically tunable dispersion compensator with fixed center wavelength using fiber Bragg grating,” J. Lightwave Tech. 21 (2003), 1568-1575.
    44 F. Ouellette, “Dispersion cancellation using linearly chirped Bragg gratings filters in optical waveguides,” Opt. Lett. 12 (1987), 847-849.
    45 K. O. Hill, F. Bilodeau, B. Malo, et al. “Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett. 19 (1994), 1314-1316.
    46 F. Ouellette, P. A. Krug, T. Stephens, et al. “Broadband and WDM dispersion compensation using chirped sample fiber Bragg gratings,” Electron. Lett. 31 (1995), 899-901.
    47 G. P. Agrawal, S. Radic, “Phase-shifted fiber Bragg grating and their application for wavelength demultiplexing,” IEEE Photon. Tech. Lett. 6 (1994), 995-997.
    48 V. Mizrahi, T. Erdogan, D. J. DiGiovanni, et al. “Four channel fibre grating demultiplexer,” Electron. Lett. 30 (1994), 780-781.
    49 V. Yankov, S. Babin, I. Ivonin, A. Goltsov, A. Morozov, L. Polonskiy, M. Spector, A. Talapov, E. B. Kley, H. Schmidt, “Multiwavelength Bragg gratings and their application to optical MUX/DEMUX devices,” IEEE Photon. Tech. Lett. 15 (2003), 410-412.
    50 S. K. Liaw, K. P. Ho, S. Chi, “Multichannel add/drop and cross-connect using fibre Bragg gratings and optical switches,” Electron. Lett. 34 (1998), 1601-1603.
    51 S. Bethuys, L. Lablonde, L. Rivoallan, et al. “Optical add/drop multiplexer based on UV-written Bragg gratings in twincore fibre Mach-Zehnder interferometer,” Electron. Lett. 34 (1998), 1250-1251.
    52 A. D. Ellis, R. Kashyap, I. Crisp, et al. “Dispersion compensating, reconfigurable optical add-drop multiplexer using chirped fibre Bragg gratings,” Electron. Lett. 33 (1997), 1474-1475.
    53 I. Baumann, J. Seifert, W. Nowak, et al. “Compact all-fiber add-drop multiplexer using fiber Bragg gratings,” IEEE Photon. Tech. Lett. 8 (1996), 1331-1333.
    54 I-Yu Kuo, Yung-Kuang Chen, “In-service OTDR-monitoring-supported fiber-Bragg-grating optical add-drop multiplexers,” IEEE Photon. Tech. Lett. 14 (2002), 867-869.
    55 S. Y. Kim, S. B. Lee, S. W. Kwon, et al. “Channel-switching active add/drop multiplexer with tunable gratings,” Electron. Lett. 34 (1998), 104-105.
    56 A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Tech. 15 (1997), 1442–1463.
    57 R. Giles, Song Jiang, “Fiber-grating sensor for wavelength tracking in single-fiber WDM access PONs,” IEEE Photon. Tech. Lett. 9 (1997), 523 – 525.
    58 Zhongxie Jin, Minho Song, “Fiber grating sensor array interrogation with time-delayed sampling of a wavelength-scanned fiber laser,” IEEE Photon. Tech. Lett. 16 (2004), 1924–1926.
    59 L. C. G. Valente, A. M. B. Braga, A. S. Ribeiro, R. D. Regazzi, W. Ecke, C. Chojetzki, R. Willsch, “Combined time and wavelength multiplexing technique of optical fiber grating sensor arrays using commercial OTDR equipment,” IEEE Sensors Journal, 3 (2003), 31–35.
    60 K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32 (1978), 647-649.
    61 G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by transverse holographic method,” Opt. Lett. 14 (1989), 823-825.
    62 Yonghang Shen, Jie Xia, Tong Sun, K. T. V. Grattan, “Photosensitive indium-doped germano-silica fiber for strong FBGs with high temperature sustainability,” IEEE Photon. Tech. Lett. 16 (2004), 1319-1321.
    63 Y. Larionov, A. Rybaltovsky, S. Semjonov, M. Bubnov, E. Dianov, S. Vartapetpv, M. Kurzanov, A. Obidin, V. Yamschikov, “Photosensitivity and photosensitization of highly phosphorus-doped fibers under 157-nm F2 excimer laser irradiation,” Conference on Optical Fiber Communications, 1 (2003), 38-39.
    64 D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. J. Campbell, “Enhanced UV photosensitivity in boron codoped germanosilicate fibers,” Electron. Lett. 29 (1993), 45–47.
    65 L. Dong, J. L. Cruz, L. Reekie, M. G. Xu, D. N. Payne, “Enhanced photosensitivity in tin-codoped germanosilicate optical fibers,” IEEE Photon. Tech. Lett. 7 (1995), 1048-1050.
    66 L. Dong, P. J. Wells, D. P. Hand, and D. N. Payne, “Photosensitivity in Ce-doped optical fibers,” J. Opt. Soc. Am. B, 10 (1993), 89–93.
    67 T. Taunay, P. Bernage, M. Douay, W. X. Xie, G. Martinelli, and P. Niay, “Ultraviolet-enhanced photosensitivity in cerium-doped aluminosilicate fibers and glasses through high-pressure hydrogen loading,” J. Opt. Soc. Am. B, 14 (1997), 912–925.
    68 J. L. Blows, P. Hambley, L. Poladian,, “Increasing fiber photosensitivity to near-UV radiation by rare earth doping,” IEEE Photon. Tech. Lett. 14 (2002), 938-940.
    69 K. P. Chen, P. R. Herman, R. Tam, “Strong fiber Bragg grating fabrication by hybrid 157- and 248-nm laser exposure,” IEEE Photon. Tech. Lett. 14 (2002), 170-172.
    70 I. Riant, F. Haller, “Study of the photosensitivity at 193 nm and comparison with photosensitivity at 240 nm influence of fiber tension: type IIa aging,” J. Lightwave Tech. 15 (1997), 1464-1469.
    71 B. Malo, J. Albert, K. O. Hill, F. Bilodeau, D. C. Johnson, S. Theriault, “Enhanced photosensitivity in lightly doped standard telecommunication fibre exposed to high fluence ArF excimer laser light,” Electron. Lett. 31 (1995), 879-880.
    72 S. A. Slattery, D. N. Nikogosyan, N. Plougmann, H. R. Srensen, M. Kristensen, “Efficient Bragg grating fabrication in Ge-rich fibre by high-intensity femtosecond 264 nm irradiation,” Electron. Lett. 40 (2004), 1472-1474.
    73 A. Dragomir, D. N. Nikogosyan, G. Brambilla, “Increased photosensitivity of Ge-doped and Ge, Sn-doped fibres under high-intensity 264 nm laser light,” Electron. Lett. 39 (2003), 1437-1439.
    74 J. B. Jensen, P. Varming, B. Liu, W. Gries, “Comparison of photosensitivity in germanium doped silica fibers using 244 nm and 266 nm continuous-wave lasers,” Optical Fiber Communication Conference and Exhibit, 3 (2001), WDD90-1-WDD90-3.
    75 E. M. Dianov, D. S. Stardubov, S. A. Vasiliev, et al., “Refractive-index gratings written by near-ultraviolet radiation,” Opt. Lett. 22 (1997), 221-223.
    76 K. O. Hill, B. Malo, F. Bilodeau, et al. “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62 (1993), 1035-1037.
    77 A. Othonos, Xavier Lee, “Novel and improved methods of writing Bragg gratings with phase masks,” IEEE Photon. Tech. Lett. 7 (1995), 1183-1185.
    78 Y. Sheng, J. E. Rothenberg, Hongpu Li, Ying Wang, J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photon. Tech. Lett. 16 (2004), 1316-1318.
    79 L. Zhang, Y. Liu, L. Everall, J. A. R. Williams, I. Bennion, “Design and realization of long-period grating devices in conventional and high birefringence fibers and their novel applications as fiber-optic load sensors,” Selected Topics in IEEE J. Quan. Electron. 5 (1999), 1373-1378.
    80 Yinian Zhu, Ping Shum, Hui-Wen Bay, Xiaoyan Chen, Ching-Hwee Tan, Min Yan, Chao Lu, “Fabrication of wide-bandpass filters based on phase-shifted long-period fiber gratings inscribed by focused pulses of CO2 laser,” International Conference on Communications, Circuits and Systems, 1 (2004), 604 – 608.
    81 J. H. Chong, P. Shum, H. Hartono, Y. Aleta, “Investigations on the characteristics of point-by-point CO2 laser induced long-period grating on optical fiber,” Proceedings of the 2003 Joint Conference of the Fourth International Conference on Information, Communications and Signal Processing and the Fourth Pacific Rim Conference on Multimedia, 2 (2003), 1283-1285.
    82 A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, et al. “Long-period fiber gratings as band-rejection filters,” J. Lightwave Tech. 14 (1996), 58-65.
    83 A. P. Zhang, Xue-Wen Chen, Zu-Guang Guan, Sailing He, Hwa-Yaw Tam, Weng-Hong Chung, “Optimization of step-changed long-period gratings for gain-flattening of EDFAs,” IEEE Photon. Tech. Lett. 17 (2005), 121-123.
    84 T. Mizunami, H. Kawashima, A. Hayashi, “A flexible fabrication technique of long-period fiber gratings using a tilted amplitude mask,” Proceedings of IEEE/LEOS Workshop on Fibre and Optical Passive Components, 2002, 92-97.
    85 A.W.Snyder, “Coupled mode theory for optical fibers,” J. Opt. Soc. Am. 62 (1972), 1267-1277.
    86 A. Yariv, “Coupled-mode theory for grided-wave optics”, IEEE J. Quan. Electron. QE-9 (1973), 919-933.
    87 M. Matsuhara, K. O. Hill, A. Watanabe, “Optical-waveguide fliters: Synthesis,” J. Opt. Soc. Am. 65 (1975), 804-809.
    88 M. Matsuhara, K. O. Hill, “Optical-waveguide band-rejection filters:Design,” Appl. Opt. 13, (1974).
    89 M. McCall, “On the application of coupled mode theory for modeling fiber Bragg gratings,” J. Lightwave Tech. 18 (2000), 236-242.
    90 K. H. Wanser, K. F. Voss, A. D. Kersey, “Novel fiber devices and sensors based on multimode fiber Bragg gratings,” Proc. SPIE, 2360 (1994), 265-268.
    91 T. Mizunami, T. Niiho, T. V. Djambova, “Multimode fiber Bragg grating for fiber optic bending sensors,” Proc. SPIE, 3746 (1999), 216-219. 20
    92 T. Mizunami, T. V. Djambova, T. Niiho, S. Gupta, “Bragg Gratings in multimode and few-mode optical fibers,” J. Lightwave Tech. 18 (2000), 230-235.
    93 T. Erdogan, J. E. Sipe, “Tilted fiber phase gratings”, J. Opt. Soc. Am. A, 13 (1996), 296-1331.
    94 T. Erdogan, “Cladding-mode resonances in short and long period fiber grating filters,” J. Opt. Soc. Am. A, 14 (1997), 1760-1773.
    95 K. S. Lee, D. S. Moon, T. Erdogan, “Spiral fiber gratings for mode coupling,” Optical Fiber Communication Conference and Exhibit, 1 (2001), MC3-1-MC3-3.
    96 T.Szkopek,V.pasupathy,J.E.Sipe,and P.W.E.Smith,”Novel Multimode Fiber for Narrow-Band Bragg Gratings,” Selected Topics In IEEE J. Quan. Electron. 7 (2001), 425-433.
    97 L. A.Weller-Brophy, “Analysis of waveguide gratings:application of Rouard’s method,” J. Opt. Soc. Am. A, 2 (1987), 863-871.
    98 L. A. Weller-Brophy, “Analysis of waveguide gratings:a comparision of Rouard’s method and coupled mode theory,” J. Opt. Soc. Am. A, 4 (1987), 60-65.
    99 P. St. J. Russell, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38 (1991), 1599-1619.
    100 E. Pearl, J. Capmany, “Generalized Bloch wave analysis for fiber and waveguide gratings,” J. Lightwave Tech. 15 (1997), 1295-1302.
    101 K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Transactions on Antennas and Propagation, 14 (1966), 302-307.
    102 W. P. Huang, S. T. Chu, A. Goss and S. K. Chaudhuri, A scalar finite-difference time-domain approach to guided-wave optics, IEEE Photon. Tech. Lett. 3 (1991), 524-526.
    103 J. Yamachi, M. Nibe and H. Nakano, Scalar FD-TD method for circularly symmetric waveguides, Optical and Quantum Electronics, 29 (1997), 451-460.
    104 N. Feng, G. Zhou, and W. P. Huang, A scalar finite-difference time-domain method with cylindrical perfectly matched layers: application to guided and leaky modes of optical waveguides, J. Quan. Electron. 39 (2003), 487-492.
    105 A. Taflove and M. E. Brodwin, Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations, IEEE Trans. Microw. Theory Tech. 23 (1975), 623-630.
    106 A. Bayless and E. Turkel, “Radiation boundary conditions for wave-like equations,” Comm. Pure Appl. Math. 33 (1980), 707-725.
    107 B. Engquist and A. Majda, “Absorbing Boundary Conditions for the Numerical Simulation of Waves,” Math. Comp. 31 (1977), 629-651.
    108 G. Mur, “Absorbing Boundary Conditions for the Finite-Difference Approximation of theTime-Domain Electromagnetic-Field Equations,” IEEE Trans. Electromagn. Compat. 23 (1981), 377-382.
    109 J. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114 (1994), 185-200.
    110 J. E. Sipe, L. Poladian, C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A, 11 (1994), 1307-1320.
    111 L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Tech. 13, (1995), 615-627.
    112 M. Aslund, L. Poladian, J. Canning, C. M. de Sterke, “Add-drop multiplexing by grating-induced dispersion in multimode interference device,” IEEE Photon. Tech. Lett. 13 (2001), 969-971.
    113 T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, M. Mansuripur, “Multimode Interference-Based Photonic Crystal Waveguide Power Splitter,” J. Lightwave Tech. 22 (2004), 2842 – 2846.
    114 A. L. Y. Low, Yik Seng Yong, Ah Heng You, Su Fong Chien, Choon Fang Teo, “A five-order mode converter for multimode waveguide,” IEEE Photon. Tech. Lett. 16 (2004), 1673–1675.
    115 Lei Su, Chao Lu, Jianzhong Hao, Zhihong Li, Yixin Wang, “Design of wavelength-switching erbium-doped fiber lasers with a multimode fiber Bragg grating using spatial-mode excitation and selection techniques,” IEEE Photon. Tech. Lett. 17 (2005), 315–317.
    116 L. Su, C. Lu, “Wavelength-switching fibre laser based on multimode fibre Bragg gratings,” Electron. Lett. 41 (2005), 11-13.
    117 Jirapong Lim, Qingping Yang, B. E. Jones, P. R. Jackson, “Strain and temperature sensors using multimode optical fiber Bragg gratings and correlation signal processing,” IEEE Transactions on Instrumentation and Measurement, 51 (2002), 622–627.
    118 C. L. Barbosa, R. M. Cazo, H. T. Hattori, R. C. Rabelo, O. Lisboa, “Experimental study of a multimode fiber Bragg grating temperature sensor,” Microwave and Optoelectronics Conference, 1 (2001), 317-319.
    119 X. Chen, K. Zhou, L. Zhang, I. Bennion, “Optical Chemsensor Based on Etched Tilted Bragg Grating Structures in Multimode Fiber,” IEEE Photon. Tech. Lett. Accepted for future publication.
    1. D. Marcuse, “Theory of Dielectric Optical Waveguides,” New York: Academic, 1991.
    2. H. Kogelnik, “Theory of optical waveguides,” in Guided-wave optoelectronics, New York: Springer-Verlag, 1990.
    3. A.W.Snyder, “Coupled mode theory for optical fibers,” J. Opt. Soc. Am. 62 (1972), 1267-1277.
    4. A. Yariv, “Coupled-mode theory for grided-wave optics”, IEEE J. Quan. Electron. QE-9 (1973), 919-933.
    5. Jing-ren Qian, Wei-ping Huang, “Coupled-mode theory for LP modes,” J. Lightwave Tech. 4 (1986), 619-625.
    6. H. A. Haus, W. Huang, S. Kawakami, N. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Tech. 5 (1987), 16-23.
    7. H. A. Haus, W. Huang, “Coupled-mode theory,” Proceedings of the IEEE, 79 (1991), 1505-1518.
    8. A. N. Kireev, T. Graf, “Vector coupled-mode theory of dielectric waveguides,” J. Quan. Electron. 39 (2003), 866-873.
    9. C. Vassallo, “About coupled-mode theories for dielectric waveguides,” J. Lightwave Tech. 6 (1988), 294–303.
    10. B. E. Little, “A variational coupled-mode theory including radiation loss for grating-assisted couplers,” J. Lightwave Tech. 14 (1996), 188-195.
    11. B. E. Little, H. A. Haus, “A variational coupled-mode theory for periodic waveguides,” IEEE J. Quan. Electron. 31 (1995), 2258–2264.
    12. S. M. Norton, T. Erdogan, G. M. Morris, “Coupled-mode theory of resonant-grating filters,” J. Opt. Soc. Am. A, 14 (1997), 629-639.
    13. E. Anemogiannis, E. N. Glytsis, T. K. Gaylord, “Transmission Characteristics of Long-Period Fiber Gratings Having Arbitrary Azimuthal/Radial Refractive Index Variations,” J. LightwaveTech. 21 (2003), 218-227.
    14. Eva Peral, Amnon Yariv, “Supermodes of Grating-Coupled Multimode Waveguides and Application to Mode Conversion Between Copropagating Modes Mediated by Backward Bragg Scattering,” J. Lightwave Tech. 17 (1999), 942-947.
    15. Weiping Huang, Chenglin Xu, S. K. Chaudhuri, “Modeling and analysis of fiber-optic mode transducers: single fiber with periodic perturbations,” J. Lightwave Tech. 9 (1991), 1431-1438.
    16. T. Erdogan, “Fiber grating spectra,” J. Lightwave Tech. 15 (1997), 1277-1294.
    17. T. Erdogan, “Cladding-mode resonances in short and long period fiber grating filters,” J. Opt. Soc. Am. A, 14 (1997), 1760-1773.
    18. M. McCall, “On the application of coupled mode theory for modeling fiber Bragg gratings,” J. Lightwave Tech. 18 (2000), 236-242.
    19. 范崇澄,彭吉虎,《导波光学》,北京:北京理工大学出版社,1988。
    20. 吴重庆,《光波导理论》,北京:清华大学出版社,2000。
    21. 佘守宪,《导波光学物理基础》,北京:北方交通大学出版社,2002。
    22. 廖延彪,《光纤光学》,北京:清华大学出版社,2000。
    1 Shan Huang, Huafeng Zhao, Lin Xue, “Frequency stabilization of FBG external cavity laser,” Asia-Pacific Conference on diode Circuits and Systems, 1 (2002), 565-567.
    2 J. I. Hashimoto, T. Takagi, T. Kato, G. Sasaki, M. Shigehara, K. Murashima, M. Shiozaki, T. Iwashima, “Fiber-Bragg-grating external cavity semiconductor laser (FGL) module for DWDM transmission,” J. Lightwave Tech. 21 (2003), 2002–2009.
    3 Y. Zhao, C. Shu, “Single-mode operation characteristics of a self-injection seeded Fabry-Perot laser diode with distributed feedback from a fiber grating,” IEEE Photon. Tech. Lett. 9 (1997), 1436-1438.
    4 M. Achtenhagen, S. Mohrdiek, T. Pliska, N. Matuschek, C. S. Harder, A. Hardy, “L-I characteristics of fiber Bragg grating stabilized 980-nm pump lasers,” IEEE Photon. Tech. Lett. 13 (2001), 415-417.
    5 Sun Hyok Chang, In Kag Hwang, Byoung Yoon Kim, Hee Gap Park, “Widely tunable single-frequency Er-doped fiber laser with long linear cavity,” IEEE Photon. Tech. Lett. 13 (2001), 287–289.
    6 S. H. Chang, I. K. Hwang, B. Y. Kim, “Widely tunable single-frequency Er-doped fiber laser with linear cavity,” Conference on Lasers and Electro-Optics, 2000, 543.
    7 Jian Liu, Jianping Yao, Jian Yao, Tet Hin Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photon. Tech. Lett. 16 (2004), 1020–1022.
    8 M. Oh, H. B. Choi, D. Lee, S. J. Ahn, “Efficient tunable fiber ring laser for 1580 nm band with a fiber Bragg grating,” Optical Fiber Communication Conference and Exhibit, 3 (2001), WA6-1 - WA6-3.
    9 Jianliang Yang, Swee Chuan Tjin, Nam Quoc Ngo, “Multiwavelength tunable fiber ring laser based on sampled chirp fiber Bragg grating,” IEEE Photon. Tech. Lett. 16 (2004), 1026–1028.
    10 K. L. Lee, K. Chan, C. Shu, “Self-compensated dispersion tuning of a mode-locked fiber laser using a linearly chirped fiber grating,” IEEE Photon. Tech. Lett. 13 (2001), 106–108.
    11 K. Iwatsuki, H. Okamura, M. Saruwatari, “Wavelength-tunable, single-frequency and single-polarization Er-doped fiber ring–laser with 1.4 kHz linewidth,” Electron. Lett. 26 (1990), 2033-2035.
    12 A. Gloag, N. Langford, K. McCollion, W. Johnstone, “Continuously tunable single-frequency erbium ring fiber laser,” J. Opt. Soc. Am. B, 13 (1996), 921-925.
    13 J. L. Zyskind, J. W. Sulhoff, J. Sun, J. Stone, L. W. Stulz, G. T. Harvey, D. J. Digiovanni, H. M. Presby, A. Piccirilli, U. Koren, R. M. Jopson, “Single mode diode-pumped tunable erbium-doped fibre laser with linewidth less than 5.5 kHz,” Electron. Lett. 27 (1991), 2148-2149.
    14 N. Park, J. W. Dawson, K. J. Vahala, “All fiber, low threshold, widely tunable single-frequency, erbium-doped fiber ring laser with a tandem fiber Fabry-Perot filter,” Appl. Phys. Lett. 59 (1991), 2369-2371.
    15 L. Dong, W. H. Loh, J. E. Caplen, J. D. Minelly, K. Hsu, L. Reekie, “Efficient single-frequency fiber lasers with novel photosensitive Er-Yb optical fibers,” Opt. Lett. 22 (1997), 694-696.
    16 K. Hsu, W. H. Loh, L. Dong et al. “Efficient and tunable Er-Yb fiber grat ing lasers,” J. L ightwave Tech. 15 (1997), 1438-1441.
    17 许远忠,谭华耀, 杜卫冲, 刘水华,“短腔 Er-Yb 光纤光栅激光器”,光学学报,19(1999),1327-1331。
    18 T. Erdogan, “Fiber grating spectra,” J. Lightwave Tech. 15 (1997), 1277-1294.
    19 赵凯华,钟锡华,《光学》,北京:北京大学出版社,1996,332-333。
    20 G. A. Ball and W. W. Morey, “Continuously tunable single-mode erbium fiber laser,” Opt. Lett. 17 (1992), 420-422.
    21 J. L. Zyskind, V. Mizrahi, D. J. DiGiovanni, J. W. Sulhoff, “Short single frequency erbium-doped fiber laser,” Electron. Lett. 28 (1992), 1385-1387.
    22 J. T. Kringlebotn, J. L. Archambault, J. E. Reekie, J. E. T9whsehd, G. G. Vienne, D. N. Payne, “Highly efficient, low noise grating feedback Er3+:Yb3+ codoped fiber laser,” Electron. Lett. 30 (1994), 972-973.
    23 W. H. Loh, B. N. Samson, L. Dong, G. J. Cowle, K. Hsu, “High performance single frequency fiber grating-based Erbium:Ytterbium-codoped fiber lasers,” IEEE J. Lightwave Tech. 16 (1998), 114-118.
    24 W. H. Loh, S. D. Butterworth, W. A. Clarkson, “Efficient distributed feedback erbium-doped germanosilicate fiber laser pumped in the 520 nm band,” Electron. Lett. 32 (1996),2088-2089.
    25 J. J. Pan, Y. Shi, “166-mW single-frequency output power interactive fiber lasers with low noise,” IEEE Photon. Tech. Lett. 11 (1999), 36-38.
    26 M. W. Maeda, J. S. Patel, D. A. Smith, Chinlon Lin, M. A. Saifi, A. Von Lenman, “An electronically tunable fiber laser with a liquid-crystal etalon filter as the wavelength-tuning element,” IEEE Photon. Lett. 2 (1990), 787-789.
    27 Jianluo Zhang, Chao-Yu Yue, Gregory W. Schinn, Wallace R. L. Clements, John W. Y. Lit, “Stable single-mode compound-ring Erbium-doped fiber laser,” IEEE J. Lightwave Tech.14 (1996), 104-109.
    28 Hongxin Chen, F. Babin, M. Leblanc, G. W. Schinn, “Widely tunable single-frequency Erbium-doped fiber lasers,” IEEE Photon. Tech. Lett. 15 (2003), 185-187.
    1 K. H. Wanser, K. F. Voss, A. D. Kersey, “Novel fiber devices and sensors based on multimode fiber Bragg gratings,” Proc. SPIE, 2360 (1994), 265-268.
    2 Jirapong Lim, Qingping Yang, B. E. Jones, P. R. Jackson, “Strain and temperature sensors using multimode optical fiber Bragg gratings and correlation signal processing,” IEEE Transactions on Instrumentation and Measurement, 51 (2002), 622–627.
    3 C. L. Barbosa, R. M. Cazo, H. T. Hattori, R. C. Rabelo, O. Lisboa, “Experimental study of a multimode fiber Bragg grating temperature sensor,” Microwave and Optoelectronics Conference, 1 (2001), 317-319.
    4 X. Chen, K. Zhou, L. Zhang, I. Bennion, “Optical Chemsensor Based on Etched Tilted Bragg Grating Structures in Multimode Fiber,” IEEE Photon. Tech. Lett. Accepted for future publication.
    5 T. Mizunami, T. Niiho, T. V. Djambova, “Multimode fiber Bragg grating for fiber optic bending sensors,” Proc. SPIE, 3746 (1999), 216-219.
    6 T. Mizunami, T. V. Djambova, T. Niiho, S. Gupta, “Bragg Gratings in multimode and few-mode optical fibers,” J. Lightwave Tech. 18 (2000), 230-235.
    7 T. Erdogan, J. E. Sipe, “Tilted fiber phase gratings”, J. Opt. Soc. Am. A, 13 (1996), 296-1331.
    8 K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Transactions on Antennas and Propagation, 14 (1966), 302-307.
    9 S. T. Chu and S. K. Chaudhuri, A finite-difference time-domain method for the design and analysis of guided-wave optical structures, J. Lightwave Technol. 7 (1989), 2033-2038.
    10 S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, FDTD microcavity simulations: Design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators, J. Lightwave Technol. 15 (1997), 2154-2165.
    11 W. P. Huang, S. T. Chu, A. Goss and S. K. Chaudhuri, A scalar finite-difference time-domain approach to guided-wave optics, IEEE Photon. Tech. Lett. 3 (1991), 524-526.
    12 J. Yamachi, M. Nibe and H. Nakano, Scalar FD-TD method for circularly symmetric waveguides, Optical and Quantum Electronics, 29 (1997), 451-460.
    13 N. Feng, G. Zhou, and W. P. Huang, A scalar finite-difference time-domain method with cylindrical perfectly matched layers: application to guided and leaky modes of optical waveguides, J. Quan. Electron. 39 (2003), 487-492.
    14 A. Taflove and M. E. Brodwin, Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations, IEEE Trans. Microw. Theory Tech.23 (1975), 623-630.
    15 A. Bayless and E. Turkel, “Radiation boundary conditions for wave-like equations,” Comm. Pure Appl. Math. 33 (1980), 707-725.
    16 J. Fang, K. K. Mei, “A super-absorbing boundary algorithm for solving electromagnetic problems by time-domain finite-difference method,” Antennas and Propagation Society International Symposium, 2 (1988), 472-475.
    17 B. Engquist and A. Majda, “Absorbing Boundary Conditions for the Numerical Simulation of Waves,” Math. Comp. 31 (1977), 629-651.
    18 G. Mur, “Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,” IEEE Trans. Electromagn. Compat. 23 (1981), 377-382.
    19 J. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys. 114 (1994), 185-200.
    20 N. Dib, T. Weller, M. Scardelletti, “Analysis of 3-D cylindrical structures using the finite difference time-domain method,” IEEE MTT-S Int. Microwave Symp. Dig. 1998, 925-928.
    1 T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monoroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76 (1994), 73-80.
    2 D. P. Hand, P. S. J. Russel, “Photoinduced Refractive Index Changes in Germanosilicate Fibers,” Opt. Lett. 15 (1990), 102-104.
    3 F. P. Payne, “Photorefractive gratings in single-mode optical fibers,” Electron. Lett. 25 (1989), 498-499.
    4 P. S. J. Russell, D. P. Hand, Y. T. Chow, L. J. Poyntz-Wright, “Optically induced creation, transformation and organization of defects and color centers in optical fiber,” SPIE Proc. 1516 (1991), 47-54.
    5 K. O. Hill, Y. Fujii, D. C. Johnson, et al. “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32 (1978), 647-649.
    6 G. Meltz, W. W. Morey, W. H. Glenn, “Formation of Bragg gratings in optical fibers by transverse holographic method,” Opt. Lett. 14 (1989), 823-825.
    7 K. O. Hill, B. Malo, F. Bilodeau, et al. “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62 (1993), 1035-1037.
    8 A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, et al. “Long-period fiber gratings as band-rejection filters,” J. Lightwave Tech. 14 (1996), 58-65.
    9 B. Malo, F. Bilodeau, J. Albert, et al. “Photosensitivity in optical fiber and silica on substrate waveguides,” SPIE Proc. 2044 (1993), 46-54.
    10 Xiaofeng Jin, Zhongxian Zhang, “Non-Uniform Optical Fiber Grating Response,” Acta Optica Sinica, 19 (1999), 721-727.
    11 Bahua Bai, Ying Qian, Yingzhi Sun, “Fabrication techniques of chirped and apodised fiber grating,” Journal of Changchun Post and Telecommunication Institute, 18 (2000),37-42.
    12 IMAMURA KAZUO, NAKAI TADAHIKO, SUDO TAKAHIDE, “Manufacturing Method of Fiber Grating And Manufacturing Device Thereof,” Japanese Patent Number: JP2000066041, Publication date: 2000-03-03.
    13 Chingchung Yang, Yinchieh Lai, “Apodised fiber Bragg gratings fabricated with a uniform phase mask using Gaussian beam laser,” Optics & Laser Technology, 32 (2000), 307-310.
    14 J. E. Sipe, L. Poladian, C. Martijn de Sterke, “Propagation through nonuniform gratingstructures,” J. Opt. Soc. Am. A, 11 (1994), 1307-1320.
    15 L. Poladian, “Graphical and WKB analysis of nonuniform Bragg gratings,” Phys. Rev. E, 48 (1993), 4758-4767.
    16 S. W. James, M. L. Dockney, R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors,” Electron. Lett. 32 (1996), 1133-1134.
    17 Wei-Chong Du, Xiao-Ming, Tao, Hwa-Yaw Tam, “Fiber Bragg Grating Cavity Sensor for Simultaneous Measurement of Strain and Temperature,” IEEE Photon. Tech. Lett. 11 (1999), 105-107.
    18 V. Grubsky, A. Skorucak, D. S. Starodubov, J. Feinberg, “Fabrication of spectrally clean, long-period grating filters,” Optical Fiber Communication Conference and the International Conference on Integrated Optics and Optical Fiber Communication (OFC/IOOC'99), 4 (1999), 174-176.
    19 Tigang Ning, Yongjun Fu, Yan Liu, Zhongwei Tan, Li Pei, Shuisheng Jian, “Theoretic and Experimental Study on PMD of Fiber Bragg Grating,” Chinese Journal of Lasers, 30 (2003), 424-426.
    20 Li Xia, Xuhui Li, Yuzhe Yin, Jia Feng, Jin Mao, Xiangfei Chen, Shizhong Xie, “Study of Writing Fiber Bragg Grating into Birefringent Fiber,” Acta Optica Sinica, 22 (2002), 1004-1007.
    1 G. P. Agrawai, Properties of Glass and Rare-Earth Doped Glasses for Optical Fibers, (IEE, London, 1998).
    2 M. Asobe, T. Kanamori, K. Kubodera, “Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber,” IEEE Photon. Tech. Lett. 4 (1992), 362-365.
    3 G. S. He, S. H. Liu, Physics of Nonlinear Optics, (World Scientific, Singapore, 2000).
    4 Y. R. Shen, The Principles of Nonlinear Optics, (Wiley, New York, 1984).
    5 R. W. Boyd, Nonlinear Optics, (Second Ed., Academic, San Diego, 2002).
    6 K. O. Hill, Y. Fujii, D. C. Johnson, B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32 (1978), 647-649.
    7 V. Mizrahi, S. LaRochelle, G. I. Stegeman, J. E. Sipe, “Physics of photosensitive-grating formation in optical fibers,” Phys. Rev. A, 43 (1991), 433-438.
    8 B. Guo and D. Z. Anderson, “Undepleted pump regime of Hill grating formation in optical fibers,” Appl. Phys. Lett. 60 (1992), 671-673.
    9 H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Sys. Tech. J. 48 (1969), 2909-2947.
    10 S. J. B. Yoo, “Wavelength conversion technologies for WDM network application,” J. Lightwave Tech. 14 (1996), 955-966.
    11 J. Capmany, S. Sales, D. Pastor, A. Martinez, B. Ortega, “Wavelength conversion of SCM signals using semiconductor optical amplifiers: theory, experiments, and applications,” J. Lightwave Tech. 21 (2003), 961-972.
    12 M. M. de la Corte, J. M. H. Elmirghani, “Accurate noise characterization of wavelength converters based on XGM in SOAs,” J. Ligthtwave Tech. 21 (2003), 182-197.
    13 A. Bilenca, R. Alizon, V. Mikhelashhvili, D. Dahan, G. Eisenstein, R. Schwertberger, D. Gold, J. P. Reithmaier, A. Forchel, “Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm,” IEEE Photon. Tech. Lett. 15 (2003), 563-565.
    14 O. Qasaimeh, “Characteristics of cross-gain (XG) wavelength conversion in quantum dot semiconductor optical amplifiers,” IEEE Poton. Tech. Lett. 16 (2004), 542-544.
    15 Deming Liu, Ng Jun Hong, Lu Chao, “Wavelength conversion based on cross-gainmodulation of ASE spectrum of SOA,” IEEE Photon. Tech. Lett. 12 (2000), 1222-1224.
    16 W. Wang, H. N. Poulsen, L. Rau, H.-F. Chou, J. E. Bowers, D. J. Blumenthal, “Raman-Enhanced Regenerative Ultrafast All-Optical Fiber XPM Wavelength Converter,” J. Lightwave Tech. 23 (2005), 1105-1115.
    17 W. Wang, H. N. Poulsen, L. Rau, H.-F. Chou, J. E. Bowers, D. J. Blumenthal, L. Gruner-Nielsen, “Regenerative 80-Gb/s fiber XPM wavelength converter using a hybrid Raman/EDFA gain-enhanced configuration,” IEEE Photon. Tech. Lett. 15 (2003), 1416-1418
    18 S.-C. Cao, J. C. Cartledge, “Time- and frequency-domain characterization of the modulated ASE noise in SOA-MZI wavelength converters,” IEEE Photon. Tech. Lett. 14 (2002), 962-964.
    19 R. Sato, T. Ito, K. Magari, J. Endo, I. Ogawa, Y. Inoue, R. Kasahara, Y. Tohmori, Y. Suzuki, S. Tohno, “Tuning technique to optimize input power of a cross-phase modulation wavelength converter,” J. Lightwave Tech. 22 (2004), 1883-1892.
    20 A. E. Kelly, A. D. Ellis, D. Nesset, R. Kashyap, D. G. Moodie, “100 Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier,” Electron. Lett. 34 (1998), 1955-1956.
    21 I. Zacharopoulos, I. Tomkos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, E. Roditi, “Study of polarization-insensitive wave mixing in bulk semiconductor optical amplifiers,” IEEE Photon. Tech. Lett. 10 (1998), 352-354.
    22 I. Tomkos, I. Zacharopoulos, D. Syvridis, T. Sphicopoulos, C. Caroubalos, E. Roditi, “Improved performance of a wavelength converter based on dual pump four-wave-mixing in a bulk semiconductor optical amplifier,” Appl. Phys. Lett. 5 (1998), 2499-2501.
    23 T. Simoyama, H. Kuwatsuka, B. E. Little, M. Matsuda, Y. Kotaki, H. Ishikawa, “High-efficiency wavelength conversion using FWM in an SOA integrated DFB laser,” IEEE Photon. Tech. Lett. 12 (2000), 31-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700